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Abstract

We show that Woodin’s AD+ Conjecture follows from various hypothe-
ses extending the Continuum Hypothesis (CH). These results complement
Woodin’s original result that the AD+ Conjecture follows from MM(c).

1 Introduction

This paper concerns Woodin’s AD+ Conjecture, [Woo10, Definition 10.7.6]. The
conjecture’s original motivation was based on speculations from the Inner Model
Program and has many important consequences, e.g. the definability of Ω-logic. See
[Woo10] for a more detailed discussion.

We identify elements of the Baire space ωω with reals. Throughout the paper, by
a “set of reals A”, we mean A ⊆ ωω. Given a cardinal κ, we say T ⊆

⋃
n<ω ω

n × κn
is a tree on ω × κ if T is closed under initial segments. Given a tree T on ω × κ, we
let [T ] be the set of its branches, i.e., b ∈ [T ] if b ∈ ωω × κω and letting b = (b0, b1),
for each n ∈ ω, (b0 � n, b1 � n) ∈ T . We then let p[T ] = {x ∈ ωω : ∃f((x, f) ∈ [T ])}.
A set A is Suslin if it is κ-Suslin for some κ; A is co-Suslin if its complement R\A
is Suslin. A set A is Suslin, co-Suslin if both A and its complement are Suslin. A
cardinal κ is a Suslin cardinal if there is a set of reals A such that A is κ-Suslin but
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A is not λ-Suslin for any λ < κ. Suslin cardinals play an important role in the study
of models of determinacy (see for example, various articles from the Cabal Volumes:
[KMM83], [KMS88], [KLS08], [KLS12], [KLS16], [KMM81], [KM78]).

A set of reals A is ≤ γ-universally Baire if there are trees T, U on ω×λ for some
λ such that A = p[T ] = R\p[U ] and whenever g is ≤ γ-generic (i.e. g is V -generic
for some forcing P ∈ V such that |P| ≤ γ), in V [g], p[T ] = R\p[U ]. We write Ag for
p[T ]V [g]; this is the canonical interpretation of A in V [g].1

Definition 1.1 (AD+ Conjecture, [Woo21]) Suppose A0, A1 ∈ ℘(R) are such that
L(Ai,R) � AD+ for i ∈ {0, 1}. Let ∆i be the Suslin coSuslin sets of L(Ai,R). Sup-
pose that each B ∈ ∆0 ∪∆1, B is ≤ ω1-universally Baire. Then

L(∆0,∆1,R) � AD+.

It is consistent (relative to large cardinals) that there are divergent models of
AD+, i.e. there are A0, A1 ∈ ℘(R) such that L(Ai,R) � AD+ for i ∈ {0, 1} but
A0 /∈ L(A1,R) and A1 /∈ L(A0,R). This is a theorem of Woodin (cf. [Far10]). That
the hypothesis of the AD+ Conjecture is necessary follows from very deep analysis
of divergent models of AD+. It is beyond the scope of this paper to discuss this any
further.

Woodin, in [Woo21], has shown that MM(c), the Martin’s Maximum for partial
orders of size at most the continuum, implies the AD+ Conjecture. This is the
strongest known result regarding the conjecture in the context where the Continuum
Hypothesis (CH) fails.2 The following two theorems show that the AD+ Conjecture
can also hold with CH.

Recall, for an infinite cardinal λ, the principle �λ asserts the existence of a
sequence 〈Cα | α < λ+〉 such that for each α < λ+,

• Cα is club in α;

• for each limit point β of Cα, Cβ = Cα ∩ β;

• the order type of Cα is at most λ.

The principle �(λ) asserts the existence of a sequence 〈Cα | α < λ〉 such that

1. for each α < λ,

• each Cα is club in α;

1One can show Ag does not depend on the choice of T,U .
2MM(c) implies c = ω2.
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• for each limit point β of Cα, Cβ = Cα ∩ β; and

2. there is no thread through the sequence, i.e., there is no club E ⊆ λ such that
Cα = E ∩ α for each limit point α of E.

We remark that the hypothesis of Theorem 1.2 is consistent relative to large
cardinals.

Theorem 1.2 Suppose CH holds and ¬�(ω2) + ¬�(ω3) holds. Then the AD+ Con-
jecture holds.

We say that an ideal I on ω1 is ω1-dense if the associated poset PI = ℘(ω1)/I
has a dense set of size ω1.3

Theorem 1.3 Suppose CH holds and there is an ω1-dense ideal on ω1. Then the
AD+ Conjecture holds.

As mentioned, the AD+ Conjecture was motivated by inner model theoretic con-
siderations. One may attempt to prove the full conjecture (i.e. without any extra
hypothesis) by extending the HOD analysis for all AD+ models. This is an active area
of research in descriptive inner model theory and has many other applications (cf.
[Sar14] for a treatment of the HOD analysis for all AD+ models below the minimal
model of ADR+“Θ is regular”.)

Acknowledgment. The author is grateful for H.W. Woodin for his many in-
sightful conversations concerning the topic and for his inspiring work in this direction.
The author would also like to thank the NSF for its generous support through the
CAREER grant DMS-1945592.

2 Preliminaries

2.1 AD and AD+ Facts

We review basic facts about the Axiom of Determinacy (AD). Suppose A ⊆ ωω. Let
GA be the following game. Players I and II alternatively play natural numbers. Let
xk be the natural number played at the kth move.

3The ideals considered in this paper are proper, normal, fine, and countably complete. Being
ω1-dense is a very strong property; it implies for example that I is saturated.
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Player 0 1 . . . n . . .
I x0 x2 x2n

II x1 x3 x2n+1

Let

x = (xk)k<ω

Then I wins iff x ∈ A.

GA is determined if one of the players has a winning strategy.

Definition 2.1 Axiom of Determinacy, AD: For every A ⊆ ωω, GA is deter-
mined.

One particular game that is relevant to this paper is the Wadge game. We review
it here. Let A,B ⊆ R, the Wadge game GA,B for A,B is defined as follows. Players
I and II take turns to play integers (ni : i < ω) and (mi : i < ω) respectively.
After ω many rounds (i.e. when the play is finished), letting x = (ni : i < ω) and
y = (mi : i < ω), player II wins the play if and only if

x ∈ A⇔ y ∈ B.

AD implies that GA,B is determined and therefore A,B are Wadge comparable. More
precisely, if player II has a winning strategy τ , then τ induces a continuous (in fact,
Lipschitz) function f : R→ R such that f−1[B] = A; otherwise, there is a continuous
function g : R → R such that g−1[R − A] = B. In the first case, we say that A is
Wadge reducible to B and we denote this by A ≤w B; in the second case, we say B
is Wadge reducible to R− A.

We continue with the definition of Woodin’s theory of AD+. We use Θ to denote
the sup of ordinals α such that there is a surjection π : R → α. Under AC, Θ is
just the successor cardinal of the continuum. In the context of AD, Θ is shown to
be the supremum of w(A)4 for A ⊆ R (cf. [Sol78]). The definition of Θ relativizes
to any determined pointclass (with sufficient closure properties). We denote ΘΓ for
the supremum of ordinals α such that there is a surjection from R onto α coded by
a set of reals in Γ.

Definition 2.2 AD+ is the theory ZF + AD+DCR and

4w(A) is the Wadge rank of A. Under AD the Wadge reducibility relation is a prewellorder on
℘(R).
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1. for every set of reals A, there are a set of ordinals S and a formula ϕ such that
x ∈ A⇔ L[S, x] � ϕ[S, x]. (S, ϕ) is called an ∞-Borel code for A;

2. for every λ < Θ, for every continuous π : λω → ωω, for every A ⊆ R, the set
π−1[A] is determined.

AD+ is equivalent to “AD + the set of Suslin cardinals is closed”. Another, perhaps
more useful, characterization of AD+ is “AD+Σ1 statements reflect into the Suslin
co-Suslin sets” (see [ST10] for the precise statement).

2.2 Term capturing under AD+

The definition of mice and iteration strategies used in this paper are standard, see
[Ste10].

Definition 2.3 Let A ⊆ R, (M,Σ) is a (countable) mouse (pair), and δ a cardinal
in M .

1. (M,Σ) term captures A at δ if there is a term τ ∈ MCol(ω,δ) such that
whenever i : M → N is according to N , and g ⊆ Col(ω, i(δ)) is N-generic,
then A ∩N [g] = i(τ)g.

2. (M,Σ) Suslin captures A at δ if there is a pair of trees (T, U) ∈ M such
that whenever i : M → N is according to N , and g ⊆ Col(ω, i(δ)) is N-generic,
then A ∩N [g] = p[i(T )]N [g] = RN [g]\p[i(U)].

In the above, Σ is a ω1 + 1-iteration strategy of M .5 M need not be fine structural.

Clearly, Suslin capturing implies term capturing. The relationship between de-
terminacy and term capturing is best expressed by the following theorem.

Lemma 2.4 (Neeman, [Nee95a]) Suppose δ is a Woodin cardinal in a countable
mouse M and A ⊆ R is Suslin captured by (M,Σ) at δ. Then A is determined.

We will call the triple (M,Σ, δ) in Lemma 2.4 a Woodin mouse pair or coarse
Woodin mouse pair if M is not fine structural. Under AD+, the following theorem,
due to Woodin, gives the existence of coarse Woodin mouse pairs capturing Suslin
co-Suslin sets of reals. See [Ste08, Section 10] for a more detailed version and its
proof. In the following, we say that Σ has condensation if whenever T is an iteration
tree according to Σ and U is a hull of T then U is according to Σ. As usual, T is
equipped with a tree order <T . α <T β implies α < β and the interval [α, β]T is the
set of γ such that α ≤T γ ≤T β. See [SS, Ste08] for more details.

5Iteration trees according to Σ are normal trees in the sense of [Ste10].
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Theorem 2.5 Suppose AD+ holds and A is a Suslin coSuslin set. Then there is a
(coarse) Woodin mouse pair (M,Σ, δ) that Suslin captures A, Σ has condensation
(and hence has the Dodd-Jensen property), and Σ is Suslin coSuslin.6

2.3 Axiom of Strong Condensation

In this section, we briefly discuss the Axiom of Strong Condensation, isolated by
Woodin. This axiom roughly abstracts essential condensation properties typically
seen in canonical inner models (like L). For more details, see [Woo10].

Definition 2.6 (Axiom of Strong Condensation) For each cardinal κ > ω, there
is a bijection F : κ→ Hκ such that for all countable X ≺ (Hκ, F ), letting FX be the
transitive collapse of F ∩X under the transitive collapse map,

FX ⊂ F .

We say that F witnesses Strong Condensation at κ.

Remark 2.7 By absoluteness, the X above can be taken to be in any outer model
of V . Furthermore, [Woo21, Theorem 4.3] shows that the Axiom of Strong Con-
densation implies many consequences typically hold in L, like GCH and there are no
measurable cardinals. [Woo21, Theorem 4.3] also shows that there is a “global” F
witnessing Strong Condensation, i.e. there is an F : ON → V that is Σ2-definable
from F |ω1 and for every cardinal κ > ω, F |κ : κ→ Hκ witnesses Strong Condensa-
tion at κ.

2.4 ω1-dense ideals on ω1

Suppose I is an ω1-dense ideal on ω1. The following are standard facts; see [Woo10,
Definition 6.19] and the discussion after it.

Fact 2.8 1. PI is a homogeneous forcing.7

2. There is a boolean isomorphism π : PI → RO(Coll(ω, ω1))8. In particular, PI
is forcing equivalent to Coll(ω, ω1).

6In fact, we can find Σ ∈ Σ1
ω(A).

7A forcing P is homogeneous if whenever p, q ∈ P, there is an automorphism σ : P → P such
that σ(p) is compatible with q.

8RO(Coll(ω, ω1)) is the regular open algebra of Coll(ω, ω1).
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3. For any V -generic filter G ⊂ Coll(ω, ω1), π induces a V -generic filter H ⊂ PI,
and letting j : V → M =def Ult(V,H) ⊂ V [H] be the associated generic
ultrapower map, we have:

(a) j(f)(ωV1 ) = G for some f : ω1 → Hω1; in particular, V [H] = V [G].

(b) j(ωV1 ) = ωV2 .

(c) M is well-founded and Mω ⊂M in V [H].

3 Proof of Theorem 1.2

Suppose A0, A1 are as in the hypothesis of the AD+ Conjecture. By Theorem 2.5,
there are coarse Woodin pairs (Mi,Σi, δi) that Suslin captures Ai for each i ∈ {0, 1}.
Let (Ti, Ui) witness Σi is ≤ ω1-universally Baire. In the following, M(Σ0,Σ1),]

1 is the
minimal active mouse with a Woodin cardinal that is closed under Σ0 and Σ1. This
is a kind of strategy mice and its general theory has been fully developed in for
example [ST16]. We fix a canonical coding Code : Hω1 → R as in [Woo10, Chapter
2]. This coding is simply definable and generically absolute.

Lemma 3.1 M(Σ0,Σ1),]
1 exists.

Proof. For each i, since Σi is ≤ ω1-universally Baire, Σi can be uniquely extended to
a strategy (which we will also call Σi) on Hω2 . For a tree T ∈ HV

ω2
, according to Σi,

Σi(T ) = b iff ∅ 
Coll(ω,ω1) (Code(T ), Code(b)) ∈ p[Ti].

Fix i and let Λ = Σi. We let Λg = p[Ti] ∩ V [g] for any generic g ⊆ Coll(ω, ω1).
It is easy to see that the definition of b is independent of generics and therefore
b ∈ V . To see this, suppose there is an ordinal γ and conditions p, q such that
p 
Coll(ω,ω1) γ̌ ∈ Λ̇g(Ť ) iff q 
Coll(ω,ω1) γ̌ /∈ Λ̇g(Ť ). But then, by the homogeneity of
Coll(ω, ω1), we can find generics g0, g1 such that

• V [g0] = V [g1].

• p ∈ g0 and q ∈ g1.

Since p[Ti]∩V [g0] = p[Ti]∩V [g1], Λg0(T ) = Λg1(T ). This contradicts what p, q force.
We have shown that Λ can be extended to a (necessarily) unique strategy, also

called Λ, acting on trees in Hω2 . Now we extend Λ to Hω3 . Suppose T is a normal
tree of length ≥ ω2 in Hω3 . If cof(lh(T )) = ω2, using ¬�(ω2), we can easily find a
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cofinal branch b through T .9 This branch is necessarily unique and well founded.
We define Λ(T ) = b.

Suppose cof(lh(T )) ≤ ω1. We define X to be good if

X ≺ (Hω3 ,∈), |X| = ω1, and Xω ⊆ X.

Note that such good hulls exist by CH. For a good X such that T ∈ X, we let
πX : MX → X be the uncollapse map, TX = π−1

X (T ) and bX ∈ Λ(TX). We claim.

Claim 3.2 There is a good X such that for any good X ≺ Y , letting πX,Y = π−1
Y ◦πX ,

cX,Y = πX,Y [bX ], then cX,Y ⊆ bY .

Proof. Since cof(lh(T )) ≤ ω1, for any good X, X ∩ T is cofinal in T . Suppose
cof(lh(T )) = ω1, then it is easy to see that the claim holds for any good X such that
T ∈ X.

Now suppose cof(lh(T ) = ω, then note that for any good X, since Xω ⊂ X,
bX ∈ MX . The argument is as in [Ste05]. Suppose there is no such X as in the
claim, we can form an elementary chain (Xν : ν ∈ ω2) such that:

1. If ν is a limit ordinal then Xν =
⋃
α<ν Xα.

2. If ν is a successor ordinal, then Xν is good.

3. For each successor ν or for each limit ν such that cof(ν) > ω, cν,ν+1 =def

cXν ,Xν+1 6= bν+1 =def bXν+1 .

We also write πα,β for πXα,Xβ etc. An easy argument (using that for each ν < ω2

with cof(ν) > ω, bν ∈MXν ) gives a stationary S ⊂ ω2 such that

• ν ∈ S ⇒ cof(ν) > ω, and

• ν, γ ∈ S ⇒ πν,γ(bν) = bγ.
10

9This is a standard argument. The set ~C = {[0, α]T : α < lh(T )} is a coherent sequence on

lh(T ). Fix a continuous, increasing function f : ω2 → lh(T ), we can use f to pullback ~C into a

coherent sequence ~D in ω2. Now apply ¬�(ω2) to get a thread E for ~D. Then f [E] is a thread

through ~C and gives a cofinal branch through lh(T ).
10Suppose the set S as defined is not stationary. So there is a club C such that C∩S = ∅. For any

ν < γ ∈ C with uncountable cofinality, πν,γ(bν) 6= bγ . Let γ ∈ lim(C) be of uncountable cofinality
and is a limit of points in C of uncountable cofinality. Since C is club below γ and cof(lh(Tγ)) = ω,
we can easily find ν ∈ C ∩ γ such that rng(πν,γ) ∩ bγ is cofinal in bγ and bγ ∈ rng(πν,γ), but then
π−1
ν,γ [bγ ] = bν by condensation of Σ, i.e. πν,γ(bν) = bγ . Contradiction.
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For ν < γ ∈ S, πν+1,γ witnesses (Tν+1)aπν,ν+1(bν) is a hull of T aγ bγ, and so πν,ν+1(bν)
is according to Σ, i.e. cν,ν+1 = bν+1. Contradiction. �

Using the claim, we can define Λ(T ) to be the downward closure of πX [bX ], where
X is as in the claim.

Now we show M(Σ0,Σ1),]
1 exists and is ω3-iterable. The first step is to show HV

ω3

is closed under (Σ1,Σ2)]. More precisely, for any A ∈ Hω3 , A
(Σ0,Σ1),] exists.11 If not,

then by covering, letting M = L
(Σ0,Σ1)
ω3 [A],12 where A is some subset of ω2, letting

γ = (ωV2 )+,M ,

cof(γ) ≥ ω2.

But ¬�(ω3) ⇒ γ < ωV3 . This is because if γ = ωV3 , letting ~C be the canonical
�ωV2 -sequence defined over M , then ¬�(ω3) implies there is a thread D. The thread
D, as usual, gives a collapsing structure for γ, i.e. some sound model N such that
γ ∈ N and ρω(N) = ωV2 (this means N projects to ω2). This is a contradiction as γ
was assumed to be a cardinal in V . So γ < ωV3 . Then ¬�(ω2) ⇒ cof(γ) < ω2 by a
similar argument. Contradiction.

Similarly, we can then show M(Σ0,Σ1),]
1 exists. Otherwise, the core model K =

K(Σ0,Σ1) exists.13 Let γ = (ωV2 )+,K . By covering, cf. [JS13], cof(γ) ≥ ω2, but as
before ¬�(ω3) + ¬�(ω2)⇒ cof(γ) < ω2. Contradiction.

Now to finish the proof of the theorem, it is enough to show that the Wadge game
GA0,A1 is determined. Let H = M(Σ0,Σ1),]

1 , δH be the Woodin cardinal of H, Σ be
H’s canonical strategy, and let τi ∈ H be Coll(ω, δH)-terms for Ai. In particular, for
any g ⊆ Coll(ω, δH) in V , (τi)h = Ai ∩H[g].14. First, we note that the Wadge game
GA0,A1 is determined in H[g] for any H-generic g ⊆ Coll(ω, δH) in V (via a strategy

in H). This follows from the fact that the corresponding Neeman’s game ĜA0,A1 is
determined in H[g] (see [Nee95b]).

Now we let (Mi,Σi)i<ω enumerate the coarse Woodin pairs that Suslin captures

all sets in Σ1
ω(A0) ∪ Σ1

ω(A1). By a similar proof, H = M(Σi:i<ω),]
1 exists and GA0,A1

11This is the theory of the indiscernibles for the model L
(Σ0,Σ1)
ω3 [A]. Here the language is the

language of set theory augmented by the following predicate symbols: a unary predicate symbol Ȧ
and two binary predicate symbols Σ̇1, Σ̇2.

12Again, L
(Σ0,Σ1)
ω3 [A] is the minimal model over A of height ω3 and is closed under strategies Σ0

and Σ1. [ST16] gives a detailed treatment of how to feed strategy information of Σ0 and Σ1 into
the model. This model is L-like in that it satisfies all condensation properties L satisfies. The key
here, of course, is because Σ0 and Σ1 have condensation properties.

13Here we construct the Jensen-Steel core model as in [JS13] up to ωV3 . Again, the core model
and the corresponding Kc-construction are hybrid, relativized to (Σ0,Σ1).

14In fact, we can take τi to be some tree Ti ∈ ω × λ for some λ ∈ H.
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is determined in HColl(ω,δ) via a strategy in H, where δ is the Woodin cardinal of H.
We note that H has Coll(ω, δ)-terms that capture A0, A1 as well as scales on A0, A1.
Therefore,

(H[g] ∩ Vω+1, H[g] ∩ A0, H[g] ∩ A1) ≺ (Vω+1, A0, A1),

for any H-generic g ⊂ Coll(ω, δ) such that g ∈ V . This implies that GA0,A1 is
determined in V . This completes the proof of the theorem.

�

4 Proof of Theorem 1.3

Let I be an ω1-dense ideal on ω1. Let A0, A1 be as in the hypothesis of the AD+

Conjecture. We note that by our hypothesis, for any C ∈ Σ1
ω(A0) ∪ Σ1

ω(A1), for any
generic g for a poset P ∈ Hω2 ,

(Vω+1, C) ≺ (V [g]ω+1, Cg), (1)

where Cg is the canonical interpretation of C in V [g].
Let P be the term relation for Σ1

ω(A0) ∪ Σ1
ω(A1). More precisely, P consists of

tuples (i, ϕ,P, σ, q) such that

• i ∈ {0, 1}.

• P ∈ Hω2 is a poset.

• σ ∈ V P ∩Hω2 is a term for a real.

• For a closed unbounded set of countable X ≺ Hω2 , for a comeager set of X-
generic filter g ⊂ X ∩P: if i = 0 and q ∈ g then (Vω+1, A0) � ϕ[σg]; and if i = 1
and q ∈ g then (Vω+1, A1) � ϕ[σg].

By [Woo21] and 1, for all generic g for a poset in Hω2 , for all bounded Z ⊂ ωV2
in V [g],

LωV2 [Z, P ]Coll(ω,sup(Z)) � ZFC+ Axiom of Strong Condensation.

Let G ⊂ Coll(ω, ω1) be V -generic. Note that Coll(ω, ω1) ∈ HV
ω2

and G induces
a generic g ⊆ ℘(ω1)/I and a generic elementary embedding j : V → M ⊆ V [g].
Similarly, over M , we let k : M → N be the generic embedding induced by an
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M -generic h ⊆ Coll(ω, ωM1 ). We note that by Sectiion 2.4, Mω ⊂ M in V [G]; in
particular, RM = RV [G].

We then have by strong condensation of P and the fact that Mω ⊂M in V [G]:

j(P ) = PG ∩M.15 (2)

Claim 4.1 For all bounded Z ⊂ ωV2 , there is a closed and unbounded set C ⊂ ω2 of
indiscernibles for the structure (NZ =def LωV2 [Z, P ], P ∩NZ).

Proof. First let Z be a bounded subset of ω1. We note the following:

1. NZ = LωV2 [Z, j(P )].

2. ωV1 and ωV2 = j(ω1) = ωM1 are strongly inaccessible in NZ .

Item (1) is proved in [Woo21] using the fact that NZ satisfies the Axiom of Strong
Condensation. Here is a quick sketch. Let F : ONNZ → NZ be a function witnessing
Strong Condensation of NZ . For all uncountable cardinal κ < ωV2 of N , j(F )|κ
witnesses Strong Condensation. By Remark 2.7, π(F )|κ = F |κ because

(j[HNZ
κ ], j[F |κ]) ≺ (j(HNZ

κ ), j(F |κ)) ≺ (H
j(NZ)
j(κ) , j(F )|j(κ)).

This gives (1).
For item (2), first note that j(NZ) has the form Lj(ωV2 )[Z, j(P )] = Lj(ωV2 )[Z, PG].

Suppose there is a κ < ωV1 such that in NZ , ℘(κ) ≥ ωV1 , we may assume κ+ = ωV1 in
NZ . But this means in j(NZ),

κ+ = j(ωV1 ) = ωV2 .

This contradicts the agreement of NZ and j(NZ) in item (1) and the fact that ωV1 , ω
V
2

are cardinals of NZ , j(NZ). Now use the fact that ωV2 = j(ωV1 ) and apply the above
argument to j(NZ) and k, we conclude that ωV2 is strongly inaccessible in j(NZ). By
item (1), ωV2 is also strongly inaccessible in NZ .

The proof of [Woo21, Theorem 4.4] then shows the conclusion of the claim for
this particular choice of Z.16

15Here PG is P as interpreted in V [G]. Note here that j(Ai) = (Ai)G, the canonical interpretation
of Ai in V [G].

16In fact, one gets that (NZ , P )] exists. Roughly, we can show that letting µ be the measure
over NZ derived from j and let MZ = Ult(NZ , µ). Let iµ : NZ → MZ be the ultrapower map.
Then there is a canonical factor map σ : MZ → j(NZ) such that j � NZ = σ ◦ iµ. We also have
crt(σ) = iµ(ωV1 ). In fact by condensation, MZ = NZ . We can then derive a measure over MZ from
σ. We continue this process, showing that (NZ , µ) is iterable.
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Now assume Z ⊂ ωV2 is bounded. Note then that in M , Z is a bounded subset of
ω1. We apply the above proof to LωM2 [Z, j(P )] =def N

∗
Z and use k. We conclude that

in k(N∗Z), ωM2 is a limit of a club of indiscernibles. By elementarity, in N∗Z , ωM1 is a
limit of a club of indiscernibles. But again by strong condensation, N∗Z � ω

M
1 = NZ .

This completes the proof of the claim. �

Now let R = LωV2 (R)[P ]. Let (M0,Σ0, δ0), (M1,Σ1, δ1) ∈ R be coarse Woodin
pairs that capture A0, A1 respectively. As in the proof of Theorem 1.2, it suffices
to show M(Σ0,Σ1),]

1 exists. Suppose not. Then for any H ⊂ Coll(ω1,R) in V , K =
K(Σ0,Σ1) exists in R[H].17 We note that:

• R[H] has the form L[Z, P ], where Z is a bounded subset of ωV2 coding (RV , H).

• K ∈ R by homogeneity of Coll(ω1,R).

• j(K) ∈ V by homogeneity of Coll(ω, ω1) and j(R) being definable in V [g] from
parameters in V .18

From the above, the proof of [SS, Section 2.11] goes through and show that ωV1
must be Shelah in j(K). Contradiction. Hence M(Σ0,Σ1),]

1 exists. As before, we
let (Mi,Σi)i<ω enumerate the coarse Woodin pairs that Suslin captures all sets in

Σ1
ω(A0)∪Σ1

ω(A1). By a similar proof, H =M(Σi:i<ω),]
1 exists and GA0,A1 is determined

in HColl(ω,δ) via a strategy in H, where δ is the Woodin cardinal of H. This implies
GA0,A1 is determined in V and completes the proof of the theorem.
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