
ALMOST EVERYWHERE BEHAVIOR OF FUNCTIONS ACCORDING TO

PARTITION MEASURES

WILLIAM CHAN, STEPHEN JACKSON, AND NAM TRANG

Abstract. This paper will study almost everywhere behaviors of functions on partition spaces of cardinals

possessing suitable partition properties. Almost everywhere continuity and monotonicity properties for

functions on partition spaces will be established. These results will be applied to distinguish the cardinality
of certain subsets of the power set of partition cardinals.

If κ is a cardinal, ε < κ, cof(ε) = ω, κ →∗ (κ)ε·ε2 , and Φ : [κ]ε∗ → ON, then Φ satisfies the almost
everywhere short length continuity property: there is a club C ⊆ κ and a δ < ε so that for all f, g ∈ [C]ε∗, if

f � δ = g � δ and sup(f) = sup(g), then Φ(f) = Φ(g).

If κ is a cardinal, ε is countable, κ→∗ (κ)ε·ε2 holds, and Φ : [κ]ε∗ → ON, then Φ satisfies the strong almost
everywhere short length continuity property: there is a club C ⊆ κ and finitely many ordinals δ0, ..., δk ≤ ε
so that for all f, g ∈ [C]ε∗, if for all 0 ≤ i ≤ k, sup(f � δi) = sup(g � δi), then Φ(f) = Φ(g).

If κ satisfies κ→∗ (κ)κ2 , ε ≤ κ, and Φ : [κ]ε∗ → ON, then Φ satisfies the almost everywhere monotonicity
property: there is a club C ⊆ κ so that for all f, g ∈ [C]ε∗, if for all α < ε, f(α) ≤ g(α), then Φ(f) ≤ Φ(g).

Suppose dependent choice (DC), ω1 →∗ (ω1)ω1
2 , and the almost everywhere short length club uniformiza-

tion principle for ω1 hold. Then every function Φ : [ω1]ω1
∗ → ω1 satisfies a finite continuity property with

respect to closure points: Let Cf be the club of α < ω1 so that sup(f � α) = α. There is a club C ⊆ ω1 and

finitely many functions Υ0, ...,Υn−1 : [C]ω1
∗ → ω1 so that for all f ∈ [C]ω1

∗ , for all g ∈ [C]ω1
∗ , if Cg = Cf

and for all i < n, sup(g � Υi(f)) = sup(f � Υi(f)), then Φ(g) = Φ(f).

Suppose κ satisfies κ →∗ (κ)ε2 for all ε < κ. For all χ < κ, [κ]<κ does not inject into χON, the class
of χ-length sequences of ordinals, and therefore, |[κ]χ| < |[κ]<κ|. As a consequence, under the axiom of

determinacy (AD), these two cardinality results hold when κ is one of the following weak or strong partition

cardinals of determinacy: ω1, ω2, δ1n (for all 1 ≤ n < ω, assuming in addition DCR), and δ21.

1. Introduction

Partition relations appear frequently in combinatorics. Ramsey showed that the set of natural numbers,
ω, satisfies the finite partition relations ω → (ω)k2 for each k < ω. The infinite exponent partition relation
ω → (ω)ω2 (also called the Ramsey property for all partitions) is a natural generalization which is not
compatible with the axiom of choice. However, simply definable partitions such as Borel or analytic partitions
always satisfy the Ramsey property by results of Galvin and Prikry [7] and Silver [17]. Mathias [15] produced
many important results concerning the Ramsey property including the technique of Mathias forcing which is
used to verify ω → (ω)ω2 in the Solovay model and Woodin’s extension AD+ of the axiom of determinacy, AD.
Mathias also studied the Ramsey almost everywhere behavior of functions on the Ramsey space [ω]ω such as
when every function Φ : [ω]ω → R is Ramsey almost everywhere continuous or every relation R ⊆ [ω]ω×R has
a Ramsey almost everywhere uniformization. Recently, these two properties have been used by Schritteser
and Törnquist [16] to show that ω → (ω)ω2 implies there are no maximal almost disjoint families on ω.
Finite exponent partition relations on uncountable cardinals are important in set theory and motivate large
cardinal axioms such as the weakly compact and Ramsey cardinals. Martin, Kunen [18], Jackson [8], Kechris,
Kleinberg, Moschovakis, and Woodin [12] showed that the axiom of determinacy is a natural theory in which
ω1 and many other cardinals κ possess even the strong partition relation: κ→ (κ)κ2 . Kleinberg [14], Martin,
and Paris studied functions on the finite partition spaces of ω1 and produced ultrapower representations for
ωn, showed ω2 has weak partition property, and established combinatorial properties such as Jónssonness
for ωn, for all n ∈ ω. Under the axiom of determinacy, the authors ([4], [2], [5], and [6]) studied variations
of almost everywhere continuity properties for functions on the partition spaces of ω1 and ω2 according to
suitable partition measures and applied these results to distinguish the cardinalities below P(ω1) and P(ω2).
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There, AD provided useful motivation and elegant arguments, but the techniques have severe limitations.
Here, the authors will prove stronger almost everywhere behaviors for functions on partition spaces (such
as continuity and monotonicity) from pure combinatorial principles, and these results will be applied to
distinguish important cardinalities below the power set of partition cardinals. This will lead to new results
about the most important weak and strong partition cardinals of determinacy.

A basic question of infinitary combinatorics is the computation of the size of infinite sets. Cantor formal-
ized the notion of size and the comparison of sizes. Let X and Y be two sets. One says X and Y have the
same cardinality (denoted |X| = |Y |) if and only if there is a bijection Φ : X → Y . The cardinality of X
is the (proper) class of sets Y which are in bijection with X. The cardinality of X is less than or equal the
cardinality of Y (denoted |X| ≤ |Y |) if and only if there is an injection Φ : X → Y . The cardinality of X is
strictly smaller than the cardinality of Y (denoted |X| < |Y |) if and only if |X| ≤ |Y | but ¬(|Y | ≤ |X|).

The axiom of choice, AC, implies every set is wellorderable. Thus the class of cardinalities forms a
wellordered class under the injection relation. Each cardinality class has a canonical wellordered member
(an ordinal) called the cardinal of the class. Wellorderings of sets (even R) are incompatible with certain
definability perspectives. This is usually the consequence of definable sets possessing combinatorial regularity
properties.

Let ω denote the set of natural numbers or the first infinite cardinal. Cantor showed that ω does not
surject onto P(ω). Thus ω < |P(ω)|. Let ω1 denote the first uncountable cardinal. With the axiom of
choice, ω1 ≤ |P(ω)| using a wellordering of P(ω) or R. However, if the axiom of choice is omitted and
instead R is assumed to satisfy the perfect set property and the property of Baire, then a classical argument
involving the Kuratowski-Ulam theorem would show that there is no injection of ω1 into R or P(ω). Thus ω1

and |P(ω)| = |R| are incompatible cardinalities. Moreover, the perfect set property completely characterizes
the structure of the cardinalities below |P(ω)| in a manner which satisfies a choiceless continuum hypothesis:
The only uncountable cardinality below |P(ω)| is |P(ω)|.

With the perfect set property and the Baire property, the structure of the cardinalities below P(ω1) is
non-linear since ω1 and |R| = |P(ω)| are two incompatible cardinalities below |P(ω1)|. For each ε ≤ ω1, let
[ω1]ε be the increasing sequence space consisting of increasing functions f : ε→ ω1. P(ω1) and [ω1]ω1 are in
bijection. Therefore, sequence spaces represent natural combinatorial cardinalities below |P(ω1)| = |[ω1]ω1 |.
Another important example is [ω1]<ω1 =

⋃
ε<ω1

[ω1]ε∗, which is the set of countable length increasing sequences

of countable ordinals. A natural question is to distinguish |[ω1]ω|, |[ω1]<ω1 |, and |P(ω1)| = |[ω1]ω1 | under
suitable regularity properties. A helpful combinatorial property possessed by ω1 (in some natural theories)
is the strong partition property, ω1 →∗ (ω1)ω1

2 .
Partition properties will be discussed in detail in Section 2. Let κ be a cardinal, ε ≤ κ, and A ⊆ κ. Let

[A]ε∗ be the collection of increasing functions f : ε → A of the correct type (i.e. discontinuous everywhere
and has uniform cofinality ω). The partition relation κ →∗ (κ)ε2 is the assertion that for all P : [κ]ε∗ → 2,
there is a closed and unbounded (club) C ⊆ ω1 and i ∈ 2 so that for all f ∈ [C]ε∗, P (f) = i. If for all ε < κ,
κ→∗ (κ)ε2 holds, then κ is called a weak partition cardinal. If κ→∗ (κ)κ2 , then κ is called a strong partition
cardinal. If ε ≤ κ and κ→∗ (κ)ε2 holds, then the partition filter µκε on [κ]ε∗ defined by X ∈ µκε if and only if
there is a club C ⊆ κ so that [C]ε∗ ⊆ X is an ultrafilter.

If κ satisfies suitable partition relations, then the partition spaces [κ]ε∗ for ε < κ, [κ]<κ∗ , and [κ]κ∗ rep-
resent important cardinalities below P(κ). Distinguishing the cardinality of these partition spaces involve
understanding the possible injections that exist between these partition spaces. To answer such questions,
this paper will use partition properties to obtain very deep understandings of the behavior of functions
Φ : [κ]ε∗ → ON on measure one sets according to the relevant partition measure, µκε .

In [2], it is shown that if κ →∗ (κ)κ2 , then every function Λ : [κ]κ∗ → ON, there is an ordinal α so
that Λ−1[{α}]| = |[κ]κ∗ |. This asserts that |[κ]κ∗ | = |P(κ)| satisfies a regularity property with respect to
wellordered decompositions. The set [κ]<κ∗ does not satisfy such regularity. This is used in [2] to show that
|[κ]<κ∗ | < |[κ]κ∗ | = |P(κ)|. This paper is motivated by the question of distinguishing the cardinality of [κ]ε

for ε < κ and [κ]<κ∗ . For these computations, it will be important to understand functions Φ : [κ]ε∗ → κ
through continuity properties.

To motivate continuity, suppose Φ : [κ]ε∗ → ON. Given f ∈ [κ]ε∗, Φ can be considered as an abstract
procedure which uses information about f to assign an ordinal value. Example of such information include
specific values of f(α) for α < ε, initial segments f � α for α < ε, or possibly the entirety of f or the values
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of f on some unbounded subsets of ε. An almost everywhere continuity property intuitively asserts that for
µκε -almost all f , Φ can assign an ordinal to f using only information from f which comes from a well-defined
bounded subset of ε.

One appealing continuity property for a function Φ : [κ]ε∗ → κ (with ε < κ) would be that for µκε -almost
all f , there exists a δ < ε so that Φ(f) only depends on f � δ. However, such a property is impossible by
the following illustrative example. If κ satisfies κ → (κ)2

∗, then κ is a regular cardinal. Thus the function
Ψ : [κ]ε∗ → κ defined by Ψ(f) = sup(f) is well defined and it depends on more than any initial segment. This
suggests that that perhaps a general function Φ : [κ]ε → κ might have a fixed δ < ε so that for µκε -almost
all f , Φ(f) depends only on the initial segment f � δ and sup(f). Under suitable partition properties, such
a continuity will be true more generally for functions Φ : [κ]ε∗ → ON with cof(ε) = ω (and this cofinality
assumption is generally necessary).

Fix ε < κ a limit ordinal with cof(κ) = ω. Define an equivalence relation E0 on [κ]ε by f E0 g if and
only if there exists an α < ε so that for all β with α < β < ε, f(β) = g(β). A function Φ : [κ]ε∗ → ON
is E0-invariant if and only if whenever f E0 g, Φ(f) = Φ(g). The first step is the following independently
interesting result that functions which are E0-invariant µκε -almost everywhere depend only on the supremum
µκε -almost everywhere under suitable partition relations.

Theorem 3.6. Suppose κ is a cardinal, ε < κ is a limit ordinal with cof(ε) = ω, and κ→∗ (κ)ε·ε2 holds. Let
Φ : [κ]ε∗ → ON be a function which is E0-invariant µκε -almost everywhere. Then there is a club C ⊆ κ so
that for all f, g ∈ [C]ε∗, if sup(f) = sup(g), then Φ(f) = Φ(g).

Using this theorem, the desired almost everywhere short length continuity result is established.

Theorem 3.7. Suppose κ is a cardinal, ε < κ is a limit ordinal with cof(ε) = ω, and κ→∗ (κ)ε·ε2 holds. For
any function Φ : [κ]ε∗ → ON, there is a club C ⊆ κ and a δ < ε so that for all f, g ∈ [C]ε∗, if f � δ = g � δ and
sup(f) = sup(g), then Φ(f) = Φ(g).

The almost everywhere short length continuity of Theorem 3.7 is used to show that if κ is a weak
partition cardinal, then for any χ < κ, <κκ does not inject into χκ or even χδ for any ordinal δ by providing
a sufficiently complete analysis of potential injections.

Theorem 4.3. Suppose κ is a cardinal so that κ →∗ (κ)<κ2 . Then for all χ < κ, there is no injection
of <κκ into χON, the class of χ-length sequences of ordinals. In particular, for all χ < κ, |χκ| < |<κκ|.

A stronger continuity notion would assert that a function Φ : [κ]ε∗ → ON (with ε < κ) has finitely
many locations in ε depending solely on Φ so that Φ(f) depends only on the behavior of f at these finitely
many locations. (By the previous example, one of these locations must be allowed to be the supremum of f .)
The next result states that if ε is countable and κ satisfies a suitable partition relation, then Φ : [κ]ε∗ → ON
will satisfy a strong almost everywhere short length continuity.

Theorem 3.9. Suppose κ is a cardinal, ε < ω1, and κ →∗ (κ)ε·ε2 holds. Let Φ : [κ]ε∗ → ON. Then
there is a club C ⊆ κ and finitely many ordinals δ0, ..., δk ≤ ε so that for all f, g ∈ [C]ε∗, if for all 0 ≤ i ≤ k,
sup(f � δi) = sup(g � δi), then Φ(f) = Φ(g).

Suppose ε ≤ κ and Φ : [κ]ε∗ → ON. A natural question is that if one increases the information stored in f
by increasing the values of f , could the value of Φ possibly decrease? An almost everywhere monotonicity
property for Φ would assert that for µκε almost all f, g ∈ [κ]ε∗, if for all α < ε, f(α) ≤ g(α), then Φ(f) ≤ Φ(g).
By Fact 5.1, for all functions of the form Φ : [κ]ε∗ → ON to satisfy this almost everywhere monotonicity
property, one must at least have the partition relation κ →∗ (κ)ε∗. If ε is countable, the strong almost ev-
erywhere short length continuity of Theorem 3.9 implies the following almost everywhere monotonicity result.

Theorem 4.7. Suppose κ is a cardinal, ε < ω1, κ →∗ (κ)ε·ε2 holds, and Φ : [κ]ε∗ → ON. Then there is
a club C ⊆ κ so that for all f, g ∈ [C]ε∗, if for all α < ε, f(α) ≤ g(α), then Φ(f) ≤ Φ(g).
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When cof(ε) = ω, one only has the weaker almost everywhere short length continuity property of Theorem
3.7. Moreover, there are functions on partition spaces of high dimension which do not satisfy a recognizable
continuity property. Regardless, almost everywhere monotonicity still holds for functions on partition spaces
assuming the appropriate partition relation.

Theorem 5.3. Suppose κ is a cardinal satisfying κ →∗ (κ)κ2 . For any function Φ : [κ]κ∗ → ON, there
is a club C ⊆ κ so that for all f, g ∈ [C]κ∗ , if for all α < κ, f(α) ≤ g(α), then Φ(f) ≤ Φ(g).

Adapting this argument, one can also show monotonicity for Φ : [κ]ε∗ → ON when ε < κ.

Theorem 5.7. Suppose κ is a weak partition cardinal. For any ε < κ and function Φ : [κ]ε∗ → ON,
there is a club C ⊆ κ so that for all f, g ∈ [κ]ε∗, if for all α < ε, f(α) ≤ g(α), then Φ(f) ≤ Φ(g).

The last section will establish the strongest known continuity result for functions of the form Φ :
[ω1]ω1

∗ → ω1 from the strong partition relation on ω1 and a certain club selection principle. Let clubω1

denote the set of club subset of ω1. The almost everywhere short length club uniformization principle at
ω1 is the assertion that for all R ⊆ [ω1]<ω1

∗ × clubκ which is ⊆-downward closed (in the sense that for all
` ∈ [ω1]<ω1

∗ , for all clubs C ⊆ D, if R(`,D) holds, then R(σ,C) holds), there is a club C ⊆ ω1 and a function
Λ : [C]<ω1

∗ ∩ dom(R)→ clubω1
so that for all ` ∈ [C]<ω1

∗ ∩ dom(R), R(`,Λ(`)).
Consider a function Φ : [ω1]ω1 → ω1. Asking that there exists a δ < ω1 so that Φ(f) only depending

on f � δ for µω1
ω1

-almost f ∈ [ω1]ω1
∗ is impossible in general. (For instance, consider Φ(f) = f(f(0)).

See Example 6.1.) Using the almost everywhere short length club uniformization at ω1, [4] showed that
functions Φ : [ω1]ω1

∗ → ω1 do satisfy µω1
ω1

-almost everywhere continuity where [ω1]ω1
∗ is endowed with the

topology generated by a basis consisting of N` = {f ∈ [ω1]ω1
∗ : ` ⊆ f} for each ` ∈ [ω1]<ω1

∗ and ω1 is given
the discrete topology. Explicitly, there is a club C ⊆ ω1 so that for all f ∈ [C]ω1

∗ , there exists an α < ω1

so that for all g ∈ [C]ω1
∗ , if f � α = g � α, then Φ(f) = Φ(g). [2] showed that the almost everywhere short

length club uniformization at ω1 can be used to get an even finer continuity result which asserts that there
is a club C ⊆ ω1 so that for all f ∈ [C]ω1

∗ and all α < ω1, if Φ(f) < f(α), then f � α is a continuity point for
Φ relative to C. (For these results, the condition that Φ maps into ω1 is generally necessary.)

A natural question is whether Φ : [ω1]ω1 → ω1 satisfies any form of continuity in which Φ(f) depends only
on the behavior of f at finitely many locations on ω1. By the function from Example 6.1, it is impossible
to have finitely many ordinals δ0, ..., δn−1 < ω1 which are independent of any input f so that Φ(f) depends
only on the behavior of f at these finitely many points. One can conjecture if there are finitely many con-
tinuity locations for Φ which do depend on f . That is, are there finitely many functions Υ0, ...,Υn−1 so
that there is a club C ⊆ ω1 with the property that for all f ∈ [C]ω1 , for all g ∈ [C]ω1

∗ , if for all i < n,
sup(g � Υi(f)) = sup(f � Υi(f)), then Φ(f) = Φ(g)? This is also not possible. For each f ∈ [ω1]ω1

∗ , call an
ordinal α a closure point of f if and only if for all β < α, f(β) < α or equivalently sup(f � α) = α. Let
Cf denote the club set of closure points of f . Let Ψ : [ω1]ω1

∗ → ω1 be defined by Ψ(f) = min(Cf ), i.e, the
smallest closure point of f . Example 6.3 shows that there is no collection of finite functions Υ0, ...,Υn−1

which satisfies the proposed continuity property with respect to Ψ. Closure points necessarily contain infinite
information concerning f . The next result shows that closure points are the only obstruction to a µω1

ω1
-almost

everywhere continuity property asserting finite dependence:

Theorem 6.18. Assume DC, ω1 →∗ (ω1)ω1
2 , and that the almost everywhere short length club uniformization

principle holds at ω1. Let Φ : [ω1]ω1
∗ → ω1. There is a club C ⊆ ω1 and finitely many functions Υ0, ...,Υn−1

so that for all f ∈ [C]ω1
∗ , for all g ∈ [C]ω1

∗ , if Cg = Cf and for all i < n, sup(g � Υi(f)) = sup(f � Υi(f)),
then Φ(f) = Φ(g).

To put these results in context and discuss examples, one need to consider the natural theories which
possess combinatorial regular properties. Let A ⊆ ωω. Consider a game GA where two players take turns
picking natural numbers to jointly produce an infinite sequence f . Player 1 is said to win GA if and only if
f ∈ A. The basic axiom of determinacy, denoted AD, asserts that for all A ⊆ ωω, one of the two players has
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a winning strategy for GA. Under AD, the perfect set property and the Baire property hold for all sets of
reals, and ω1 and many other cardinals possess partition properties. Many weak versions of the continuity
results mentioned here have been previously established for ω1 and ω2 under AD. This paper evolved from
attempts to establish continuity properties and cardinality computations at the most important weak and
strong partition cardinals of determinacy.

See Section 2 for a summary of partition properties under AD. Martin showed under AD that ω1 is a
strong partition cardinal and ω2 is a weak partition cardinal which is not a strong partition cardinal. Jackson
[8] showed under AD and DCR that for all n ∈ ω, δ1

2n+1 is a strong partition cardinal and δ1
2n+2 is a weak

partition cardinal which is not a strong partition cardinal. The next strong partition cardinal after ω1 is
δ1

3 = ωω+1. Kechris, Kleinberg, Moschovakis, and Woodin [12] showed that δ2
1 and the Σ1-stable ordinals

δA of L(A,R) for any A ⊆ R are strong partition cardinals under AD.
Previously known continuity results at ω1 and ω2 heavily used determinacy methods. For instance, Kunen

trees and functions ([9] and [3]) are very important for many combinatorial questions at ω1 and for the de-
scription analysis below ωω which leads to the strong partition property for δ1

3 = ωω+1. [5] and [6] Fact 2.5
used these Kunen functions to provide a very simple argument that every function Φ : [ω1]ε → ω1 with ε < ω1

satisfies the almost everywhere short length continuity expressed in Theorem 3.7 and even the stronger ver-
sion expressed in Theorem 3.9 (but only when the range of the function goes into ω1). [5] used this result to
show that |[ω1]ω| < |[ω1]<ω1 | under AD. Using Martin’s ultrapower representation of ωn+1 =

∏
[ω1]n /µ

ω1
n for

each 1 ≤ n < ω, [6] showed that [ω1]<ω1 does not inject into ω(ωω). Using a variety of determinacy specific
techniques (the full wellordered additivity of the meager ideal, generic coding arguments, Banach-Mazur
games, Wadge theory, and Steel’s Suslin bounding), [6] showed that [ω1]<ω1 does not inject into ωON under
AD and DCR. (Note that Theorem 4.3 improved this result to just the hypothesis AD.) Extending these
methods to studying the next strong partition cardinal δ1

3 = ωω+1 seems difficult. Although ωω+1 have
analogs of Kunen functions and generic coding functions ([13]) using supercompactness measures, there is
no analog of the full wellordered additivity of the meager ideal which can be a major obstacle to generalizing
results to ωω+1 as observed by Becker at the end of [1]. Moreover, δ2

1 and the Σ1-stable ordinals δA (A ⊆ R)
are strong partition cardinals which are limit cardinals and cannot possess analogs of the desired Kunen
functions. The methods for ω1 are much less applicable here. Although, δ1

3, δ2
1, and δA are important

cardinals of determinacy possessing numerous scales and reflection properties, unlike ω1, these properties do
not seem to facilitate the analysis of cardinality. The pure combinatorial methods of Theorem 3.7, 4.3, 3.9,
5.3, and 5.7 are the only known method for establishing these properties for these important strong partition
cardinals of determinacy.

Corollary 3.10. Assume AD. Suppose κ is ω1, ω2, δ1
n for 1 ≤ n < ω, δ2

1, or δA where A ⊆ R. If
ε < ω1 and Φ : [κ]ε∗ → ON, then there are finitely many ordinal β0 < β1 < ... < βp−1 ≤ ε (where p ∈ ω) so
that for all f, g ∈ [C]ε∗, if for all i < p, sup(f � βi) = sup(g � βi), then Φ(f) = Φ(g).

Assume AD. Suppose κ is ω1, ω2, δ2
1, or δA where A ⊆ R. If ε < κ with cof(ε) = ω and Φ : [κ]ε∗ → ON,

then there is a club C ⊆ κ and a δ < ε so that for all f, g ∈ [C]ε∗, if sup(f) = sup(g) and f � δ = g � δ, then
Φ(f) = Φ(g).

Assume AD + DCR. If 1 ≤ n < ω, ε < δ1
n with cof(ε) = ω, and Φ : [δ1

n]ε∗ → ON, then there is a club
C ⊆ δ1

n and δ < δ1
n so that for all f, g ∈ [C]ε∗, if f � δ = g � δ and sup(f) = sup(g), then Φ(f) = Φ(g).

Corollary 4.5. Assume AD. If κ is ω1, ω2, δA for some A ⊆ R, or δ2
1, then for any χ < κ, |χκ| < |<κκ| and

<κκ does not inject into χON.
Assume AD + DCR. If κ is δ1

n for some 1 ≤ n < ω, then for any χ < κ, |χκ| < |<κκ| and <κκ does not
inject into χON.

Corollary 5.5. Assume AD. Suppose κ is ω1, δ2
1, or δA where A ⊆ R. For any ε ≤ κ and any func-

tion Φ : [κ]ε∗ → ON, there is a club C ⊆ κ so that for all f, g ∈ [C]ε∗, if for all α < ε, f(α) ≤ g(α), then
Φ(f) ≤ Φ(g).

Assume AD + DCR. For any n ∈ ω, for any ε ≤ δ1
2n+1, and any function Φ : [δ1

2n+1]ε∗ → ON, there is a

club C ⊆ δ1
2n+1 so that for all f, g ∈ [C]ε∗, if for all α < ε, f(α) ≤ g(α), then Φ(f) ≤ Φ(g).
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Corollary 5.8. Assume AD. Let κ be ω1, ω2, δ2
1, or δA where A ⊆ R. For any ε < κ and Φ : [κ]ε∗ → ON,

there is a club C ⊆ ω2 so that for all f, g ∈ [C]ε∗, if for all α < ε, f(α) ≤ g(α), then Φ(f) ≤ Φ(g).
Assume AD + DCR. For any 1 ≤ n < ω, ε < δ1

n, and Φ : [δ1
n]ε∗ → ON, there is a club C ⊆ δ1

n so that for
any f, g ∈ [C]ε∗, if for all α < ε, f(α) ≤ g(α), then Φ(f) ≤ Φ(g).

Determinacy provides examples to show that the hypothesis in Theorem 3.7 and Theorem 3.9 are gen-
erally necessary. Let Ψ : [ω2]ω1 → ω3 be defined by Φ(f) = [f ]µω1

1
, i.e. the ordinal represented by f in

the ultrapower
∏
ω1
ω2/µ

ω1
1 of ω2 by the club measure on ω1. Ψ will not satisfy the weak or strong ver-

sion of the almost everywhere short length continuity. (See Example 3.13.) Letting Υ : [ω2]ω1+ω → ω3

defined by Υ(f) = Ψ(f � ω1) is an example of a function satisfying the weak short length continuity (note
cof(ω1 +ω) = ω) and does not satisfy the strong short length continuity (note that ω1 < ω1 +ω). In the two
examples above, the range goes into ω3. Curiously, it is shown in [5] that every function Φ : [ω2]ω1

∗ → ω2

satisfies even the strong almost everywhere short length continuity property (despite cof(ω1) > ω). This
remarkable property is unique only to ω2 and is made possible by Martin’s ultrapower representation of ω2

under AD.
[4] shows the almost everywhere short length club uniformization holds for ω1 under AD. (By a more

general argument, [2] shows that nearly all known strong partition cardinals of AD also satisfies this club
uniformization principle.) By absorbing functions Φ : [ω1]ω1

∗ → ω1 into the inner model L(R) which satisfies
AD and DC, Theorem 6.18 implies the following holds in AD.

Theorem 6.22. Assume AD. Let Φ : [ω1]ω1
∗ → ω1. There is a club C ⊆ ω1 and finitely many func-

tion Γ0, ...,Γn−1 so that for all f ∈ [C]ω1
∗ , for all g ∈ [C]ω1

∗ , if Cg = Cf and for all i < n, sup(g � Γi(f)) =
sup(f � Γi(f)), then Φ(f) = Φ(g).

In this result, it is necessary that the range goes into ω1. For example under AD, the function Φ :
[ω1]ω1

∗ → ω2 defined by Ψ(f) = [f ]µω1
1

(f is mapped to the ordinal below ω2 represented by f in the

ultrapower of ω1 by the club measure on ω1) does not satisfy any recognizable continuity property.

2. Partition Properties

ON will denote the class of ordinals.

Definition 2.1. Suppose ε ∈ ON and f : ε→ ON is a function. The function f is discontinuous everywhere
if and only if for all α < ε, sup(f � α) = sup{f(β) : β < α} < f(α).

The function f has uniform cofinality ω if and only if there is a function F : ε×ω → ON with the following
properties:

(1) For all α < ε, for all n ∈ ω, F (α, n) < F (α, n+ 1).
(2) For all α < ε, f(α) = sup{F (α, n) : n ∈ ω}.

The function f has the correct type if and only if f is both discontinuous everywhere and has uniform
cofinality ω.

Definition 2.2. If A and B are two sets, then AB denote the set of functions f : A→ B.
Let ε ∈ ON and X be a class of ordinals. Let [X]ε be the class of increasing functions f : ε → X. Let

[X]ε∗ be the class of increasing functions f : ε→ X of the correct type.

Definition 2.3. (Ordinary partition relation) Suppose κ is a cardinal and ε ≤ κ, then let κ → (κ)ε2 state
that for all P : [κ]ε → 2, there is an A ⊆ κ with |A| = κ and an i ∈ 2 so that for all f ∈ [A]ε, P (f) = i.

Definition 2.4. (Correct type partition relations) Suppose κ is a cardinal, ε ≤ κ, and γ < κ, let κ→∗ (κ)εγ
assert that for all Φ : [κ]ε∗ → γ, there is a club C ⊆ κ and an η < γ so that for all f ∈ [C]ε∗, Φ(f) = η.
κ is a strong partition cardinal if and only if κ→∗ (κ)κ2 . κ is a very strong partition cardinal if and only

if κ→∗ (κ)κ<κ. κ is a weak partition cardinal if and only if κ→ (κ)<κ2 .
6
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The correct type partition relations will be used in this paper. Under the axiom of determinacy, partition
relations are often established by proving the correct type partition relation. The ordinary and correct type
partition relations are nearly equivalent by the following result.

Fact 2.5. Suppose κ is a cardinal and ε ≤ κ. κ→∗ (κ)ε2 implies κ→ (κ)ε2. κ→ (κ)ω·ε2 implies κ→∗ (κ)ε2.

It is not known if κ→∗ (κ)κ2 implies κ→ (κ)κ<κ, i.e. whether a strong partition cardinal is a very strong
partition cardinal. (Although all known strong partition cardinals are very strong partition cardinals.)
However, one does have the following related results for weak partition cardinals.

Fact 2.6. Suppose κ is a cardinal and ε ≤ κ. κ→∗ (κ)ε2 implies κ→∗ (κ)εn for all n ∈ ω.

Fact 2.7. Suppose κ is a cardinal and ε < κ. Then κ→∗ (κ)ε+ε2 implies κ→ (κ)ε<κ.
Thus κ→∗ (κ)<κ2 implies κ→∗ (κ)<κ<κ.

Definition 2.8. If κ is a cardinal and ε ≤ κ, then let µκε be the filter on [κ]ε∗ defined by X ∈ µκε if and only
if there is a club C ⊆ κ so that [C]ε∗ ⊆ X.

If κ→∗ (κ)ε2 holds, then µκε is an ultrafilter and is called the ε-partition measure on κ. If κ→∗ (κ)κ2 holds,
then µκκ is called the strong partition measure on κ.

Note that µκε is κ-complete if and only if κ →∗ (κ)ε<κ holds. Thus if ε < κ and κ →∗ (κ)ε+ε2 holds, then
µκε is κ-complete by Fact 2.7.

Definition 2.9. Suppose A is a set of ordinals. Let ξ = ot(A). Let enumA : ξ → A denote the increasing
enumeration of A.

Suppose κ be a regular cardinal. Let X ⊆ κ be an unbounded subset of κ. Let nextX : κ→ X be defined
by nextX(α) is the least element of X greater than α. Let next0X : κ→ κ be the identity function. For each
0 < γ < κ, let nextγX : κ→ X be defined by nextγX(α) is the γth-element of X strictly greater than α. (Note
that nextX(α) = next1X(α).)

Suppose κ is a cardinal, ε ≤ κ, and f : ε→ κ. Let Cf denote the closure of f [ε] in κ.
If ε ∈ ON, f : ε → ON, and α < ε, then let drop(f, α) : (ε − α) → ON be defined by drop(f, α)(β) =

f(α+ β).

Fact 2.10. Suppose κ is a cardinal, ε ≤ κ, and κ→∗ (κ)ε<κ holds. (By Fact 2.7, if ε < κ, then κ→∗ (κ)ε+ε2

is enough to ensure this condition.) Let Φ : [κ]ε∗ → κ have the property that for µκε -almost all f , Φ(f) < f(0).
Then there is a club C ⊆ κ and a ζ < κ so that for all f ∈ [C]ε∗, Φ(f) = ζ.

Proof. Let C0 ⊆ κ be such that for all f ∈ [C0]ε∗, Φ(f) < f(0). Define P : [κ]1+ε
∗ → 2 by P (g) = 0 if and only if

Φ(drop(g, 1)) < g(0). By κ→∗ (κ)ε2, there is a club C1 ⊆ C0 which is homogeneous for P . Let C2 ⊆ C1 be the
club of limit points of C1. Take any f ∈ [C2]ε∗. By the stated property of C0, Φ(f) < f(0). Since f(0) ∈ C2,
there is a γ ∈ C1 so that Φ(f) < γ < f(0). Let g ∈ [C1]1+ε

∗ be defined by g(0) = γ and drop(g, 1) = f .
Then Φ(drop(g, 1)) = Φ(f) < γ = g(0) and hence P (g) = 0. This shows that C1 must be homogeneous for
P taking value 0. Let f ∈ [C2]ε∗. Since f(0) ∈ C2, min(C1) < f(0). Let g ∈ [C1]1+ε

∗ be defined so that
drop(g, 1) = f and g(0) = min(C1). Then P (g) = 0 implies that Φ(f) = Φ(drop(g, 1)) < g(0) = min(C1).
Since f was arbitrary, it has been shown that for all f ∈ [C2]ε∗, Φ(f) < min(C1). Since κ→∗ (κ)ε<κ implies
that µκε is κ-complete, there is a C3 ⊆ C2 and a ζ < κ so that for all f ∈ [C3]ε∗, Φ(f) = ζ. �

Fact 2.11. Assume κ→∗ (κ)2
2. Then µκ1 (i.e. the ω-club filter on κ) is a normal κ-complete ultrafilter.

Proof. Let Φ : κ→ κ be a µκ1 -almost everywhere regressive function. Then there is a club C ⊆ κ so that for
all α ∈ [C]1∗, Φ(α) < α. By Fact 2.10, there is a club D ⊆ κ and a ζ < κ so that for all α ∈ [D]1∗, Φ(α) = ζ.
So Φ is µκ1 -almost everywhere constant. �

An ordinal γ is additively indecomposable if and only if for all α < γ and β < γ, α + β < γ. An
ordinal γ is multiplicatively indecomposable if and only if for all α < γ and β < γ, α · β < γ. An ordinal
is indecomposable if and only if it is additively and multiplicatively indecomposable. In all discussions,
0 and 1 will be excluded and hence additively indecomposable ordinals will always be limit ordinals. For
every limit ordinal ε, there exists ε0 < ε and ε1 ≤ ε so that ε = ε0 + ε1 and ε1 is additively indecomposable.
Because of this decomposition, it will be useful to establish results for sequences whose lengths are additively
indecomposable (but possibly not multiplicatively indecomposable) before deducing the general result. One
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will frequently assume club subsets consists entirely of (additively and multiplicatively) indecomposable
ordinals.

Fact 2.12. Let C0 ⊆ κ be a club subset of κ consisting entirely of indecomposable ordinals. Let C1 = {α ∈
C0 : enumC0

(α) = α}. Then C1 ⊆ C0 is a club subset of κ consisting entirely of indecomposable ordinals.

For any γ < κ, α < γ, and β < γ with γ ∈ C1, nextβC0
(α) < γ and in particular, next

ω·(β+1)
C0

(α) < γ.

Proof. Fix γ ∈ C1 and α < γ. Let ζ = sup{η < κ : enumC0(η) ≤ α}. Note that next0C0
(α) = α and

if 0 < β < γ, nextβC0
(α) = enumC0

(ζ + β). Since α < γ and γ ∈ C1, ζ < enum−1
C0

(γ) = γ. Because

γ is additively indecomposable, ζ + β < γ. Thus nextβC0
(α) = enumC0(ζ + β) < enumC0(γ) = γ. The

last statement follows from the first statement and the fact that since γ is additively and multiplicatively
indecomposable, for all β < γ, ω · (β + 1) < γ. �

Fact 2.13. (Almost everywhere fixed length measure witness uniformization) Let κ be a cardinal, 1 ≤ δ < κ,

and 1 ≤ ε ≤ κ. Suppose κ →∗ (κ)δ+ε2 holds. Let R ⊆ [κ]δ∗ × [κ]ε∗ be such that for all f ∈ [κ]δ∗, Rf = {g ∈
[κ]ε∗ : R(f, g)} ∈ µκε . Then there is a club C ⊆ ω1 so that for f ∈ [C]δ∗, [C \ sup(f) + 1]ε∗ ⊆ Rf .

Proof. If h ∈ [κ]δ+ε∗ , then let h0 ∈ [κ]δ∗, and h1 ∈ [κ]ε∗ be defined by h0 = h � δ and h1 = drop(h, δ). Define

a partition P : [κ]δ+ε∗ → 2 by P (h) = 0 if and only if R(h0, h1). By κ →∗ (κ)δ+ε2 , there is a club C ⊆ ω1

which is homogeneous for P . Fix an f ∈ [C]δ∗. Since Rf ∈ µκε , there is a club D ⊆ C so that for all
g ∈ [D]ε∗, R(f, g) holds. Pick a g ∈ [D]ε∗ with sup(f) < g(0) and let h ∈ [C]δ+ε∗ be defined so that h0 = f
and h1 = g. Then P (h) = 0. Thus C is homogeneous for P taking value 0. Now fix an f ∈ [C]δ∗. Take any
g ∈ [C \ sup(f) + 1]ε∗. Let h ∈ [C]δ+ε∗ be defined so that h0 = f and h1 = g. P (h) = 0 implies that R(f, g).
Thus [C \ sup(f) + 1]ε∗ ⊆ Rf . �

If κ is a cardinal, then let clubκ denote the collection of club subsets of κ.

Fact 2.14. ([2]) Let κ be a cardinal satisfying κ →∗ (κ)κ2 and 1 ≤ ε < κ. Suppose R ⊆ [κ]ε∗ × clubκ
is a relation which is ⊆-downward closed in the club coordinate in the sense that for all ` ∈ [κ]ε and all
clubs C ⊆ D, if R(`,D), then R(`, C). Then there is a club C ⊆ κ so that for all ` ∈ [C]ε∗ ∩ dom(R),
R(`, C \ (sup(`+ 1)).

Fact 2.14 will not be used here. Fact 2.14 implies Fact 2.13 however, it requires κ →∗ (κ)κ2 . Fact 2.14
is generally not true for weak partition cardinals which are not strong partition cardinals. For instance,
under AD, Fact 2.14 fails at ω2. Fact 2.14 gives slightly easier proof in the case of strong partition cardinals,
but the paper seeks to prove these results for weak partition cardinals so Fact 2.13 must be used in a more
indirect way.

Fact 2.15. (Everywhere wellordered measure witness uniformization) Let κ be a cardinal, ε < κ, and assume
κ →∗ (κ)ε+ε2 . If R ⊆ κ × [κ]ε∗ has the property that for all α < κ, Rα ∈ µκε , then there is a club C ⊆ ω1 so
that for all α < κ, [C \ nextωC(α) + 1]ε∗ ⊆ Rα.

Proof. Define a new relation S ⊆ κ× [κ]ε∗ by S(α, f) if and only if for all β ≤ α, R(β, f). Note that Sα ∈ µκε
since Sα =

⋂
β≤αRβ , Rβ ∈ µκε for each β ≤ α, and µκε is κ-complete by Fact 2.7. Applying Theorem 2.13,

there is a club C ⊆ ω1 so that for all α ∈ [C]1∗, [C \ α+ 1]ε∗ ⊆ Rα.
Let α < κ. Note that nextωC(α) is an element of C of cofinality ω and thus nextωC(α) ∈ [C]1∗. Thus

[C \ nextωC(α) + 1]ε∗ ⊆ SnextωC(α). Since SnextωC(α) ⊆ Rα, [C \ nextωC(α) + 1]ε∗ ⊆ Rα. �

The axiom of determinacy AD provides a rich theory with an abundance of partition cardinals possessing
desirable structures. For each n ∈ ω, let δ1

n be the supremum of the ranks of prewellordering on R which
belong to the pointclass ∆1

n. Under AD, δ1
1 = ω1, δ1

2 = ω2, δ1
3 = ωω+1, δ1

4 = ωω+2. Similarly, let δ2
1 be the

supremum of the ranks of prewellorderings on R which belong to the pointclass ∆2
1. If A ⊆ R, then let δA

be the least Σ1-stable ordinals of L(A,R), which is the least ordinal δ so that Lδ(A,R) ≺1 L(A,R). It is the
case that (δ2

1)L(R) = δ∅.

Fact 2.16. Assume AD.

(1) (Martin; [10] Theorem 12.2, [3] Corollary 4.27) ω1 →∗ (ω1)ω1
<ω1
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(2) (Martin-Paris; [10] Corollary 13.5, [3] Theorem 5.19 and Corollary 6.17) ω2 →∗ (ω2)<ω2
2 . ¬(ω2 →∗

(ω2)ω2
2 ).

(3) (Martin; [10] Theorem 11.2; Theorem [9] 2.36) For any n ∈ ω, δ1
2n+1 →∗ (δ1

2n+1)<ω1
2 .

(4) (Kunen; [10] Theorem 15.3) For all n ∈ ω, δ1
2n+2 →∗ (δ1

2n+2)<ω1
2 .

(5) ([12]) For any A ⊆ R, δA →∗ (δA)δA<δA
.

(6) ([12]) δ2
1 →∗ (δ2

1)
δ2
1

<δ2
1
.

Assume AD + DCR. Let n ∈ ω.

(1) ([8]) δ1
2n+1 →∗ (δ1

2n+1)
δ1
2n+1

<δ1
2n+1

.

(2) ([8]) δ1
2n+2 →∗ (δ1

2n+2)
<δ1

2n+2

2 . ¬(δ1
2n+2 →∗ (δ1

2n+2)
δ1
2n+2

2 ).

3. Almost Everywhere Short Length Continuity

Definition 3.1. Let κ be a cardinal and ε ≤ κ. Define an equivalence relation on εκ by f E0 g if and only
if there is an α < ε so that for all β with α ≤ β < ε, f(β) = g(β).

Suppose Φ : [κ]ε∗ → ON is a function. Φ is E0-invariant µκε -almost everywhere if and only if there is a
club C ⊆ κ so that for all f, g ∈ [C]ε∗, if f E0 g, then Φ(f) = Φ(g).

Definition 3.2. Let κ be a cardinal and ε ≤ κ. Define v on [κ]ε∗ by g v f if and only if g ∈ [Cf ]ε∗.
(This notion depends on κ and ε. Implicitly, g v f implies f and g are functions of the correct type.)

Lemma 3.3. Suppose κ is a cardinal, ε < κ is an additively indecomposable ordinal with cof(ε) = ω, and
κ→∗ (κ)ε·ε2 holds. Let Φ : [κ]ε∗ → ON be a function which is E0-invariant µκε -almost everywhere. Then there
is a club C ⊆ κ so that for all f, g ∈ [C]ε∗, if sup(f) = sup(g), then Φ(f) = Φ(g).

Proof. Since Φ is E0-invariant µκε -almost everywhere, let C0 ⊆ κ be a club so that for all f, g ∈ [C0]ε∗, if
f E0 g, then Φ(f) = Φ(g). Define P0 : [C0]ε∗ → 2 by P (f) = 0 if and only if for all g v f , Φ(g) = Φ(f). By
κ→∗ (κ)ε·ε2 , there is a club C1 ⊆ C0 which is homogeneous for P0.

The claim is that C1 is homogeneous for P0 taking value 0. For the sake of obtaining a contradiction,
suppose C1 is homogeneous for P0 taking value 1. Define P1 : [C1]ε∗ → 2 by P1(f) = 0 if and only if there
exists a g v f so that Φ(g) > Φ(f). By κ→∗ (κ)ε2, there is a club C2 ⊆ C1 which is homogeneous for P1.

Case 1: Suppose C2 is homogeneous for P1 taking value 1. Let Z = {Φ(f) : f ∈ [C2]ε∗}. Z has a minimal
element since Z is a nonempty set of ordinals. Pick f ∈ [C2]ε∗ with Φ(f) = min(Z). Note that P0(f) = 1
and P1(f) = 1 imply that there exists a g v f so that Φ(g) < Φ(f). However because g ∈ [C2]ε∗ since C2 is
a club, Φ(g) ∈ Z and Φ(g) < Φ(f) = min(Z) which is a contradiction.

Case 2: Suppose C2 is homogeneous for P1 taking value 0. For any function h : ε · ε → κ, define
main(h) : ε→ κ by main(h)(α) = sup{h(ε · α+ β) : β < ε}. Define P2 : [C2]ε·ε∗ → 2 by P2(h) = 0 if and only
if there is an f ∈ [Ch]ε∗ so that main(h) v f and Φ(f) < Φ(main(h)). (Recall Ch is the closure f [ε · ε)].) By
κ →∗ (κ)ε·ε2 , there is a club C3 ⊆ C2 which is homogeneous for P2 and consists entirely of indecomposable
ordinals. Let C1

3 = {α ∈ C3 : enumC3
(α) = α}. Let f ∈ [C1

3 ]ε∗ with f(0) > ε. Since P1(f) = 0, there
exists some g v f such that Φ(f) < Φ(g). As C1

3 is a club, g ∈ [C1
3 ]ε∗. Because g has the correct type, let

G : ε× ω → ON witness that g has uniform cofinality ω. Since g is discontinuous everywhere, by modifying
G if necessary, one may assume that for all α < ε, sup(g � α) < G(α, 0). Since cof(ε) = ω, let ρ : ω → ε be
an increasing cofinal sequence through ε. For each η < ε, let $(η) be the least n so that η < ρ(n).

Fix α < ε. Let ια0 = G(α, 0). Let ιαn+1 = max{nextω·(ρ(n)+1)
C3

(ιαn), G(α, n + 1)}. Suppose inductively,
one has shown ιαn < g(α). Then since ιαn < g(α) and ω · (ρ(n) + 1) < g(α), Fact 2.12 implies that ιαn+1 <

g(α). For each η < ε, let rα(η) = next
ω·(η+1)
C3

(ια$(η)). Note that ια$(η) < next
ω·(η+1)
C3

(ια$(η)) = rα(η) <

next
ω·(ρ($(η))+1)
C3

(ια$(η)) ≤ ια$(η)+1, rα ∈ [C3]ε∗, and sup(rα) = sup{ιαn : n ∈ ω} = g(α). Let Fα be the

collection of γ ∈ f [ε] such that sup(g � α) < γ < g(α) and there is no ordinal η < ε so that sup(rα � η) = γ.
Note that ot(Fα) < ε since g v f . Thus ot(rα[ε] ∪ Fα) = ε since ε is additively indecomposable, ot(Fα) < ε,
and sup(Fα) ≤ g(α) = sup(rα). Let sα : ε→ (rα[ε]∪Fα) be the unique increasing function which enumerates
r[ε]∪Fα. Note that sα has the correct type and sup(sα) = g(α). Define h : ε · ε→ C3 by h(ε ·α+ η) = sα(η)
whenever α, η < ε. Note that h ∈ [C3]ε·ε∗ , f ∈ [Ch]ε∗, main(h) = g v f , and Φ(main(h)) = Φ(g) > Φ(f). So
P2(h) = 0 and thus C3 is homogeneous for P2 taking value 0.
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Let C0
3 = C3. If Cn3 has been defined, then let Cn+1

3 = {α ∈ Cn3 : enumCn3
(α) = α}. For α ∈ C3, let

ς(α) = sup{n ≤ $(α) + 1 : α ∈ Cn3 } . Let Y be the collection of f ∈ [C1
3 ]ε∗ with the property that for all

1 ≤ n < ω, there exists an α < ε so that for all β ≥ α, ς(f(β)) ≥ n. Let Z = {Φ(f) : f ∈ Y }. Since Z is
a nonempty set of ordinals, Z has a minimal element. Let g ∈ Y be such that Φ(g) = min(Z). Since g is
of the correct type, let G : ε× ω → κ witness that g has uniform cofinality ω. Since g is discontinuous, one
may assume that for all α < ε, sup(g � α) < G(α, 0).

Fix α < ε. Let ια0 = G(α, 0). Let ιαn+1 = max{nextω·(ρ(n)+1)

C
ς(g(α))−1
3

(ιαn), G(α, n + 1)}}. Suppose inductively

it has been shown that ιαn < g(α). Then since ιαn < g(α), ω · (ρ(n) + 1) < g(α), and g(α) ∈ C
ς(g(α))
3 =

{γ ∈ Cς(g(α))−1
3 : enum

C
ς(g(α))−1
3

(γ) = γ}, Fact 2.12 implies that ιαn+1 < g(α). For each η < ε, let rα(η) =

nextω·(η+1)(ια$(η)). Note that ια$(η) < rα(η) < ια$(η)+1, rα ∈ [C
ς(g(α))−1
3 ]ε∗, and sup(rα) = sup{ιαn : n ∈ ω} =

g(α). Let h : ε · ε → C3 be defined by h(ε · α + η) = rα(η) whenever α, η < ε. Note that h ∈ [C3]ε·ε∗ and
main(h) = g. Since P2(h) = 0, there is an f ∈ [Ch]ε∗ so that g = main(h) v f and Φ(f) < Φ(main(h)) = Φ(g).
For each n ∈ ω, let δn < ε be least ordinal δ so that for all α with δ ≤ α < ε, ς(g(α)) − 1 ≥ n. For each
n ∈ ω, let ηn < ε be the least η so that f(η) ≥ g(δn) which exists since g = main(h) v f . For all η ≥ ηn,

since f ∈ [Ch]ε∗, there is a unique α ≥ δn so that f(η) ∈ Crα ⊆ Cς(g(α))−1
3 ⊆ Cn3 . Thus it has been shown that

for all n ∈ ω, there is a ηn < ε so that for all η with ηn ≤ η < ε, ς(f(η)) ≥ n. In particular, ς(f(η2)) ∈ C2
3 .

(There is a possibility that f /∈ Y since f /∈ [C1
3 ]ε∗ because an initial segment of f takes value in C0

3 \ C1
3 .

However, an initial segment of f can be swapped to obtain an element k ∈ Y . The details follow.) Let

σ ∈ [C1
3 ]η2∗ be defined by σ(ν) = next

ω·(ν+1)

C1
3

(0) for each ν < η2. Note that sup(σ) ≤ next
ω·(η2+1)

C1
3

(0) < f(η2)

by Fact 2.12 since ω · (η2 + 1) < f(η2), f(η2) ∈ C2
3 , and C2

3 = {α ∈ C1
3 : enumC1

3
(α) = α}. Let k ∈ [C1

3 ]ε∗
be defined as k = σ d̂rop(f, η2). Note that k also has the property that for all 1 ≤ n < ω, there is an η < ε
so that for all α with η ≤ α < ε, ς(k(α)) ≥ n. Thus k ∈ Y and Φ(k) ∈ Z. Since k E0 f , one has that
Φ(k) = Φ(f) < Φ(g) = min(Z). Contradiction.

Since Case 1 and Case 2 both lead to contradictions, P1 is a partition with no homogeneous club which
is impossible since κ→∗ (κ)ε2 holds. Thus C1 must be homogeneous for P0 taking value 0.

Now suppose f, g ∈ [C1]ε∗ with sup(f) = sup(g). Since ε is additively indecomposable, ot(f [ε] ∪ g[ε]) = ε.
Define h ∈ [C1]ε∗ by recursion as follows: Let h(0) = min(f [ε] ∪ g[ε]). If β < ε and h � β has been defined,
then let h(β) be the least element of f [ε] ∪ g[ε] greater than sup(h � β) + 1. Note that h is increasing,
discontinuous, and can be shown to have uniform cofinality ω using the witnesses to f and g having uniform
cofinality ω. Observe that P1(h) = 0, f v h, and g v h imply that Φ(f) = Φ(h) = Φ(g). The proof is
complete. �

Definition 3.4. Let κ be cardinal, ε < κ, κ →∗ (κ)ε2 holds, C ⊆ κ be a club, and Φ : [κ]ε∗ → ON be
a function. Say that Φ depends only on the supremum relative to C if and only if for all f, g ∈ [C]ε∗, if
sup(f) = sup(g), then Φ(f) = Φ(g). Say that Φ is v-constant on [C]ε∗ if and only if for all f ∈ [C]ε∗, for all
g v f , Φ(f) = Φ(g).

A property ϕ(f) on [κ]ε∗ holds µκε -almost everywhere if and only if there is a club C ⊆ κ so that for all
f ∈ [C]κ∗ , ϕ(f) holds. To express Φ is v-constant µκε -almost everywhere involves a formula ϕ0(f) which only
involves f . To express Φ depends only on the supremum relative to C requires a formula ϕ1(f) which has
C itself as a parameter. This causes some technical difficulties which can easily be resolved using the club
uniformization principle, Fact 2.14, if κ→∗ (κ)κ2 . However, at weak partition cardinals which are not strong
partition cardinals, Fact 2.13 will need to be used together with the next result.

Fact 3.5. Suppose κ is a cardinal, ε < κ is an additively indecomposable ordinal, κ→∗ (κ)ε2, and C ⊆ κ is
a club. Φ depends on supremum relative to C if and only if Φ is v-constant on [C]ε∗.

Proof. Suppose Φ depends only on the supremum relative to C. Suppose f ∈ [C]ε∗ and g v f . Then
sup(f) = sup(g) and thus Φ(f) = Φ(g).

Suppose Φ is v-constant on [C]ε∗. Let f, g ∈ [C]ε∗ be such that sup(f) = sup(g). Since ε < κ is an
additively indecomposable ordinal and sup(f) = sup(g), ot(f [ε] ∪ g[ε]) = ε. Let h : ε → C be defined
by h(0) = min(f [ε] ∪ g[ε]). If β < ε and h � β has been defined, then let h(β) be the least element of
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f [ε] ∪ g[ε] greater than sup(h � β). Then f v h and g v h. Since Φ is v-constant on [C]ε∗, one has that
Φ(f) = Φ(h) = Φ(g). �

Theorem 3.6. Suppose κ is a cardinal and ε < κ is a limit ordinal with cof(ε) = ω. Let ε0 < ε and ε1 ≤ ε
be such that ε = ε0 + ε1 and ε1 is an additively indecomposable ordinal. Suppose κ→∗ (κ)ε2 and κ→∗ (κ)ε1·ε12

hold. Let Φ : [κ]ε∗ → ON be a function which is E0-invariant µκε -almost everywhere. Then there is a club
C ⊆ κ so that for all f, g ∈ [C]ε∗, if sup(f) = sup(g), then Φ(f) = Φ(g).

Proof. Since Φ : [κ]ε∗ → ON is E0-invariant µκε -almost everywhere, let C0 ⊆ κ be a club so that for all
f, g ∈ [C0]ε∗, if f E0 g, then Φ(f) = Φ(g). For each σ ∈ [C0]ε0∗ , define Φσ : [C0 \ sup(σ) + 1]ε1∗ → ON
by Φσ(`) = Φ(σˆ̀ ). Note that Φσ is E0-invariant on [C0 \ (sup(σ) + 1)]ε1∗ . Since cof(ε) = ω implies that
cof(ε1) = ω, κ →∗ (κ)ε1·ε12 , and Lemma 3.3 imply there is a club D ⊆ C0 \ (sup(σ) + 1) so that for all
`, ι ∈ [D]ε1∗ , if sup(`) = sup(ι), then Φσ(`) = Φσ(ι).

Define R ⊆ [C0]ε0∗ × [κ]ε1∗ by R(σ, `) if and only if for all ι v `, Φσ(ι) = Φσ(`). By the observation of the
previous paragraph, for each σ ∈ [C0]ε0∗ , there is a club D so that Φσ depends only on supremum relative to
D. By Fact 3.5, Φσ is v-constant on [D]ε1∗ . Thus [D]ε1∗ ⊆ Rσ. This shows that for all σ ∈ [C0]ε0∗ , Rσ ∈ µκε1 .
By κ→∗ (κ)ε2 and Fact 2.13, there is a club C1 ⊆ C0 so that for all σ ∈ [C1]ε0∗ , [C1 \ (sup(σ) + 1)]ε1∗ ⊆ Rσ.

Let τ ∈ [C1]ε0∗ be defined by τ(α) = enumC1
(ω · α + ω) for each α < ε0. Let C2 = C1 \ sup(τ) + 1.

Now suppose f, g ∈ [C2]ε∗ and sup(f) = sup(g). Let σ0, σ1 ∈ [C2]ε0∗ and `0, `1 ∈ [C2]ε1∗ be such that
f = σ0ˆ̀ 0 and g = σ1ˆ̀ 1. Let f ′ = τˆ̀ 0 and g′ = τˆ̀ 1. Note that f E0 f ′ and g E0 g′. Since Φ is
E0-invariant, Φ(f) = Φ(f ′) and Φ(g) = Φ(g′). However, Φτ is v-constant on [C2]ε1∗ and so by Fact 3.5,
Φτ depends only on supremum relative to C2. Since sup(`0) = sup(`1), Φτ (`0) = Φτ (`1). In summary,
Φ(f) = Φ(f ′) = Φτ (`0) = Φτ (`1) = Φ(g′) = Φ(g). Thus C2 is the desired club which completes the
proof. �

Theorem 3.7. Suppose κ is a cardinal and ε < κ with cof(ε) = ω. Let ε0 < ε and ε1 ≤ ε be such that
ε = ε0 + ε1 and ε1 is an additively indecomposable ordinal. Suppose κ→∗ (κ)ε+ε2 and κ→∗ (κ)ε1·ε12 hold. For
any function Φ : [κ]ε∗ → ON, there is a club C ⊆ κ and a δ < ε so that for all f, g ∈ [C]ε∗, if f � δ = g � δ
and sup(f) = sup(g), then Φ(f) = Φ(g).

Proof. Since cof(ε) = ω, let ρ : ω → ε be a cofinal increasing sequence through ε with ρ(0) = ε0. For n ∈ ω, let
An = {(0, 0, α) : α < ρ(n)} and for each 1 ≤ m < ω, Bnm = {(m, i, α) : i ∈ 2∧ρ(n+m− 1) ≤ α < ρ(n+m)}.
Let Ln = An ∪

⋃
1≤m<ω B

n
m and note that Ln ⊆ ω × 2 × ε. Let Ln = (Ln,≺) where ≺ is the lexicographic

ordering on ω × 2 × ε. Since ρ(0) = ε0 and ε1 is additively indecomposable, ot(Ln) = ε0 + ε1 = ε. For any
function h ∈ [κ]L

n

∗ and i ∈ 2, let hn,i ∈ [κ]ε∗ be defined by

hn,i(α) =


h(m, 0, α) m = 0 ∧ α < ρ(n)

h(m, i, α) m = 1 ∧ ρ(n) ≤ α < ρ(n+ 1)

h(m, 1− i, α) m > 1 ∧ ρ(n+m− 1) ≤ α < ρ(n+m)

.

The following picture indicates the relation between h, hn,0, and hn,1.

| |
An

| |
Bn1

| |
Bn2

| |
Bn3

h • • • • • • •
hn,0 • • • •
hn,1 • • • •

In other words, hn,0 and hn,1 is extracted from h in a manner so that hn,0 and hn,1 share the same kth-block
for k < n (i.e, the functions agree before ρ(n)), the nth-block of hn,0 comes before the nth-block of hn,1, and
for k > n, the kth-block of hn,1 comes before the kth-block of hn,0.

If f, g ∈ [κ]ε∗, then say that the pair (f, g) has type n if and only if the following holds.

• For all α < ρ(n), f(α) = g(α).
• sup(f � ρ(n+ 1)) < g(ρ(n)).
• For all m ≥ n+ 1, sup(g � ρ(m+ 1)) < f(ρ(m)).
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Observe that (f, g) has type n if and only if there is an h ∈ [κ]L
n

∗ so that hn,0 = f and hn,1 = g.
For each n ∈ ω, let Pn : [κ]L

n

∗ → 3 be defined by

Pn(h) =


0 Φ(hn,0) = Φ(hn,1)

1 Φ(hn,0) < Φ(hn,1)

2 Φ(hn,0) > Φ(hn,1)

.

By the fact that ot(Ln) = ε and Fact 2.6, κ→∗ (κ)ε3 implies that for each n ∈ ω, there is a club C ⊆ κ and
an in ∈ 3 so that for all h ∈ [C]L

n

∗ , P (h) = in. For each n ∈ ω, let Kn = {h ∈ [κ]ε∗ : Pn(h) = in} where Ln is
identified with ε. For each n ∈ ω, Kn ∈ µκε . Since κ→∗ (κ)ε+ε2 implies µκε is κ-complete by Fact 2.7, there is
a club C ⊆ κ so that [C]ε∗ ⊆ Kn for all n ∈ ω. Thus for all n ∈ ω and all h ∈ [C]ε∗, P

n(h) = in. By thinning
C, one may assume C consists entirely of indecomposable ordinals and ω · ε < min(C). Let C0 = C. If Cn

has been defined, then let Cn+1 = {α ∈ Cn : enumCn(α) = α}. For each α with α ≥ ε0 = ρ(0), let ς(α) be
the unique n so that ρ(n) ≤ α < ρ(n+ 1).

(Case 1) For all m ∈ ω, there exists an n ≥ m so that in = 1.
Let 〈nj : j ∈ ω〉 be an increasing enumeration of {n ∈ ω : in = 1}. Let ιn = enumC2(n), the nth-element of

C2. Let τ ∈ [C]ε0∗ be defined by τ(α) = next
ω·(α+1)
C (0). Note that sup(τ) < ι0 since ι0 ∈ C2, ω · (ε0 + 1) < ι0,

and Fact 2.12. A sequence 〈fj : j ∈ ω〉 will be constructed so that all j ∈ ω, the pair (fj+1, fj) has type
nj . This will be accomplished by recursively constructing the sequence while maintaining the following
properties:

(1) For all j ∈ ω, fj ∈ [C]ε∗.
(2) For all j ∈ ω, fj � ε0 = τ .
(3) For all j, n ∈ ω, ιn < fj(ρ(n)) < sup(fj � ρ(n+ 1)) < ιn+1.
(4) For all j ∈ ω and α < ρ(nj), fj(α) = fj+1(α).
(5) For all j ∈ ω, sup(fj+1 � ρ(nj + 1)) < fj(ρ(nj)).
(6) For all j ∈ ω and n > nj , sup(fj � ρ(n+ 1)) < fj+1(ρ(n)).
(7) For all j ∈ ω and α ≥ ρ(nj), fj(α) ∈ C1.

Define f0 by f0(α) = τ(α) if α < ε0 and f0(α) = next
ω·(α+1)
C1 (ις(α)) if ε0 ≤ α < ε. Since ω · (ρ(n) + 1) <

ιn+1, ιn < ιn+1, and C2 = {α ∈ C1 : enumC1(α) = α}, Fact 2.12 implies that sup(f0 � ρ(n + 1)) <

next
ω·(ρ(n+1)+1)
C1 (ιn) < ιn+1.

Suppose fj has been defined. Define fj+1 as follows: If α < ρ(nj), let fj+1(α) = fj(α). If ρ(nj) ≤ α <

ρ(nj+1), let fj+1(α) = next
ω·(α+1)
C0 (ιnj ). Observe that since fj(ρ(nj)) ∈ C1 by (7), ω ·(ρ(nj+1)) < fj(ρ(nj)),

ιnj < fj(ρ(nj)) by (3), and C1 = {α ∈ C0 : enumC0(α) = α}, Fact 2.12 implies that sup(fj+1 � ρ(nj +
1)) < fj(ρ(nj)). For α with ρ(nj + 1) ≤ α < ε, let fj+1(α) = nextω·αC1 (sup(fj � ρ(ς(α) + 1))). For all
n > nj , sup(fj � ρ(n + 1)) < fj+1(ρ(n)) < sup(fj+1 � ρ(n + 1)) < ιn+1 since sup(fj+1 � ρ(n + 1)) <

next
ω·(ρ(n+1)+1)
C1 (sup(fj � ρ(n+ 1))) < ιn+1 because ω · (ρ(n+ 1) + 1) < ιn+1, sup(fj � ρ(n+ 1)) < ιn+1 ∈ C2,

C2 = {α ∈ C1 : enumC1(α) = α}, and Fact 2.12. This shows that fj+1 has been constructed with the desired
relations between fj and fj+1.

By (1), (2), (4), (5), and (6), fj , fj+1 ∈ [C]ε∗ and (fj+1, fj) has type nj . Thus for each j ∈ ω, there is a

function hj ∈ [C]L
nj

∗ so that h
nj ,0
j = fj+1 and h

nj ,1
j = fj . Since for all j ∈ ω, C is homogeneous for Pnj

taking value 1, Pnj (hj) = 1. This implies Φ(fj+1) = Φ(h
nj ,0
j ) < Φ(h

nj ,1
j ) = Φ(fj). Thus 〈Φ(fj) : j ∈ ω〉 is

an infinite descending sequence of ordinals. This shows Case 1 is impossible.
(Case 2) For all m ∈ ω, there exists an n ≥ m so that in = 2.
Let 〈nj : j ∈ ω〉 be an increasing enumeration of {n ∈ ω : in = 2}. For each k ∈ ω, let $(k) = |{n <

k : in = 2}. For α < ε0 = ρ(0), let τ0 = next
ω·(α+1)
C0 (0). Let ι0 = nextωC0(sup(τ0)). If ιn has been defined,

then let ιn+1 = next
ω·(ρ(n+1)+1)

C$(n+1) (ιn). A sequence 〈fj : j ∈ ω〉 will be constructed so that for all j ∈ ω, the
pair (fj , fj+1) has type nj . This will be accomplished by maintaining the following properties throughout
the construction:

(1) For all j ∈ ω, fj ∈ [C]ε∗.
(2) For all j ∈ ω, fj � ε0 = τ .
(3) For all j, n ∈ ω, ιn < fj(ρ(n)) < sup(fj � ρ(n+ 1)) < ιn+1.
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(4) For all j ∈ ω and α < ρ(nj), fj(α) = fj+1(α).
(5) For all j ∈ ω, sup(fj � ρ(nj + 1)) < fj+1(ρ(nj)).
(6) For all j ∈ ω, n > nj , sup(fj+1 � ρ(n+ 1)) < fj(ρ(n)).

(7) For all j ∈ ω and α ≥ ρ(nj + 1), fj(α) ∈ C$(ς(α))−j .

For α < ε0, let f0(α) = τ(α). For α with ε0 = ρ(0) ≤ α < ε, let f0(α) = next
ω·(α+1)

C$(ς(α))(ις(α)). Note that for

each n ∈ ω, sup(f0 � ρ(n+ 1)) ≤ next
ω·(ρ(n+1))

C$(n) (ιn) ≤ next
ω·(ρ(n+1))

C$(n+1) (ιn) < next
ω·(ρ(n+1)+1)

C$(n+1) (ιn) = ιn+1.
Suppose fj has been defined. Define fj+1 as follows: If α < ρ(nj), let fj+1(α) = fj(α). If ρ(nj) ≤ α <

ρ(nj + 1), let fj+1(α) = next
ω·(α+1)
C0 (sup(fj � ρ(nj + 1))). Observe that sup(fj+1 � ρ(nj + 1)) < ιnj+1 since

ιnj+1 ∈ Cj+1, sup(fj � ρ(nj + 1)) < ιnj+1 by (3), ω · (ρ(nj + 1) + 1) < ιnj+1, and by Fact 2.12. For α with

ρ(nj + 1) ≤ α < ε, let fj+1(α) = next
ω·(α+1)

C$(ς(α))−j−1(ις(α)). Note that for each n > nj , sup(fj+1 � ρ(n + 1)) ≤
next

ω·(ρ(n+1)+1)

C$(n)−j−1
(ιn) < fj(ρ(n)) since ω · (ρ(n+ 1) + 1) < fj(ρ(n)), ιn < f(ρ(n)), fj(ρ(n)) ∈ C$(n)−j , and by

Fact 2.12. This completes the construction of fj+1 with the desired relation between fj and fj+1.
By (1), (2), (4), (5), and (6), fj , fj+1 ∈ [C]ε∗ and (fj , fj+1) has type nj . Thus for each j ∈ ω, there is a

function hj ∈ [C]L
nj

∗ so that h
nj ,0
j = fj and h

nj ,1
j = fj+1. Since for all j ∈ ω, C is homogeneous for Pnj

taking value 2, Pnj (hj) = 2. This implies Φ(fj) = Φ(hnj ,0) > Φ(hnj ,1) = Φ(fj+1). 〈Φ(fj) : j ∈ ω〉 is an
infinite descending sequence of ordinals. This shows Case 2 is impossible.

The failure of both Case 1 and Case 2 implies that the following Case 3 must holds.
(Case 3) There exists an m∗ ∈ ω so that for all n ≥ m∗, in = 0.

Fix ` ∈ [C]
ρ(m∗)
∗ . Define Φ` : [C]ε1∗ → ON by Φ`(v) = Φ(`̂ v). It will be shown that Φ` is E0-invariant

µκε1-almost everywhere. Suppose v, w ∈ [C2]ε1∗ and v E0 w. Let fm∗ = `̂ v and gm∗ = `̂ w. Since v E0 w,

let n∗ ≥ m∗ be such that for all α ≥ ρ(n∗), fm∗(α) = gm∗(α). For j ≥ m∗, let ιfj = fm∗(ρ(j)) and

ιgj = gm∗(ρ(j)). Note that ιfj , ι
g
j ∈ C2 for all j ≥ m∗. One will define two finite sequences 〈fj : m∗ ≤ j ≤ n∗〉

and 〈gj : m∗ ≤ j ≤ n∗〉 with the following properties:

(1) For all m∗ ≤ j ≤ n∗, fj , gj ∈ [C]ε∗. For all m∗ ≤ j ≤ n∗ and ρ(j) ≤ α < ε, fj(α), gj(α) ∈ C1.

(2) For all m∗ ≤ j ≤ n∗ and m∗ ≤ k < ω, sup(fj � ρ(k)) < ιfk and sup(gj � ρ(k)) < ιgk.
(3) For all m∗ ≤ j ≤ n∗, fj � ρ(m∗) = ` = gj � ρ(m∗).
(4) For all m∗ ≤ j ≤ n∗, fj � ρ(j) = gj � ρ(j).
(5) For all m∗ ≤ j ≤ n∗ and α with ρ(n∗) ≤ α < ε, fj(α) = gj(α).
(6) For all m∗ ≤ j < n∗, sup(fj+1 � ρ(j + 1)) < fj(ρ(j)) and sup(gj+1 � ρ(j + 1)) < gj(ρ(j)).
(7) For all m∗ ≤ j < n∗ and j + 1 ≤ k < ω, sup(fj � ρ(k + 1)) < fj+1(ρ(k)) and sup(gj � ρ(k + 1)) <

gj+1(ρ(k)).

Note that fm∗ and gm∗ have already been defined above. Suppose m∗ ≤ j < n∗ and fj and gj have
already been defined with the above properties. For α < ρ(j), let fj+1(α) and gj+1(α) be fj(α) = gj(α) by
(4) and therefore sup(fj+1 � ρ(j)) = sup(gj+1 � ρ(j)). For ρ(j) ≤ α < ρ(j + 1), define fj+1(α) and gj+1(α)

to be next
ω·(α+1)
C0 (sup(fj+1 � ρ(j))) = next

ω·(α+1)
C0

(sup(gj+1 � ρ(j))). Thus fj+1 � ρ(j + 1) = gj+1 � ρ(j + 1).

Note that since fj(ρ(j)) ∈ C1, gj(ρ(j)) ∈ C1, and ω · (ρ(j + 1) + 1) < min{fj(ρ(j)), gj(ρ(j))}, Fact 2.12
implies that sup(fj+1 � ρ(j + 1)) = sup(gj+1 � ρ(j + 1)) < min{fj(ρ(j)), gj(ρ(j))}. For α ≥ ρ(j + 1),

let fj+1(α) = next
ω·(α+1)
C1 (sup(fj � ρ(ς(α)))) and gj+1(α) = next

ω·(α+1)
C1 (sup(gj � ρ(ς(α)))). Since for all

k ≥ j + 1, sup(fj � ρ(k)) < ιfk and sup(gj � ρ(k)) < ιgk by (2), ω · (ρ(k) + 1) < min{ιgf , ι
f
k}, and ιfk , ι

g
k ∈

C2, Fact 2.12 implies that sup(fj+1 � ρ(k)) < ιfk and sup(gj+1 � ρ(k)) < ιfk . By (5), for any k ≥ n∗,
sup(fj � ρ(k)) = sup(gj � ρ(k)). This implies that for all α ≥ ρ(n∗), fj+1(α) = gj+1(α). This completes the
construction of fj+1 and gj+1.

By (1), (3), (4), (5), (6), and (7), (fj+1, fj) and (gj+1, gj) are of type j for each j such that m∗ ≤ j < n∗.

For each j so that m∗ ≤ j < n∗, let hj , pj ∈ [C]L
j

∗ be such that hj,0j = fj+1, hj,1j = fj , p
j,0
j = gj+1, and

pj,1j = gj . Since for all j ≥ m∗, C is homogeneous for P j taking value 0, one has that for all m∗ ≤ j < n∗,

P j(hj) = 0 and P j(pj) = 0. Thus Φ(fj+1) = Φ(fj) and Φ(gj+1) = Φ(gj). Also by (3), (4), and (5),
fn∗ = gn∗ . Putting these together, one has that

Φ`(v) = Φ(`̂ v) = Φ(fm∗) = Φ(fm∗+1) = ... = Φ(fn∗) = Φ(gn∗) = ... = Φ(gm∗+1) = Φ(gm∗) = Φ(`̂ w) = Φ`(w).
13
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It has been shown that for all v, w ∈ [C]ε1∗ , if v E0 w, then Φ`(v) = Φ`(w). This shows that Φ` is E0-invariant
µκε1 -almost everywhere.

Define a relation R ⊆ [C]
ρ(m∗)
∗ × [κ]ε1∗ by R(`, v) if and only if for all w v v, Φ`(w) = Φ`(v). Since it

was shown above that for each ` ∈ [C]ρ(m
∗), Φ` is E0-invariant µκε1-almost everywhere and κ →∗ (κ)ε1·ε1

holds, Theorem 3.7 implies that there is a club D ⊆ κ so that for all v, w ∈ [D]ε1∗ , if sup(v) = sup(w), then
Φ`(v) = Φ`(w). In particular, for any v ∈ [D]ε1∗ and any w v v, sup(v) = sup(w) and thus Φ`(v) = Φ`(w).

This shows [D]ε1∗ ⊆ R`. For all ` ∈ [C]
ρ(m∗)
∗ , R` ∈ µκε1 . By Fact 2.13, there is a club E ⊆ C so that for all

` ∈ [E]ρ(m
∗), [E \ (sup(`) + 1)]ε1∗ ⊆ R`.

Let δ = ρ(m∗). Suppose f, g ∈ [E]ε∗, sup(f) = sup(g), and f � δ = g � δ. Let ` = f � δ = g � δ. There
exists v, w ∈ [E]ε1∗ so that f = `̂ v and g = `̂ w. Φ` is v-constant on [E \ (sup(`) + 1)]ε1∗ and so by Fact 3.5,
Φ` depends on supremum relative to E \ (sup(`) + 1). Since v, w ∈ [E \ (sup(`) + 1)]ε1∗ and sup(v) = sup(w),
Φ(f) = Φ(`̂ v) = Φ`(v) = Φ`(w) = Φ(`̂ w) = Φ(g). It has been shown that there is a δ so that for all
f, g ∈ [E]ε∗, if sup(f) = sup(g) and f � δ = g � δ, then Φ(f) = Φ(g). �

Corollary 3.8. Suppose κ is a cardinal, ε < κ is a limit ordinal with cof(ε) = ω, and p ∈ ω. Let ε0 < ε

and ε1 ≤ ε be such that ε = ε0 + ε1 and ε1 is an additively indecomposable ordinal. Assume κ →∗ (κ)ε+ε+p2

and κ →∗ (κ)ε1·ε1+p
2 . Let Φ : [κ]ε+p∗ → ON be a function. Then there is a club C ⊆ κ and a δ < ε so that

for all f, g ∈ [C]ε+p∗ , if f � δ = g � δ, sup(f � ε) = sup(g � ε), and for all i < p, f(ε + i) = g(ε + i), then
Φ(f) = Φ(g).

Proof. The argument is similar to Theorem 3.7 where all partitions now include p elements at the top. �

Theorem 3.9. Suppose κ is a cardinal, ε < ω1, and κ →∗ (κ)ε·ε2 holds. Let Φ : [κ]ε∗ → ON. Then there
is a club C ⊆ κ and finitely many ordinals δ0, ..., δk ≤ ε so that for all f, g ∈ [C]ε∗, if for all 0 ≤ i ≤ k,
sup(f � δi) = sup(g � δi), then Φ(f) = Φ(g).

Proof. Let δ0 = ε. Suppose ε = δ0 > ... > δi have been defined so that there exists a club D ⊆ κ with the
property that for all f, g ∈ [C]κ∗ , if f � δi = g � δi and for all 0 ≤ j < i, sup(f � δj) = sup(g � δj), then
Φ(f) = Φ(g). Fix such a club D. If δi is a successor ordinal, then let δi+1 be the predecessor of δi. If δi
is a limit, then cof(δi) = ω since δi ≤ ε < ω1. Define Ψ : [D]δi+i → ON as follows: Suppose ` ∈ [D]δi

and γ0 > ... > γi−1 > sup(`) in D. Let Ψ(`, γi−1, ..., γ0) = Φ(f) where f is any element of [D]ε∗ so that
sup(f � δi) = `, sup(f � δj) = γj for each j < i. Ψ(`, γi−1, ..., γ0) is well defined independent of f by the
induction hypothesis. By Corollary 3.8, there is a δ < δi and a club C ⊆ D so that for all `, ι ∈ [C]δi∗ ,
γi−1 < ... < γ0 in C, if sup(`) = sup(ι) < γi−1, and ` � δ = ι � δ, then Ψ(`, γi−1, ..., γ0) = Ψ(ι, γi−1, ..., γ0).
Let δi+1 be the least δ with this property. By definition of Ψ, it has been shown that there is a club C
and ordinals ε = δ0 > ... > δi+1 so that for all f, g ∈ [C]ε∗, if f � δi+1 = g � δi+1 and for all j < i + 1,
sup(f � δj) = sup(g � δj), then Φ(f) = Φ(g). By the wellfoundedness of the ordinals, there is some k so that
at stage k, δk = 0. Then the finite sequence ε = δ0 > δ1 > ... > δk = 0 has the property that there is a club
C so that for all f, g ∈ [C]ε∗, if for all j ≤ k, sup(f � δj) = sup(g � δj), then Φ(f) = Φ(g). �

The rest of this section will put the earlier result in context and provide some additional examples
especially under AD.

Corollary 3.10. Assume AD. Suppose κ is ω1, ω2, δ1
n for 1 ≤ n < ω, δ2

1, or δA where A ⊆ R. If ε < ω1

and Φ : [κ]ε∗ → ON, then there are finitely many ordinal β0 < β1 < ... < βp−1 ≤ ε (where p ∈ ω) so that for
all f, g ∈ [C]ε∗, if for all i < p, sup(f � βi) = sup(g � βi), then Φ(f) = Φ(g).

Assume AD. Suppose κ is ω1, ω2, δ2
1, or δA where A ⊆ R. If ε < κ with cof(ε) = ω and Φ : [κ]ε∗ → ON,

then there is a club C ⊆ κ and a δ < ε so that for all f, g ∈ [C]ε∗, if sup(f) = sup(g) and f � δ = g � δ, then
Φ(f) = Φ(g).

Assume AD + DCR. If 1 ≤ n < ω, ε < δ1
n with cof(ε) = ω, and Φ : [δ1

n]ε∗ → ON, then there is a club
C ⊆ δ1

n and δ < δ1
n so that for all f, g ∈ [C]ε∗, if f � δ = g � δ and sup(f) = sup(g), then Φ(f) = Φ(g).

Proof. This follows from Fact 2.16, Theorem 3.7, and Theorem 3.9. �

The next result shows that the assumption that cof(ε) = ω is necessary in Theorem 3.7.
14
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Fact 3.11. Suppose ζ < κ are two cardinals such that ζ →∗ (ζ)2
2, κ →∗ (κ)ζ2, and DC[κ]ζ hold. Then the

ultrapower
∏
ζ κ/µ

ζ
1 is a wellordering (and hence an ordinal) and there is a function Φ : [κ]ζ∗ →

∏
ζ κ/µ

ζ
1 so

that for all clubs C ⊆ κ and all δ < ζ, there are functions f, g ∈ [C]ζ∗ with sup(f) = sup(g), f � δ = g � δ,
and Φ(f) 6= Φ(g).

Proof. The partition relation ζ →∗ (ζ)2
2 implies that µζ1 is a ζ-complete ultrafilter on ζ and thus cof(ζ) =

ζ > ω. DC[κ]ζ implies that the ultrapower
∏
ζ κ/µ

ζ
1 is a wellordering which can be identified as an ordinal.

If f : ζ → κ, then let [f ]µζ1
denote the element of the ultrapower represented by the function f . Define

Φ : [κ]ζ∗ →
∏
ζ κ/µ

ζ
1 by Φ(f) = [f ]µζ1

. Let δ < ζ and C ⊆ κ be a club. Let ` ∈ [C]δ∗. Let ι0, ι1 ∈ [C]ζ∗ be

defined by ι0(α) = next
ω·(α+1)
C (sup(`)) and ι1(α) = next

ω·(α+2)
C (sup(`)). Let f = `̂ ι0 and g = `̂ ι1. Then

f, g ∈ [C]ζ∗, sup(f) = sup(g), f � δ = ` = g � δ, and Φ(f) < Φ(g) since {α < ζ : f(α) < g(α)} ⊇ {α < ζ : α ≥
δ} ∈ µζ1. �

Fact 3.12. Assume AD. There is a function Φ : [ω2]ω1
∗ → ω3 so that for all clubs C ⊆ κ and δ < ω1, there

are functions f, g ∈ [C]ω1
∗ so that sup(f) = sup(g), f � δ = g � δ, and Φ(f) 6= Φ(g).

Proof. Under AD, ω1 →∗ (ω1)ω1
2 and

∏
ω1
ω2/µ

ω1
1 = ω3. As in Fact 3.11, the map Φ : [ω2]ω1 → ω3 defined

by Φ(f) = [f ]µω1
1

has the desired property. �

The restriction that ε < ω1 is necessary in Theorem 3.9

Example 3.13. Suppose ζ < κ are two cardinals such that ζ →∗ (ζ)2
2, κ → (κ)ζ2, and DC[κ]ζ hold. Then

there is a function Ψ : [κ]ζ+ω∗ →
∏
ζ κ/µ

ζ
1 so that for all clubs C ⊆ κ and all finite set of ordinals β0 < ... <

βp−1 ≤ ζ + ω (where p ∈ ω) and functions f, g ∈ [C]ζ+ω∗ so that for all i < p, sup(f � βi) = sup(g � βi) and
Ψ(f) 6= Ψ(g).

Assume AD. There is a function Ψ : [ω2]ω1+ω
∗ → ω3 so that for all club C ⊆ ω2 and all finite sets of

ordinals β0 < β1 < ... < βp−1 ≤ ω1 + ω (where p ∈ ω), there are functions f, g ∈ [C]ω1+ω
∗ so that for all

i < p, sup(f � βi) = sup(g � βi) and Ψ(f) 6= Ψ(g).

Proof. For the first statement, let Ψ : [κ]ζ+ω∗ →
∏
ζ κ/µ

ζ
1 be defined by Ψ(f) = Φ(f � ζ) where Φ is the

function from the proof of Fact 3.11.
For the second statement, let Ψ : [ω2]ω1+ω

∗ → ω3 be defined by Ψ(f) = Φ(f � ω1) where Φ is the
function from the proof of Fact 3.12. For a slightly more interesting example, one can also use Υ(f) =
Ψ(f) + sup(f) = Φ(f � ω1) + sup(f). Note that since cof(ω1 + ω) = ω, Theorem 3.7 does apply to Υ and
indeed, for all f, g ∈ [ω2]ω1+ω

∗ , if sup(f) = sup(g) and f � ω1 = g � ω1, then Υ(f) = Υ(g). �

Consider a function Φ : [ω2]ε → ON where ω1 ≤ ε < ω2 but cof(ε) > ω. Neither Theorem 3.7 nor
Theorem 3.9 is applicable since ε ≥ ω1 and cof(ε) 6= ω. Moreover, Fact 3.12 gives an example of a function
Φ : [ω2]ω1

∗ → ω3 which fails to satisfy the short length continuity property under AD. Remarkably under AD,
if one demands the function Φ takes image in ω2 rather than ω3, then the short length continuity properties
do hold even if cof(ε) = ω1. This result is possible under AD because ω2 has an ultrapower representation
as

∏
ω1
ω1/µ

ω1
1 which can be studied using the Kunen tree analysis.

Fact 3.14. ([5]) Assume AD. Suppose ε < ω2 (including the possibility cof(ε) = ω1) and Φ : [ω2]ε∗ → ω2.
Then there is a club C ⊆ ω2 and finitely many ordinals β0 < β1 < ... < βp−1 ≤ ε (where p ∈ ω) so that for
all f, g ∈ [C]ε∗, if for all i < p, sup(f � βi) = sup(g � βi), then Φ(f) = Φ(g).

4. Applications of Short Length Continuity

Fact 4.1. If κ is a cardinal and ε ≤ κ with cof(κ) ≥ ε, then |εκ| = |[κ]ε| = |[κ]ε∗|.

Proof. For f ∈ εκ, define by recursion Φ(f) as follows: Φ(f)(0) = f(0). If β < ε and Φ(f) � β has been
defined, then sup(Φ(f) � β) < κ since cof(κ) ≥ ε and so let Φ(f)(β) = sup(Φ(f) � β) + f(β). Φ(f) ∈ [κ]ε.
Φ : εκ→ [κ]ε is an injection and thus |εκ| ≤ |[κ]ε| ≤ |εκ|.

Let A = {ω ·(α+1) : α < κ}. Suppose f ∈ [A]ε. For each α < ε, let γα < κ be such that f(α) = ω ·(γα+1).
Define F : ε × ω → κ by F (α, n) = ω · γα + n. F witnesses that f has uniform cofinality ω. Fix β < ε.
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Let ζ = sup{γα + 1 : α < β}. Note that ζ ≤ γβ . Then sup(f � β) ≤ ω · ζ ≤ ω · γβ < ω · (γβ + 1) = f(β).
This shows that f is discontinuous everywhere. Hence f has the correct type. Thus it has been shown that
[A]ε = [A]ε∗. Since |A| = κ, |[κ]ε∗| ≤ |[κ]ε| = |[A]ε| = |[A]ε∗| ≤ |[κ]ε∗|. �

The following cardinality computation was proved in [6] for ω1 using AD and DCR.

Fact 4.2. ([6] Theorem 2.9) Assuming AD, ¬(|<ω1ω1| ≤ |ω(ωω)|).
([6] Theorem 4.4) Assuming AD and DCR, there is no injection of <ω1ω1 into ωON, the class of ω-sequences

of ordinals.

The arguments in [6] used many techniques of determinacy (often specific to ω1). The techniques seem
difficult to generalize to the higher projective ordinals δ1

n and have no analog at strong partition cardinals
which are limit cardinals like δ2

1. The following result generalizes Fact 4.2 purely from the weak partition
relation.

Theorem 4.3. Suppose κ is a cardinal so that κ →∗ (κ)<κ2 . Then for all χ < κ, there is no injection of
<κκ into χON, the class of χ-length sequences of ordinals. In particular, for all χ < κ, |χκ| < |<κκ|.

Proof. Suppose there is an injection Φ′ : <κκ → χON. By Fact 4.1, |<κκ| = |[κ]<κ∗ | and thus one has an
injection Φ : [κ]<κ∗ → χON. For each ε < κ and γ < χ, let Φεγ : [κ]ε∗ → ON be defined by Φεγ(f) = Φ(f)(γ).

By Theorem 3.7, for each γ < χ and ε ∈ [κ]1∗ (equivalently, ε < κ and cof(ε) = ω), there is a club C and a
δ < ε so that for all f, g ∈ [C]ε∗, if sup(f) = sup(g) and f � δ = g � δ, then Φεγ(f) = Φεγ(g). Let δεγ be the

least such δ < ε. For each γ < χ, define Λγ : [κ]1∗ → κ by Λγ(ε) = δεγ . Note that for all ε ∈ [κ]1∗, Λγ(ε) < ε

and so by Fact 2.10 or Fact 2.11, there is a δ < κ so that Λ−1
γ [{δ}] ∈ µκ1 . Let δγ be the least such δ. Since

κ→∗ (κ)2
2 implies κ is regular and χ < κ, let δ∗ = sup{δγ + 1 : γ < χ} and observe δ∗ < κ.

Note that for all γ < χ, Λ−1
γ [δ∗] ∈ µκ1 since δγ ∈ δ∗. By Fact 2.11, µκ1 is κ-complete and thus⋂

γ<χ Λ−1
γ [δ∗] ∈ µκ1 . There is a club E ⊆ κ with E consisting entirely of indecomposable ordinals so that

[E]1∗ ⊆
⋂
γ<χ Λ−1

γ [δ∗]. Fix an ε∗ > δ∗ with ε∗ ∈ [E]1∗ and observe that ε∗ is an additively indecomposable

ordinal with cof(ε∗) = ω.
(See Remark 4.4.) For any γ < χ and ι ∈ [κ]δ

∗

∗ , let Φε
∗

γ,ι : [κ]ε
∗

∗ → κ be defined by Φε
∗

γ,ι(`) = Φε
∗

γ (ι̂ `).

For each γ < χ, let Aγ be the set of f ∈ [κ]ε
∗

∗ so that for all ` v drop(f, δ∗), Φε
∗

γ (f) = Φε
∗

γ,f�δ∗(`). Fix a

γ < χ. Λγ(ε∗) = δγ ≤ δ∗ implies that there is a club F ⊆ κ so that for all f, g ∈ [F ]ε
∗

∗ , if sup(f) = sup(g)

and f � δ∗ = g � δ∗, then Φε
∗

γ (f) = Φε
∗

γ (g). In particular, if f ∈ [F ]ε
∗

∗ , then for any ` v drop(f, ε∗),

Φε
∗

γ,f�δ∗(`) = Φγ(f). This shows that [F ]ε
∗

∗ ⊆ Aγ and hence Aγ ∈ µκε∗ . Since κ →∗ (κ)ε
∗+ε∗

2 implies µκε∗ is

κ-complete,
⋂
γ<χAγ ∈ µκε∗ . Thus there is a club G ⊆ κ so that [G]ε

∗

∗ ⊆
⋂
γ<χAγ . (Such a club G could

also be obtain by an application of Fact 2.15.)
Fix a γ < χ. Suppose f, g ∈ [G]ε

∗

∗ with sup(f) = sup(g) and f � δ∗ = g � δ∗. Let ι = f � δ∗ = g � δ∗.
Note that Φε

∗

γ,ι is v-constant on [G]ε
∗

∗ . Fact 3.5 implies that Φε
∗

γ,ι depends only on supremum relative to

G. Thus Φε
∗

γ (f) = Φε
∗

γ,ι(drop(f, δ∗)) = Φε
∗

γ,ι(drop(g, δ∗)) = Φε
∗

γ (g) since sup(drop(f, δ∗)) = sup(drop(g, δ∗)).

So it has been shown that for all γ < χ, for all f, g ∈ [G]ε
∗

∗ , if sup(f) = sup(g) and f � δ∗ = g � δ∗, then
Φε

∗

γ (f) = Φε
∗

γ (g).

Let f, g ∈ [G]ε
∗

∗ be such that sup(f) = sup(g), f � δ∗ = g � δ∗, and f 6= g. By the property of G from
above, for all γ < χ, Φε

∗

γ (f) = Φε
∗

γ (g). This implies Φ(f) = Φ(g). This is impossible since Φ : [κ]<κ∗ → χON
was assumed to be an injection. �

Remark 4.4. In the proof of Theorem 4.3, an indirect argument was used to obtain the club G and establish
its properties by appealing to the κ-completeness of µκε∗ . This argument could be circumvented if one had
the ability to make a χ-length choice of clubs given by each instance of Theorem 3.7 applied to Φε

∗

γ with
γ < χ.

The short length continuity result is also used in [5] to show |[ω1]ω| < |[ω1]<ω1 | under AD. There, this

indirect argument was not necessary since ω-many clubs could be chosen by ACR
ω and the Moschovakis coding

lemma, which follows from AD. [2] investigated the everywhere wellordered club uniformization principle at
κ, which is the assertion that for every relation R ⊆ κ × clubκ which is ⊆-downward closed in the clubκ-
coordinate, there is a function Λ : dom(R) → clubκ so that for all α ∈ dom(R), R(α,Φ(α)). This selection
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principle would also suffice. [2] showed that this principle holds at κ under AD if κ is the prewellordering
ordinal of a pointclass possessing suitable definable boundedness properties. [2] also showed that if κ is a
strong partition cardinal, then the everywhere wellordered club uniformization principle at κ is equivalent
to κ→∗ (κ)κ<κ. However, Theorem 4.3 does not presuppose that κ is a strong partition cardinal, AD, or any
other conditions beyond κ being a weak partition cardinal.

Corollary 4.5. Assume AD. If κ is ω1, ω2, δA for some A ⊆ R, or δ2
1, then for any χ < κ, |χκ| < |<κκ|

and <κκ does not inject into χON.
Assume AD + DCR. If κ is δ1

n for some 1 ≤ n < ω, then for any χ < κ, |χκ| < |<κκ| and <κκ does not
inject into χON.

Section 5 will investigate almost everywhere monotonicity. The remainder of this section will establish
almost everywhere monotonicity for functions Φ : [κ]ε∗ → ON when ε < ω1 and satisfies suitable partition
relations. This will use Theorem 3.9 to reduce to the almost everywhere monotonicity of functions Φ : [κ]p∗ →
ON when p is finite which will be established next.

Fact 4.6. Suppose κ is a cardinal, p ∈ ω, κ →∗ (κ)p+1
2 , and Φ : [κ]p∗ → ON is a function. Then there is a

club C ⊆ κ so that for f, g ∈ [C]p∗, if for all n < p, f(n) ≤ g(n), then Φ(f) ≤ Φ(g).

Proof. Let k < p. For h ∈ [κ]p+1
∗ , let hk,0, hk,1 ∈ [κ]p∗ be defined by

hk,0(n) =

{
h(n) n ≤ k
h(n+ 1) k < n < p

hk,1(n) =

{
h(n) n < k

h(n+ 1) k ≤ n < p
.

Define P k : [κ]p+1
∗ → 2 by P k(h) = 0 if and only if Φ(hk,0) ≤ Φ(hk,1). By κ →∗ (κ)p+1

∗ , let C ⊆ κ
be homogeneous for P k. Suppose C is homogeneous for P taking value 1. Fix ` ∈ [C]ω+(p−k−1). Define
fi ∈ [C]p∗ as follows.

fi(n) =


`(n) n < k

`(k + i) n = k

`(ω + n− k − 1) k < n < p

Note that for all i ∈ ω, there is an hi ∈ [C]p+1
∗ so that hk,0 = fi and hk,1 = fi+1. P (hi) = 1 implies that

Φ(fi+1) = Φ(hk,1i ) < Φ(hk,0i ) = Φ(fi). Thus 〈Φ(fi) : i ∈ ω〉 is an infinite descending sequence of ordinals.
Thus C must be homogeneous for P k taking value 0.

For each k < p, let Ck ⊆ κ be a club which is homogeneous for P k taking value 0. Let C =
⋂
k<p Ck.

Suppose f, g ∈ [C]p∗ be so that for all n < p, f(n) ≤ g(n). Let

ci(n) =

{
f(n) n < p− 1− i
g(n) p− 1− i ≤ n < p

.

Observe the following holds.

(1) ci ∈ [C]p∗ and cp−1 = g.

(2) There is an h0 ∈ [C]p+1
∗ so that hp−1,0

0 = f and hp−1,1
0 = c0.

(3) For each 0 < i ≤ p− 1, there is an hi ∈ [C]p+1
∗ so that hp−1−i,0

i = ci−1 and hp−1−i,1
i = ci.

These properties and the fact that P p−1−i(hi) = 0 for each i < p − 1 imply that Φ(f) ≤ Φ(c0) ≤ Φ(c1) ≤
... ≤ Φ(cp−1) = Φ(g). �

The next result will be improved in Section 5.

Theorem 4.7. Suppose κ is a cardinal, ε < ω1, κ→∗ (κ)ε·ε2 holds, and Φ : [κ]ε∗ → ON. Then there is a club
C ⊆ κ so that for all f, g ∈ [C]ε∗, if for all α < ε, f(α) ≤ g(α), then Φ(f) ≤ Φ(g).

Proof. By Theorem 3.9, there is a club C0 and finitely many ordinals β0 < β1 < ... < βp−1 ≤ ε so that for
all f, g ∈ [C0]ε∗, if for all i < p, sup(f � βi) = sup(g � βi), then Φ(f) = Φ(g). Define Ψ : [C0]p∗ → ON by
Ψ(`) = Φ(f) for any f ∈ [C0]ε∗ so that for all i < p, sup(f � βi) = `(i). Note Ψ(`) is well defined independent
of the choice of f . By Fact 4.6, there is a club C1 ⊆ C0 so that for all `, ι ∈ [C]p∗, if for all i < p, `(i) ≤ ι(i),
then Ψ(`) ≤ Ψ(ι).
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Now suppose f, g ∈ [C1]ε∗ so that for all α < ε, f(α) ≤ g(α). Let `f (i) = sup(f � βi) and `g(i) =
sup(g � βi). Note that `f , `g are discontinuous since p is finite and β0 < ... < βp−1. Since ε < ω1, for
each i < p, let ρi : ω → βi be an increasing cofinal sequence through βi. Let Kf ,Kg : p × ω → ON be
defined by Kf (i, n) = f(ρi(n)) and Kg(i, n) = g(ρi(n)). Kf and Kg witness that `f and `g have uniform
cofinality ω. Thus `f , `g ∈ [C1]p∗; that is, have the correct type. By definition of Ψ, Φ(f) = Ψ(`f ) and
Φ(g) = Ψ(`g). Note that for all i < p, `f (i) ≤ `g(i). By the choice of club C1, Ψ(`f ) ≤ Ψ(`g). Thus
Φ(f) = Ψ(`f ) ≤ Ψ(`g) = Φ(g). �

Corollary 4.8. Assume AD. If κ is ω1, ω2, δ1
n for any 1 ≤ n < ω, δ2

1, or δA for some A ⊆ R, then for any
ε < ω1 and function Φ : [κ]ε∗ → ON, there exists a club C ⊆ κ so that for all f, g ∈ [C]ε∗, if for all α < ε,
f(α) ≤ g(α), then Φ(f) ≤ Φ(g).

Proof. This follows from Theorem 4.7. Note that DCR is not necessary for the result concerning δ1
n for any

1 ≤ n < ω since AD alone can establish δ1
n →∗ (δ1

n)<ω1
2 . �

5. Almost Everywhere Monotonicity

The next result shows that if a partition relation fails at κ, then there is a corresponding failure of almost
everywhere monotonicity at κ. Thus partition relations are necessary for the almost everywhere monotonicity
property.

Fact 5.1. Suppose κ is a cardinal and ε ≤ κ is such that κ →∗ (κ)ε2 fails. Then there is a function
Φ : [κ]ε∗ → ON so that for all club C ⊆ κ, there exist f, g ∈ [C]ε∗ so that for all α ≤ ε, f(α) ≤ g(α) and
Φ(g) < Φ(f).

Proof. Let P : [κ]ε∗ → 2 be such that for all club C ⊆ κ, there exists functions h0, h1 ∈ [C]ε∗ so that P (h0) = 0
and P (h1) = 1. P fails the monotonicity property:

Suppose C ⊆ κ is a club. As noted above, there is some f ∈ [C]ε∗ with P (f) = 1. Let D ⊆ C be a club
with the property that for all h ∈ [D]κ∗ , f(α) ≤ h(α) for all α < ε. As noted above, there is some g ∈ [D]ε∗
so that Φ(g) = 0. Then f, g ∈ [C]ε∗, for all α < ε, f(α) ≤ g(α), and Φ(g) = 0 < 1 = Φ(f). �

The following lemma considers pairs (f, g) possessing property (2) and (3) stated below in order to simplify
the construction of the relevant functions of the correct type. Theorem 5.3 will reduce the general case to
this lemma.

Lemma 5.2. Suppose κ is a cardinal satisfying κ→∗ (κ)κ2 . For any function Φ : [κ]κ∗ → ON, there is a club
C ⊆ κ so that for all f, g ∈ [C]κ∗ , if f and g have the property that for all α < κ,

(1) f(α) ≤ g(α),
(2) there is no limit ordinal β < κ so that sup(f � β) = g(α),
(3) and there is no limit ordinal β < κ so that sup(g � β) = f(α),

then Φ(f) ≤ Φ(g).

Proof. Let I : κ → κ be an increasing and discontinuous function whose image consists of indecomposable
ordinals. For any h ∈ [κ]κ∗ , let main(h) ∈ [κ]κ∗ be defined by main(h)(α) = h(I(α)). (Observe that main(h)
is an increasing function of the correct type since h is an increasing function of the correct type.) Define
P : [κ]κ∗ → 2 by P (h) = 0 if and only if for all p ∈ [h[κ]]κ∗ , Φ(main(h)) ≤ Φ(main(p)). By κ →∗ (κ)κ2 , let
C0 ⊆ κ be a club homogeneous for P . Let Z = {Φ(main(h)) : h ∈ [C0]κ∗} which has a minimal element
since it is a nonempty set of ordinals. Let h∗ ∈ [C0]κ∗ be such that Φ(main(h∗)) = min(Z). If p ∈ [h∗[κ]]κ∗ ,
then p ∈ [C0]κ∗ and thus Φ(main(p)) ∈ Z and Φ(main(h∗)) = min(Z) ≤ Φ(main(p)). This shows P (h∗) = 0.
Since h∗ ∈ [C0]κ∗ , C0 must be homogeneous for P taking value 0. By choosing a subclub of C0 if necessary,
one may assume that C0 consists entirely of indecomposable ordinals and for all f ∈ [C0]κ∗ , for all α < κ,
I(α) < f(α) (which is possible since I and f are discontinuous). Let C1 = {α ∈ C0 : enumC0

(α) = α}.
Since C1 is a subclub of C0, C1 also consists entirely of indecomposable ordinals.

Now fix f, g ∈ [C1]κ∗ with properties (1), (2), and (3). One will construct simultaneously by recursion two
functions h ∈ [C0]κ∗ and p ∈ [h[κ]]κ∗ so that main(h) = f and main(p) = g. The construction will recursively
define at each stage longer initial segments of the final two objects, h and p.

Suppose α < κ and the following holds:
18
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(a) For each β < α, h � I(β) + 1 has been defined, is a function of the correct type, and h(I(β)) = f(β).
(b) For each β < α, σβ ≤ β + 1 has been defined. If β0 ≤ β1 < α, then σβ0 ≤ σβ1 .
(c) For all β < α, for all η < σβ , p � I(η) + 1 has been defined, is a function of the correct type, and

p(I(η)) = g(η).
(d) For all β < α, for all η < σβ , g(η) ≤ f(β) < g(σβ).

Let ια = sup{σβ : β < α}. Let δ0 = sup{I(β) + 1 : β < α} and τ0 = sup{I(β) + 1 : β < ια}. Since
ια ≤ α, one has τ0 ≤ δ0. Note that since I is discontinuous and takes value among indecomposable ordinals,
τ0 ≤ δ0 ≤ sup(I � α) + 1 < I(α). Properties (a) and (c) imply that h � δ0 and p � τ0 have been defined.
Note sup(h � δ0) = sup(f � α) < f(α) since f is discontinuous. Also sup(p � τ0) = sup(g � ια).

If α is a successor ordinal with α = α∗ + 1, then ια = σα∗. By property (d), sup(g � ια) = sup(g � σα∗) ≤
f(α∗) = sup(f � α) < g(σα∗) = g(ια). Suppose α is a limit ordinal and 〈σβ : β < α〉 is not eventually
constant. Property (d) implies that sup(g � ια) ≤ sup(f � α) ≤ sup{g(σβ) : β < α} = sup(g � ια) < g(ια) by
the discontinuity of g. Suppose α is a limit ordinal and 〈σβ : β < α〉 is eventually constant. Then sup{g(σβ) :
β < α} = g(ια). Then by property (d) and property (2) for the strict inequality, sup(g � ια) ≤ sup(f � α) <
g(ια). The following property (∗) has been established in all cases: sup(g � ια) ≤ sup(f � α) < g(ια).

Let A = {β < α : sup(f � α) < g(β) < f(α)}.
(Case A) If A = ∅.
Then let τ = τ0 and δ = δ0.
(Case B) A 6= ∅.
Note ια < α since if ια = α, then by (∗) and the discontinuity of f , sup(g � α) = sup(g � ια) ≤

sup(f � α) < f(α). However, sup(g � α) < f(α) implies A = ∅ which is a contradiction. Note that by (∗),
ια = min(A). Let ξ = ot(A) ≤ α and observe that A = {ια + η : η < ξ}. Recall δ0 and τ0 have already been
defined above. Note that sup(h � δ0) = sup(f � α) < g(ια). For 0 < ν < ξ, suppose that for all η < ν, the
following holds:

• εη = δ0 + I(ια + η) and µη = τ0 + I(ια + η) have been defined.
• h � εη + 1 and p � µη + 1 have been defined.
• h(εη) = g(ια + η) = p(µη).

Let δν = sup{εη + 1 : η < ν} and τν = sup{µη + 1 : η < ν}. Note that δν = sup{δ0 +I(ια+ η) + 1 : η < ν} <
δ0 + I(ια + ν) and τν = sup{τ0 + I(ια + η) + 1 : η < ν} < τ0 + I(ια + ν) since I is discontinuous. The above
assumptions imply that h � δν and p � τν are defined, and sup(h � δν) = sup(g � (ια + ν)) = sup(p � τν).

Fix ν with 0 ≤ ν < ξ. Let εν = δν + I(ια + ν) and µν = τν + I(ια + ν). Since δν < δ0 + I(ια + ν),
τν < τ0 + I(ια + ν), and I(ια + ν) is indecomposable, εν = δν + I(ια + ν) = δ0 + I(ια + ν) and µν =

τν + I(ια + ν) = τ0 + I(ια + ν). For β < I(ια + ν), let h(δν + β) = p(τν + β) = next
ω·(β+1)
C0

(sup(h � δν)).

This defines h � εν and p � µν with sup(h � εν) = sup(p � µν) ≤ next
I(ια+ν)
C0

(sup(h � δν)) < g(ια + ν) by Fact
2.12 since sup(h � δ0) < g(ια) (in the case ν = 0), sup(h � δν) = sup(g � τν) = sup(g � (ια + ν)) < g(ια + ν)
(in the case 0 < ν < ξ), and I(ια + ν) < g(ια + ν). Let h(εν) = p(µν) = g(ια + ν).

Let τ = sup{µν + 1 : ν < ξ} and δ = sup{εν + 1 : ν < ξ}. Note p � τ and h � δ have been defined so that
sup(p � τ) = sup(h � δ) = sup{g(γ) : γ ∈ A} < f(α) by property (3). Since I is discontinuous, ια+ν < α for
all ν < ξ, δ0 < I(α), and I(α) is indecomposable, one has δ = sup{εν + 1 : ν < ξ} = sup{δ0 + I(ια + ν) + 1 :
ν < ξ} ≤ δ0 + sup(I � α) + 1 < δ0 + I(α) = I(α).

In either Case A or Case B, ordinals τ and δ have been defined with τ ≤ δ < I(α) and sup(h � δ) < f(α).
Let ` = min(κ \A).

(Case I) g(`) > f(α).

Let σα = ια if Case A held and let σα = ` if Case B held. For β < I(α), let h(δ+β) = next
ω·(β+1)
C0

(sup(h �

δ)). Note that sup(h � I(α)) ≤ next
I(α)
C0

(sup(h � δ)) < f(α) by Fact 2.12 since f(α) ∈ C1, sup(h � δ) < f(α)
and I(α) < f(α). Let h(I(α)) = f(α).

(Case II) g(`) = f(α).

For β < I(`), let h(δ + β) = next
ω·(β+1)
C0

(sup(h � δ)).
(Case II.1) ` = α.
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Then h � I(α) and p � I(α) have been defined with sup(h � I(α)) = sup(p � I(α)) ≤ next
I(α)
C0

(sup(h �
δ)) < f(α) by Fact 2.12 since f(α) ∈ C1, sup(h � δ) < f(α) and I(α) < f(α). Let h(I(α)) = p(I(α)) =
f(α) = g(α). Let σα = α+ 1.

(Case II.2) ` < α.
Then h � (δ + I(`)) and p � (δ + I(`)) have been defined with sup(p � (δ + I(`))) = sup(h � (δ + I(`))) <

next
I(`)
C0

(sup(h � δ)) < f(α) by Fact 2.12 since f(α) ∈ C1, sup(h � I(`)) < f(α), and I(`) < I(α) < f(α).

For β < I(α), let h(δ + I(`) + β) = next
ω·(β+1)
C0

(sup(h � (δ + I(`)))).

This defines h � I(α) with sup(h � I(α)) ≤ next
I(α)
C0

(sup(h � (δ + I(`)))) < f(α) by Fact 2.12 since
f(α) ∈ C1, sup(f � (δ + I(`))) < f(α), and I(α) < f(α). Let h(I(α)) = f(α) and p(I(`)) = g(`) = f(α).
Let σα = `+ 1.

This completes the construction of the desired objects satisfying property (a), (b), (c), and (d). Let
h =

⋃
{h � I(α) : α < κ} and p ∈

⋃
{p � σα : α < κ}. By construction, h and p are increasing functions

of the correct type. (To verify these functions have uniform cofinality ω, note that an ordinal of the form

next
ω·(β+1)
C0

(γ) with β, γ < κ is a uniform limit of an ω-sequence from C0). Then h ∈ [C0]κ∗ , p ∈ [h[κ]]κ∗ ,
main(h) = f , and main(p) = g. Since P (h) = 0, one has Φ(f) = Φ(main(h)) ≤ Φ(main(p)) = Φ(g). �

Theorem 5.3. Suppose κ is a cardinal satisfying κ →∗ (κ)κ2 . For any function Φ : [κ]κ∗ → ON, there is a
club C ⊆ κ so that for all f, g ∈ [C]κ∗ , if for all α < κ, f(α) ≤ g(α), then Φ(f) ≤ Φ(g).

Proof. Let C0 ⊆ κ be a club satisfying the property from Lemma 5.2. One may assume that C0 consists
entirely of indecomposable ordinals. Let C1 = {α ∈ C0 : enumC0

(α) = α}. Suppose f, g ∈ [C1]κ∗ and for all
α < κ, f(α) ≤ g(α). Let conditions (1), (2), and (3) refer to the conditions from Lemma 5.2.

First, one will construct a k ∈ [C1]κ∗ so that the pair (f, k) satisfies condition (1) and (2) and the pair
(k, g) satisfies condition (1), (2), and (3). Let ζ ≤ κ and 〈ηξ : ξ < ζ〉 and 〈νξ : ξ < ζ〉 be two increasing
sequences so that the following holds.

(1) For all ξ < ζ, νξ is a limit ordinal.
(2) For all ξ < ζ, sup(f � νξ) = g(ηξ)
(3) For all ν < κ and η < κ, if ν is a limit ordinal and sup(f � ν) = g(η), then there is a ξ < ζ so that

ν = νξ and η = ηξ.

These objects refer to the areas in which the pair (f, g) fails to satisfy condition (2). (Note ζ = 0 if there are
no failures.) Observe that for all ξ < ζ, g(ηξ) < f(νξ) implies that ηξ < νξ since for all α < κ, f(α) ≤ g(α).
For each ξ < ζ, let µξ be the least γ so that sup(g � ηξ) ≤ f(γ). Note that ηξ ≤ µξ < µξ + 1 < νξ since for
all α < κ, f(α) ≤ g(α), ηξ < νξ, and νξ is a limit ordinal.

Define k : κ→ C1 as follows: Let α < κ. If α 6= ηξ for any ξ < ζ, then let k(α) = g(α). If there is a ξ < ζ
so that α = ηξ, then let k(α) = f(µξ + 1). The following illustrates the construction.

f

sup(f � µξ)

•
f(µξ)

•
f(µξ + 1) = k(ηξ) sup(f � νξ) = g(ηξ)

•
f(νξ)

k

k(ηξ) = f(µξ + 1)

•

g

sup(g � ηξ)

•
g(ηξ) = sup(f � νξ)

Since for all α, k(α) ∈ f [κ]∪g[κ], one can construct a witness K : κ×ω → κ to k having uniform cofinality
ω by using witnesses F : κ×ω → κ and G : κ×ω → κ to f and g, respectively, having uniform cofinality ω.

If for all ξ < ζ, α 6= ηξ, then f(α) ≤ g(α) = k(α). If α = ηξ for some ξ < ζ, then f(α) = f(ηξ) ≤ f(µξ) <
f(µξ + 1) = k(α). So for all α < κ, f(α) ≤ k(α). The pair (f, k) satisfies condition (1).
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If for all α < ζ, α 6= ηξ, then k(α) = g(α). If there is a ξ < ζ so that α = ηξ, then k(α) = f(µξ + 1) <
sup(f � νξ) = g(ηξ) = g(α). Thus for all α < κ, k(α) ≤ g(α) and hence condition (1) holds for the pair
(k, g).

Let property (∗) for (k, g) assert that for all α < κ, sup(g � α) < k(α). If for all ξ < ζ, α 6= ηξ, then
sup(g � α) < g(α) = k(α) since g is discontinuous. If there is a ξ < ζ so that α = ηξ, then sup(g � α) =
sup(g � ηξ) ≤ f(µξ) < f(µξ + 1) = k(α). It has been shown that property (∗) for (k, g) holds.

By property (∗) for (k, g) and condition (1) for the pair (k, g), for any α < β < κ, k(α) ≤ g(α) ≤ sup(g �
β) < k(β). This shows that k is increasing. Also by property (∗) for (k, g) and condition (1) for the pair
(k, g), for all α < κ, sup(k � α) ≤ sup(g � α) < k(α). This shows that k is discontinuous. It has been shown
that k is an increasing function of the correct type into C1, i.e. k ∈ [C1]κ∗ .

If for all ξ < ζ, α 6= ηξ, then there is no limit ordinal ν so that sup(f � ν) = g(α) = k(α) since the pair
(f, g) satisfies condition (2). If there is a ξ < ζ so that α = ηξ, then k(α) = f(µξ + 1) and there is no limit
ordinal ν so that sup(f � ν) = k(α) = f(µξ + 1) since f is a strictly increasing function. The pair (f, k)
satisfies condition (2).

Let property (∗∗) for (k, g) assert that for all limit ordinals ν, sup(k � ν) = sup(g � ν). Fix a limit ordinal
ν. By condition (1) for the pair (k, g), sup(k � ν) ≤ sup(g � ν). By property (∗) for (k, g), for each η < ν,
sup(g � η) < k(η). Thus since ν is a limit ordinal, sup(g � ν) ≤ sup(k � ν). Property (∗∗) for (k, g) has been
established.

Suppose condition (2) for (k, g) fails. Then there is an α < κ and a limit ordinal ν so that sup(k � ν) =
g(α). Then by property (∗∗) for (k, g), sup(g � ν) = sup(k � ν) = g(α) which is impossible since g is an
increasing and discontinuous function. Condition (2) for the pair (k, g) has been shown.

Suppose condition (3) for the pair (k, g) fails. Then there is ordinal α and a limit ordinal ν so that
sup(g � ν) = k(α). Then by property (∗∗) for (k, g), sup(k � ν) = sup(g � ν) = k(α). This is impossible since
k is an increasing and discontinuous function. Condition (3) for the pair (k, g) has been shown.

Since C0 has the property stated in Lemma 5.2, (k, g) satisfies condition (1), (2), and (3), and k, g ∈ [C1]κ∗ ,
one has that Φ(k) ≤ Φ(g).

Next, one will construct an h ∈ [C0]κ∗ so that the pair (f, h) satisfies condition (1), (2), and (3) and the
pair (h, k) satisfies condition (1), (2), and (3). Let ζ ≤ κ and 〈ηξ : ξ < ζ〉 and 〈νξ : ξ < ζ〉 be two increasing
sequences so that the following holds.

(1) For all ξ < ζ, ηξ is a limit ordinal. and
(2) For all ξ < ζ, sup(k � ηξ) = f(νξ).
(3) For all η < κ and ν < κ, if η is a limit ordinal and sup(k � η) = f(ν), then there is a ξ < ζ so that

η = ηξ and ν = νξ.

These objects refer to the areas in which the pair (f, k) fails to satisfy condition (3). Note that ηξ ≤ νξ
because if νξ < ηξ, then there is a γ with νξ < γ < ηξ since ηξ is a limit and thus f(νξ) ≤ k(νξ) < k(γ) <
sup(k � ηξ) = f(νξ) which is a contradiction. Let µξ be the least γ < ηξ so that sup(f � νξ) < k(γ).

Define h : κ→ C0 as follows: If α < κ and there is no ξ < ζ so that µξ ≤ α < ηξ, then let h(α) = k(α). If

α < κ and there is a ξ < ζ so that µξ ≤ α < ηξ, then let h(α) = next
ω·((α−µξ)+1)
C0

(sup(f � νξ)). The following
illustrates the construction.

f

sup(f � νξ) f(νξ) = sup(k � ηξ)

•

h

h(µξ)

•
sup(h � ηξ)

k

sup(k � µξ) k(µξ)

•
k(ηξ)

•
sup(k � ηξ) = f(νξ)

Since k has the correct type, there is a function K : κ× ω → κ witnessing k has uniform cofinality ω. If
α < κ and there is no ξ < ζ with µξ ≤ α < ηξ, then h(α) = k(α) and K can be used to produce an ω-sequence

whose limit is h(α). If α < κ and there is a ξ < ζ with µξ ≤ α < νξ, then h(α) = next
ω·((α−µξ)+1)
C0

(sup(f � νξ)
21
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is a uniform limit of an ω-sequence from C0. From these observations, a witness to h having uniform cofinality
ω can be constructed.

Note that for each ξ < ζ, ηξ ≤ νξ ≤ sup(f � νξ) < k(µξ). Since k(µξ) is indecomposable, ω · ((ηξ −
µξ) + 1) < k(µξ). By Fact 2.12, for all α such that µξ ≤ α < ηξ, h(α) = next

ω·((α−µξ)+1)
C0

(sup(f � νξ)) <

next
ω·((ηξ−µξ)+1)
C0

(sup(f � νξ)) < k(µξ). In particular, the following property (∗ ∗ ∗) holds: sup(h � ηξ) ≤
next

ω·((ηξ−µξ)+1)
C0

(sup(f � νξ)) < k(µξ).
If α is such that there is no ξ < ζ with µξ ≤ α < ηξ, then h(α) = k(α). If α < κ and there is a ξ < ζ so

that µξ ≤ α < ηξ, then h(α) < k(µξ) ≤ k(α) by (∗ ∗ ∗). It has been shown that for all α < κ, h(α) ≤ k(α)
and thus condition (1) holds for the pair (h, k).

Suppose α < β < κ. If there are no ξ1 < ζ and ξ2 < ζ with µξ1 ≤ α < ηξ1 and µξ2 ≤ β < ηξ2 , then
h(α) = k(α) < k(β) = h(α). Suppose there is a ξ1 < ζ with µξ1 ≤ α < ηξ1 and no ξ2 < ζ with µξ2 ≤ β < ηξ2 .
Then µξ1 < ηξ1 ≤ β. By (∗ ∗ ∗), h(α) < k(µξ1) < k(ηξ1) ≤ k(β) = h(β). Suppose there is no ξ1 < ζ with
µξ1 ≤ α < ηξ1 and there is a ξ2 < ζ with µξ2 ≤ β < ηξ2 . Note that α < µξ2 . Then by the definition of
µξ2 , h(α) = k(α) < sup(f � νξ2) < h(β). Now suppose there exist ξ1 < ζ and ξ2 < ζ so that µξ1 ≤ α < ηξ1
and µξ2 ≤ β < ηξ2 . If ξ1 = ξ2, then let ξ = ξ1 = ξ1 and observe h(α) = next

ω·((α−µξ)+1)
C0

(sup(f � νξ)) <

next
ω·((β−µξ)+1)
C0

(sup(f � νξ)) = h(β). Suppose ξ1 6= ξ2 and thus ξ1 < ξ2. By (∗ ∗ ∗) and the definitions of
µξ, ηξ, and νξ, h(α) < k(µξ1) < sup(k � ηξ1) = f(νξ1) ≤ sup(f � νξ2) < h(β). Thus in all cases, it has been
shown that if α < β < κ, then h(α) < h(β) and thus h is an increasing function.

Suppose α < κ is such that there is no ξ < ζ with µξ ≤ α < ηξ. Then by property (1) for the pair
(h, k) and the discontinuity of k, sup(h � α) ≤ sup(k � α) < k(α) = h(α). Suppose there is a ξ < ζ
with µξ ≤ α < ηξ. First, suppose α = µξ. Then by condition (1) for the pair (h, k) and the definition
of µξ, sup(h � α) = sup(h � µξ) ≤ sup(k � µξ) ≤ sup(f � νξ) < h(µξ) = h(α). Suppose µξ < α < νξ.

Then sup(h � α) ≤ next
ω·(α−µξ)
C0

(sup(f � νξ)) < next
ω·((α−µξ)+1)
C0

(sup(f � νξ)) = h(α). Thus in all cases,
sup(h � α) < h(α). This shows h is discontinuous everywhere. It has been established that h is an increasing
function of the correct type through C0 (that is, h ∈ [C0]κ∗).

If α < κ and there is no ξ < ζ with µξ ≤ α < ηξ, then sup(h � α) < h(α) = k(α) since h is discontinuous.
Suppose α < κ and there is a ξ < ζ with µξ ≤ α < ηξ. Suppose there is no ξ̄ < ζ so that µξ̄ ≤ ηξ < ηξ,
then sup(h � ηξ) < k(µξ) ≤ k(α) < sup(k � ηξ) = f(νξ) < k(ηξ) = h(ηξ). In particular, sup(h � ηξ) < k(α) <
h(ηξ). Suppose there is a ξ̄ < ζ so that µξ̄ ≤ ηξ < ηξ̄, then sup(h � ηξ) < k(µξ) ≤ k(α) < sup(k � ηξ) =
f(νξ) ≤ sup(f � νξ̄) < h(µξ̄) ≤ h(ηξ). (This implies that µξ̄ = ηξ.) One has sup(h � ηξ) < k(α) < h(ηξ).
This shows that for all α < κ, there is no limit ordinal γ so that sup(h � γ) = k(α). Therefore condition (2)
holds for the pair (h, k).

If α < κ and there is no ξ < ζ with µξ ≤ α < ηξ, then sup(k � α) < k(α) = h(α) < k(α+ 1). If α < κ and
there is a ξ < ζ with µξ ≤ α < ηξ, then sup(k � µξ) ≤ sup(f � νξ) < h(µξ) ≤ h(α) < sup(h � ηξ) < k(µξ)
using (∗ ∗ ∗). It has been shown that for all α < κ, there is no limit ordinal γ so that sup(k � γ) = h(α).
Condition (3) has been shown for the pair (h, k).

Since C0 has the property of Lemma 5.2, (h, k) satisfies condition (1), (2), and (3), and h, k ∈ [C0]κ∗ , one
has that Φ(h) ≤ Φ(k).

Suppose α < κ and there is no ξ < ζ such that µξ ≤ α < ηξ. Then f(α) ≤ k(α) = h(α) since the pair
(f, k) satisfies condition (1). Suppose α < κ and there is a ξ < ζ such that µξ ≤ α < ηξ. Since α < ηξ ≤ νξ,
one has that f(α) ≤ sup(f � νξ) < h(µξ) ≤ h(α). It has been shown that for all α < κ, f(α) ≤ h(α) and so
condition (1) holds for the pair (f, h).

Suppose α < κ and there is no ξ < ζ such that µξ ≤ α < ηξ, then there is no limit ordinal γ so that
sup(f � γ) = k(α) = h(α) since the pair (f, k) satisfies condition (2). Suppose α < κ and there is a ξ < ζ
such that µξ ≤ α < ηξ, then sup(f � νξ) < h(µξ) ≤ h(α) < sup(h � ηξ) < k(µξ) < sup(k � ηξ) = f(νξ). So
for all α < κ, there is no limit ordinal γ so that sup(f � γ) = h(α). Condition (2) holds for the pair (f, h).

Suppose α < κ. First suppose there is no ξ < ζ so that α = νξ. There is a unique ρ so that sup(k �
ρ) < f(α) ≤ k(ρ). Suppose there is no ξ̄ < ζ so that µξ̄ ≤ ρ < ηξ̄. Then sup(h � ρ) ≤ sup(k � ρ) <

f(α) ≤ k(ρ) = h(ρ). Suppose there is a ξ̄ < ζ so that µξ̄ ≤ ρ < ηξ̄. Then f(α) ≤ sup(f � νξ̄). Therefore,
sup(h � ρ) ≤ sup(k � ρ) < f(α) ≤ sup(f � νξ̄) < h(µξ̄) ≤ h(ρ). (This implies µξ̄ = ρ). Hence sup(h �
ρ) < f(α) < h(ρ). Now suppose there is a ξ < ζ so that α = νξ. Suppose that there is no ξ̄ < ζ so that
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µξ̄ ≤ ηξ < ηξ̄. Then sup(h � ηξ) < k(µξ) < sup(k � ηξ) = f(νξ) = f(α) < k(ηξ) = h(ηξ) using (∗ ∗ ∗) here.

Thus sup(h � ηξ) < f(α) < h(ηξ). Suppose there is a ξ̄ so that µξ̄ ≤ ηξ < ηξ̄. Then f(α) ≤ sup(f � νξ̄).
Therefore, sup(h � ηξ) < k(µξ) ≤ sup(k � ηξ) = f(νξ) = f(α) ≤ sup(f � νξ̄) < h(µξ̄) ≤ h(ηξ). (This implies
µξ̄ = ηξ.) Hence sup(h � ηξ) < f(α) < h(ηξ). In all cases, it has been shown that for all α < κ, there is no
limit ordinal γ so that sup(h � γ) = f(α). The pair (f, h) satisfies condition (3).

Since C0 has the property of Lemma 5.2, (f, h) satisfies condition (1), (2), and (3), and f, h ∈ [C0]κ∗ , one
has that Φ(f) ≤ Φ(h).

In conclusion Φ(f) ≤ Φ(h) ≤ Φ(k) ≤ Φ(g). �

Corollary 5.4. Suppose κ is a cardinal satisfying κ →∗ (κ)κ2 , ε ≤ κ, and Φ : [κ]ε∗ → ON. Then there is a
club C ⊆ κ so that for all f, g ∈ [C]ε∗, if for all α < ε, f(α) ≤ g(α), then Φ(f) ≤ Φ(g).

Proof. Define Φ′ : [κ]κ∗ → ON by Φ′(f) = Φ(f � ε). The result follows by applying Theorem 5.3 to Φ′. �

Corollary 5.5. Assume AD. Suppose κ is ω1, δ2
1, or δA where A ⊆ R. For any ε ≤ κ and any function

Φ : [κ]ε∗ → ON, there is a club C ⊆ κ so that for all f, g ∈ [C]ε∗, if for all α < ε, f(α) ≤ g(α), then
Φ(f) ≤ Φ(g).

Assume AD + DCR. For any n ∈ ω, for any ε ≤ δ1
2n+1, and any function Φ : [δ1

2n+1]ε∗ → ON, there is a

club C ⊆ δ1
2n+1 so that for all f, g ∈ [C]ε∗, if for all α < ε, f(α) ≤ g(α), then Φ(f) ≤ Φ(g).

A suitable modification can be used to investigate almost everywhere monotonicity for weak partition
cardinals which may not be strong partition cardinals.

Lemma 5.6. Suppose κ is a cardinal satisfying κ →∗ (κ)<κ2 . For any ε < κ and function Φ : [κ]ε∗ → ON,
there is a club C ⊆ κ so that for all f, g ∈ [C]ε∗, if f and g have the following properties:

(1) For all α < ε, f(α) ≤ g(α).
(2) For all α < ε, there is no limit ordinal β ≤ ε so that sup(f � β) = g(α) (where sup(f � ε) = sup(f)).
(3) For all α < ε, there is no limit ordinal β < ε so that sup(g � β) = f(α).

then Φ(f) ≤ Φ(g).

Proof. Let I : ε+ε→ κ be an increasing and discontinuous function whose image consists of indecomposable
ordinals. Let ε0 = sup{I(α) + 1 : α < ε} and ε1 = sup{I(α) + 1 : α < ε + ε}. Note that ε0 + ε1 = ε1.

Suppose h ∈ [κ]ε
1

∗ . Let h0 ∈ [κ]ε
0

∗ be defined by h0 = h � ε0. If ` ∈ [κ]ε
0

, then let main(`) ∈ [κ]ε be defined
by main(`)(α) = h(I(α)).

Define P : [κ]ε
1

∗ → 2 by P (h) = 0 if and only if for all p ∈ [h[ε1]]ε
0

∗ , Φ(main(h0)) ≤ Φ(main(p)). By

κ →∗ (κ)ε
1

2 , there is a club C0 ⊆ κ which is homogeneous for P . Let Z = {Φ(main(`))) : ` ∈ [C0]ε
0

∗ } which

has a minimal element since it is a nonempty set of ordinals. Let `∗ ∈ [C0]ε
0

∗ be such that Φ(`∗) = min(Z).

Let h ∈ [C0]ε
1

∗ be defined by

h(α) =

{
`∗(α) α < ε0

next
ω·((α−ε0)+1)
C0

(sup(`∗)) ε0 ≤ α < ε1
.

Note that h ∈ [C0]ε
1

∗ and h0 = `∗. If p ∈ [h[ε1]]ε
0

∗ , then p ∈ [C0]ε
0

∗ . Thus Φ(main(p)) ∈ Z and Φ(h0) =

Φ(main(`∗)) = min(Z) ≤ Φ(main(p)). This shows P (h) = 0. Since h ∈ [C0]ε
1

∗ , C0 must be homogeneous

for P taking value 0. (Note only κ →∗ (κ)ε
1

2 is needed rather than the full weak partition relation.) By
choosing a subclub of C0, one may assume C0 consists of indecomposable ordinals and ε1 < min(C0). Let
C1 = {α ∈ C0 : enumC0(α) = α}.

Fix f, g ∈ [C1]ε∗ with properties (1), (2), and (3). One will construction by recursion two functions

h ∈ [C0]ε
1

∗ and p ∈ [h[ε1]]ε
0

∗ so that main(h0) = f and main(p) = g. The construction and verification are
quite similar to Lemma 5.2 so some details of the verification will be omitted.

Suppose α < ε and the following holds:

(a) For each β < α, h � I(β) + 1 has been defined, is a function of the correct type, and h(I(β)) = f(β).
(b) For each β < α, σβ ≤ β + 1 has been defined. If β0 ≤ β1 < α, then σβ0 ≤ σβ1 .
(c) For all β < α, for all η < σβ , p � I(η) + 1 has been defined, is a function of the correct type, and

p(I(η)) = g(η).
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(d) For all β < α, for all η < σβ , g(η) ≤ f(β) < g(σβ).

Let ια = sup{σβ : β < α}, δ0 = sup{I(β) + 1 : β < α}, and τ0 = sup{I(β) + 1 : β < ια}. Observe
sup(g � ια) ≤ sup(f � α) < g(ια).

Let A = {β < α : sup(f � α) < g(β) < f(α)}.
(Case A) If A = ∅.
Then let τ = τ0 and δ = δ0.
(Case B) A 6= ∅.
One must have ια < α and ια = min(A). Let ξ = ot(A) ≤ α and observe that A = {ια + η : η < ξ}. δ0

and τ0 have already been defined above with sup(h � δ0) = sup(f � α) < g(ια). For 0 < ν < ξ, suppose that
for all η < ν, the following holds:

• εη = δ0 + I(ια + η) and µη = τ0 + I(ια + η) have been defined.
• h � εη + 1 and p � µη + 1 have been defined.
• h(εη) = g(ια + η) = p(µη).

Let δν = sup{εη + 1 : η < ν} and τν = sup{µη + 1 : η < ν}. Note that δν < δ0 + I(ια + ν) and
τν < τ0 + I(ια + ν). h � δν and p � τν are defined with sup(h � δν) = sup(g � (ια + ν)) = sup(g � τν).

Fix ν with 0 ≤ ν < ξ. Let εν = δν + I(ια + ν) = δ0 + I(ια + ν) and µν = τν + I(ια + ν) = τ0 + I(ια + ν).

For β < I(ια + ν), let h(δν + β) = p(τν + β) = next
ω·(β+1)
C0

(sup(h � δν)). Let h(εν) = p(µν) = g(ια + ν).
Let τ = sup{µξ + 1 : ν < ξ} and δ = sup{εν + 1 : ν < ξ}. Note p � τ and h � τ have been defined so that

sup(p � τ) = sup(h � δ) = sup(g(γ) : γ ∈ A} < f(α) by property (3). Observe also that δ < I(α).
Now in either Case A or Case B, ordinals τ and δ have been defined with τ ≤ δ < I(α) and sup(h � δ) <

f(α). Let ` = min(κ \A).
(Case I) g(`) > f(α).

Let σα = ια if Case A held and let σα = ` if Case B held. For β < I(α), let h(δ+β) = next
ω·(β+1)
C0

(sup(h �
δ)). Let h(I(α)) = f(α).

(Case II) g(`) = f(α).

For β < I(`), let h(δ + β) = next
ω·(β+1)
C0

(sup(h � δ)).
(Case II.1) ` = α.
Let h(I(α)) = p(I(α)) = f(α) = g(α). Let σα = α+ 1.
(Case II.2) ` < α.

For β < I(α), let h(δ + I(`) + β) = next
ω·(β+1)
C0

(sup(h � (δ + I(`)))). Let h(I(α)) = f(α) and p(I(`)) =
g(`) = f(α). Let σα = `+ 1.

Let $ ≤ ε be largest such that sup(g � $) ≤ sup(f). Let ς = sup{I(α) + 1 : α < $}. After ε-many
stages, h � ε0 and p � ς have been defined. Note main(h � ε0) = f .

(Case 1) sup(f) = sup(g).

Then $ = ε, ς = ε0, and p ∈ [C0]ε
0

∗ has been completely defined with main(p) = g.

For α < ε1, let h(ε0 + α) = next
ω·(α+1)
C0

(sup(h � ε0)). This complete the construction of h ∈ [C0]ε
1

∗ .
(Case 2) sup(f) < sup(g).
Then $ < ε and ς < ε0. Suppose ν < ε and the following holds.

(i) For all η < ε+ ν, h � I(η) + 1 has been defined and is a function of the correct type.
(ii) For all η < $ + ν, p � I(η) + 1 has been defined and is a function of the correct type.
(iii) For η < ε, h(I(ε+ η)) = g($ + η) = p(I($ + η)).

Suppose ν < ε. Let λν = {I(η) + 1 : η < ε + ν} and ρν = {I(η) + 1 : η < $ + ν}. (Note that
λ0 = ε0 and ρ0 = ς.) These assumptions imply that h � λν and p � ρν are defined. For α < I($ + ν), let

h(λν +α) = p(ρν +α) = next
ω·(α+1)
C0

(sup(h � λν)). This defines h � (λν +I($+ ν)) and p � I($+ ν). For all

α < I(ε+ν), let h(λν +I($+ν)+α) = next
ω·(α+1)
C0

(sup(h � (λν +I($+ν)))). This defines h � I(ε+ν) since
λν+I($+ν)+I(ε+ν) = I(ε+ν) since I(ε+ν) is indecomposable. Let h(I(ε+ν)) = p(I($+ν)) = g($+ν).
This defines h � I(ε+ ν) + 1 and p � I($ + ν) + 1.

The construction of h ∈ [C0]ε
1

∗ and p ∈ [h[ε1]]ε
0

∗ has been completed so that main(h0) = f and main(p) = g.

Since h ∈ [C0]ε
1

∗ , p ∈ [h[ε1]]ε0∗ , and P (h) = 0, one has Φ(f) = Φ(main(h0)) ≤ Φ(main(p)) = Φ(g). �
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Theorem 5.7. Suppose κ is a cardinal satisfying κ →∗ (κ)γ2 for all γ < κ. For any ε < κ and function
Φ : [κ]ε∗ → ON, there is a club C ⊆ κ so that for all f, g ∈ [κ]ε∗, if for all α < ε, f(α) ≤ g(α), then
Φ(f) ≤ Φ(g).

Proof. Let C0 ⊆ κ be a club consisting of indecomposable ordinals with the properties from Lemma 5.6. Let
C1 = {α ∈ C0 : enumC0

(α) = α}.
Let ζ ≤ ε and 〈ηξ : ξ < ζ〉 and 〈νξ : ξ < ζ〉 be two increasing sequences with the following property.

(1) For all ξ < ζ, νξ is a limit ordinal.
(2) For all ξ < ζ, sup(f � νξ) = g(ηξ).
(3) For all ν < ε and η < ε, if ν is a limit ordinal and sup(f � ν) = g(η), then there is a ξ < ζ so that

ν = νξ and η = ηξ.

(Note it is possible that νξ = ε when sup(f � ε) = sup(f) = g(ηξ).) These indicate the region in which
the pair (f, g) fails to satisfy condition (2) of Lemma 5.6. For each ξ < ζ, let µξ be the least γ so that
sup(g � ηξ) ≤ f(γ).

Define k ∈ [C1]ε∗ as follows: If α < ε and there is no ξ < ζ so that α = ηξ, then let k(α) = g(α). If α < ε
and there is a ξ < ζ so that α = ηξ, then let k(α) = f(µξ + 1). As in Theorem 5.3, the pair (f, k) satisfies
conditions (1) and (2) and the pair (k, g) satisfies conditions (1), (2), and (3). Therefore, Φ(k) ≤ Φ(g).

Let ζ ≤ ε and 〈ηξ : ξ < ζ〉 and 〈νξ : ξ < ζ〉 be two increasing sequences so that the following hold.

(1) For all ξ < ζ, ηξ is a limit ordinal.
(2) For all ξ < ζ, sup(k � ηξ) = f(νξ).
(3) For all η < ε and ν < ε, if η is a limit ordinal and sup(k � η) = f(ν), then there is a ξ < ζ so that

η = ηξ and ν = νξ.

Let µξ be the least γ < ηξ so that sup(f � νξ) < k(γ).
Define h ∈ [C0]ε∗ as follows: If α < ε and there is no ξ < ζ so that µξ ≤ α < ηξ, then let h(α) = k(α). If

α < ε and there is a ξ < ζ so that µξ ≤ α < ηξ, then let h(α) = next
ω·((α−µξ)+1)
C0

(sup(f � νξ)). As before,
the pairs (f, h) and (h, k) both satisfy conditions (1), (2), and (3). Thus Φ(f) ≤ Φ(h) ≤ Φ(k).

This concludes that Φ(f) ≤ Φ(g). �

Corollary 5.8. Assume AD. Let κ be ω1, ω2, δ2
1, or δA where A ⊆ R. For any ε < κ and Φ : [κ]ε∗ → ON,

there is a club C ⊆ ω2 so that for all f, g ∈ [C]ε∗, if for all α < ε, f(α) ≤ g(α), then Φ(f) ≤ Φ(g).
Assume AD + DCR. For any 1 ≤ n < ω, ε < δ1

n, and Φ : [δ1
n]ε∗ → ON, there is a club C ⊆ δ1

n so that for
any f, g ∈ [C]ε∗, if for all α < ε, f(α) ≤ g(α), then Φ(f) ≤ Φ(g).

6. A Finite Continuity Property for Long Functions on ω1

Expecting a function Φ : [ω1]ω1
∗ → ω1 to satisfy an almost everywhere finite continuity in the sense that

there are finitely many ordinals δ0, ..., δk < ω1 so that Φ(f) only depends on sup(f � δi) is impossible.

Example 6.1. Let Ψ : [ω1]ω1
∗ → ω1 be defined by Ψ(f) = f(f(0)). For any finite set of ordinals δ0, ..., δk−1 <

ω1, for any club C, there are f, g ∈ [C]ω1
∗ so that for all i < k, sup(f � δi) = sup(g � δi) and Ψ(f) 6= Ψ(g).

Proof. Let δ = sup{δ0, ..., δk−1}. Pick f, g ∈ [C]ω1
∗ so that f � δ = g � δ, f(0) = g(0) > δ, and f(f(0)) 6=

g(g(0)). Then for all i < k, sup(f � δi) = sup(g � δi) but Ψ(f) = f(f(0)) 6= g(g(0)) = Ψ(g). �

Expecting a function Φ : [ω1]ω1
∗ → ω1 to have finitely many functions Γ0, ...,Γk−1 so that Φ(f) depends

only on sup(f � Γi(f)) is also impossible by the following example. The concept of a closure point of a
function will be very important in this section.

Definition 6.2. Let f ∈ [ω1]ω1
∗ . An ordinal β ∈ ω is a closure point of f if and only if for all α < β,

f(α) < β (or equivalently) if and only if sup(f � β) = β. Let Cf = {β ∈ ω1 : sup(f � β) = β} be the
collection of closure points of f . Cf is a club subset of ω1.

Example 6.3. Let Ψ : [ω1]ω1
∗ → ω1 be defined by Ψ(f) = min(Cf ), i.e. Ψ(f) is the least closure point of

f . Then for any club C ⊆ ω1 and for any finite collection of functions Γ0, ...,Γk−1 : [ω1]ω1
∗ → ω1, there is an

f ∈ [C]ω1
∗ and a g ∈ [C]ω1

∗ so that for all i < k, sup(f � Γi(f)) = sup(g � Γi(f)) and Φ(f) 6= Φ(g).
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Proof. Let C0 ⊆ C be a club consisting entirely of indecomposable ordinals. Let C1 = {α ∈ C0 : enumC0(α) =
α}. Let C2 be the club of limit points of C1. Let f ∈ [C2]ω1

∗ . Then Ψ(f) = min(Cf ) ∈ C2. Let γ = sup{Γi(f) :
i < k ∧ Γi(f) < Ψ(f)} and note that γ = 0 if there are no i < k with Γi(f) < Ψ(f). Since Ψ(f) ∈ C2 and
sup(f � γ) < sup(f � Ψ(f)) = Ψ(f), there exists a δ ∈ C1 with sup(f � γ) < δ < Ψ(f). Define g ∈ [C0]ω1

∗ by

g(α) =

{
f(α) α < γ ∨ α ≥ Ψ(f)

next
ω·(α+1)
C0

(sup(f � γ)) γ ≤ α < Ψ(f)
.

By Fact 2.12, g is indeed an increasing function. Moreover, since γ < δ and sup(f � γ) < δ, Fact 2.12 also
implies that sup(g � δ) = δ. Thus δ ∈ Cg. Therefore, Ψ(g) = min(Cg) ≤ δ < Ψ(f). However, for all i < k,
sup(g � Γi(f)) = sup(f � Γi(f)). �

Motivated by this example, this section will show that if one demands that closure points remains the
same, then there will be finitely many functions Γ0, ...,Γk−1 so that for µω1

ω1
-almost all f , Φ(f) depends only

on sup(f � Γi(f)).
The results of this section will be proved using the strong partition relation ω1 →∗ (ω1)ω1

∗ and an addi-
tional combinatorial principle called the almost everywhere short length club uniformization for ω1. More
specifically, a fine form of µω1

ω1
-almost everywhere continuity is needed.

Let clubω1 denote the collection of club subsets of ω1. A relation R ⊆ [ω1]<ω1
∗ × clubω1 is said to ⊆-

downward closed in the clubω1 -coordinate if and only if for all ` ∈ [ω1]<ω1
∗ , if R(`,D) and C ⊆ D, then

R(`, C).

Definition 6.4. Almost everywhere short length club uniformization at ω1 is the asserting that for all
R ⊆ [ω1]<ω1

∗ × clubω1 which is ⊆-downward closed in the clubω1-coordinate, there is a club C ⊆ ω1 and a
function Λ : (dom(R) ∩ [C]<ω1

∗ )→ clubω1 so that for all ` ∈ dom(R) ∩ [C]<ω1
∗ , R(`,Λ(`)).

Almost everywhere short length club uniformization is established in [4] Theorem 3.10 under AD using
techniques which are specific to ω1. [2] gives a more general argument which holds for many other known
strong partition cardinals under AD.

Fact 6.5. ([4] Theorem 3.10, [2]) Assume AD. The almost everywhere short length club uniformization at
ω1 holds.

The almost everywhere short length club uniformization at ω1 combined with the strong partition relation
ω1 →∗ (ω1)ω1

2 gives a simpler form of the almost everywhere club uniformization principle stated below.

Fact 6.6. ([2]) (Strong almost everywhere short length club uniformization for ω1) Assume ω1 →∗ (ω1)ω1
2 and

the almost everywhere short length club uniformization principle holds at ω1. For all R ⊆ [ω1]<ω1
∗ × clubω1

,
there exists a club C ⊆ ω1 so that for all ` ∈ [C]<ω1

∗ ∩ dom(R), R(`, C \ sup(`) + 1).

[4] used Fact 6.5 to show that every function Φ : [ω1]ω1
∗ → ω1 is continuous µω1

ω1
-almost everywhere.

Fact 6.7. Assume ω1 →∗ (ω1)ω1
2 and the almost everywhere short length club uniformization principle holds

for ω1. Let Φ : [ω1]ω1
∗ → ω1. There is a club C ⊆ ω1 so that for all f ∈ [C]ω1

∗ , there is an α < ω1 so that for
all g ∈ [C]ω1

∗ , if g � α = f � α, then Φ(f) = Φ(g).

Here, an even finer form of continuity established in [2] from Fact 6.6 will be needed.

Definition 6.8. Let Φ : [ω1]ω1
∗ → ω1 and C ⊆ ω1 be a club. One says that ` ∈ [C]<ω1

∗ is a continuity point
for Φ relative to C if and only if for all f, g ∈ [C]ω1

∗ so that f � |`| = ` = g � |`|, Φ(f) = Φ(g).

Fact 6.9. ([2]) Assume ω1 →∗ (ω1)ω1
2 and the almost everywhere short length club uniformization principle

holds for ω1. Suppose Φ : [ω1]ω1
∗ → ω1. Then there is a club C ⊆ ω1 so that for all f ∈ [C]ω1

∗ and α < ω1, if
Φ(f) < f(α), then f � α is a continuity point for Φ relative to C.

Lemma 6.10. Assume ω1 →∗ (ω1)ω1
2 and that the almost everywhere short length club uniformization

principle holds at ω1. Suppose Φ : [ω1]ω1
∗ → ω1 is a function so that for µω1

ω1
-almost all f , Φ(f) is a successor

ordinal. Then there is a club C ⊆ ω1 and a function ΓΦ : [C]ω1
∗ → ω1 so that the following holds:

(1) For all f ∈ [C]ω1
∗ , ΓΦ(f) < Φ(f).

(2) For all f ∈ [C]ω1
∗ , ΓΦ(f) + 1 = Φ(f).
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(3) For all f ∈ [C]ω1
∗ , f � ΓΦ(f) is a continuity point for Φ relative to C.

Proof. Let C0 ⊆ ω1 be a club consisting entirely of limit ordinals so that for all f ∈ [C0]ω1
∗ , Φ(f) is a successor

ordinal. By Fact 6.9, there is a club C1 ⊆ C0 so that for all f ∈ [C1]ω1
∗ and α < ω1, if Φ(f) < f(α), then

f � α is a continuity point for Φ relative to C1. Define ΓΦ : [C1]ω1
∗ → ω1 by letting ΓΦ(f) be the predecessor

of Φ(f). Note that ΓΦ(f) ≤ sup(f � ΓΦ(f)) < f(ΓΦ(f)) since sup(f � ΓΦ(f)) ∈ C1 is a limit ordinal and by
the discontinuity of f . Since Φ(f) = ΓΦ(f)+1, this implies that Φ(f) ≤ f(ΓΦ(f)). However since f ∈ [C1]ω1

∗
and C1 consist entirely of limit ordinals, Φ(f) < f(ΓΦ(f)) since Φ(f) is a successor ordinal. By Fact 6.9,
f � ΓΦ(f) is a continuity point for Φ relative to C1. �

Lemma 6.11. Assume ω1 →∗ (ω1)ω1
2 and that the almost everywhere short length club uniformization

principle holds at ω1. Suppose Φ : [ω1]ω1
∗ → ω1 is a function so that for µω1

ω1
-almost all f , Φ(f) is a non-zero

limit ordinal and Φ(f) /∈ Cf (i.e. Φ(f) is not a closure point of f). Then there is a club C ⊆ ω1 and a
function ΓΦ : [C]ω1

∗ → ω1 so that the following holds:

(1) For all f ∈ [C]ω1
∗ , ΓΦ(f) < Φ(f).

(2) For all f ∈ [C]ω1
∗ , ot({α : ΓΦ(f) ≤ α < Φ(f)}) is an additively indecomposable ordinal.

(3) For all f ∈ [C]ω1
∗ , f � ΓΦ(f) is a continuity point for Φ relative to C.

Proof. Let C0 ⊆ ω1 be a club so that for all f ∈ [C0]ω1
∗ , Φ(f) is a limit ordinal which is not a closure point of

f . By Fact 6.9, let C1 ⊆ C0 be a club so that for all α < ω1, if Φ(f) < f(α), then f � α is a continuity point
of Φ relative to C1. Define Γ : [C1]ω1

∗ → ω1 by Γ(f) is the unique β such that sup(f � β) ≤ Φ(f) < f(β). For
all f ∈ [C1]ω1

∗ , f � Γ(f) is a continuity point for Φ relative to C1. Note that Γ(f) ≤ Φ(f). If Γ(f) = Φ(f),
then since Φ(f) is a limit ordinal, Φ(f) ≤ sup(f � Φ(f)) = sup(f � Γ(f)) ≤ Φ(f). Thus Φ(f) ∈ Cf which
contradicts the assumption. It has been shown that Γ(f) < Φ(f) for all f ∈ [C1]ω1

∗ . For each f ∈ [C1]ω1
∗ ,

let δf = ot({α : Γ(f) ≤ α < Φ(f)}). Note that δf is a limit ordinal since Φ(f) is a limit ordinal. Let εf be
the least ordinal so that there exists an additively indecomposable ordinal νf with δf = εf + νf . Note that
εf < δf . Define ΓΦ : [C1]ω1

∗ → ω1 by ΓΦ(f) = Γ(f) + εf . Then for all f ∈ [C1]ω1
∗ , ΓΦ(f) < Φ(f), f � ΓΦ(f)

is a continuity point for Φ relative to C1, and ot({α : ΓΦ(f) ≤ α < Φ(f)}) = νf which is an additively
indecomposable ordinal. �

If Φ(f) is a function so that for µω1
ω1

-almost all f , Φ(f) ∈ Cf (such as the function from Example 6.3),
then Φ(f) is the least β so that f � β is a continuity point for Φ. For such a function, condition (3) must be
weakened otherwise the crucial condition (1) will not hold.

Fact 6.12. (ZF) Assume κ is a cardinal, ε ≤ κ, and κ→∗ (κ)ε2. Let Φ : [κ]ε∗ → ON. There is a club C ⊆ κ
so that for all f ∈ [C]ε∗, for all g v f , Φ(f) ≤ Φ(g).

Proof. This follows from Theorem 5.3; however, in this particular instance, the argument is much simpler.
Let P : [κ]ε∗ → 2 be defined by P (f) = 0 if and only if for all g v f , Φ(f) ≤ Φ(g). By κ →∗ (κ)ε2, there
is a club C ⊆ κ which is homogeneous for P . Suppose C was homogeneous for P taking value 1. Let
Z = {Φ(f) : f ∈ [C]ε∗}. Let β = min(Z). Let f ∈ [C]ω1

∗ be such that Φ(f) = β. Since P (f) = 1, there is a
g v f so that Φ(g) < Φ(f). Since g ∈ [C]ε∗, Φ(g) ∈ Z. Then Φ(g) < β = min(Z) which is a contradiction.
C must be homogeneous for P taking value 0. �

Definition 6.13. Suppose Φ : [ω1]ω1
∗ → ω1 and f ∈ [ω1]ω1

∗ . Let AΦ,β
f = {g ∈ [ω1]ω1

∗ : g v f ∧ Cg = Cf ∧ g �

β = f � β}. Let BΦ,β
f = {Φ(g) : g ∈ AΦ,β

f }. Note that if β0 ≤ β1, then AΦ,β1

f ⊆ AΦ,β0

f and BΦ,β1

f ⊆ BΦ,β0

f .

Lemma 6.14. Suppose ω1 →∗ (ω1)ω1
2 . For all Φ : [ω1]ω1

∗ → ω1, there is a club C ⊆ ω1 so that for all

f ∈ [C]ω1
∗ , sup(BΦ,0

f ) < ω1.

Proof. Suppose h ∈ [ω1]ω1
∗ and for all α < ω1, h(α) is an indecomposable ordinal. Let 〈γhα : α < ω1〉

denote the increasing enumeration of Ch, the club of closure points of h, which are also indecomposable
ordinals. Thus for all α < β, ot({η < ω1 : γhα ≤ η < γhβ}) = γhβ . For α < ω1, let Bhα = {(η, ζ) : γhα ≤ η <

γhα+1 ∧ ζ = h(η)}. For i ∈ 2,
⋃
α<ω1

Bh2α+i is the graph of a partial function whose domain is a subset of

ω1. Denote this partial function by h̃i. Let mdom(h̃i) : dom(h̃i)→ ω1 be the Mostowski collapse of dom(h̃i).

Define hi(α) = h̃i ◦ m−1

dom(h̃i)
. Intuitively, h0 and h1 are the concatenations of h restricted to the even
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and odd, respectively, blocks determined by the sequence 〈γhα : α < ω1〉 of closure points of h. Note that

γh
i

α+1 = γh2α+1+i and thus if α is a limit ordinal γh
i

α = γhα.
Also observe that if f, g ∈ [ω1]ω1

∗ have the property that for all α < ω1, f(α) and g(α) are indecomposable

ordinals, sup(Bfα) < min(Bgα), and sup(Bgα) < min(Bfα+1), then there is an h ∈ [ω1]ω1
∗ so that h0 = f and

h1 = g. To see this: Let 〈γ∗α : α < ω1〉 be the increasing enumeration of {γfα : α < ω1} ∪ {γgα : α < ω1}.
Note that for all limit ordinals α, γ∗2α = γ∗α = γfα = γgα. For each α, γ∗2α+1 = γfα+1 and γ∗2α+2 = γgα+1 by
the assumptions on f and g. Define h by recursion as follows. Suppose h � γ∗2α has been defined. For each

ξ < γ∗2α+1 = γfα+1, let h(γ∗2α + ξ) = f(γfα + ξ). This defines h � γ∗2α+1. For each ξ < γ∗2α+2 = γgα+1, let
h(γ∗2α+1 + ξ) = g(γgα + ξ). This defines h � γ∗2α+2. By recursion, this completes the definition of h. (The
assumptions on f and g are needed to ensure h is an increasing and discontinuous function.) Note that for
all α < ω1, γhα = γ∗α. Therefore, h0 = f and h1 = g.

Define P : [ω1]ω1
∗ → 2 by P (h) = 0 if and only if Φ(h0) ≤ Φ(h1). By ω1 →∗ (ω1)ω1

2 , there is a club
C0 ⊆ ω1 which is homogeneous for P and consists entirely of indecomposable ordinals. For the sake of
contradiction, suppose C0 is homogeneous for P taking value 1. Pick any h ∈ [C0]ω1

∗ . For each n ∈ ω, let g̃n
denote the partial function whose graph is

⋃
α<ω1

Bhω·α+n. Let mdom(g̃n) : dom(g̃n) → ω1 be the Mostowski

collapse of dom(g̃n). Let gn = g̃n ◦ m−1
dom(g̃n). Note that Bgα = Bhω·α+n. Therefore, sup(Bgnα ) = γhω·α+n+1 <

h(ω · α + n + 1) = min(Bhω·α+n+1) = minB
gn+1
α < γω·α+ω = min(Bg0α+1) ≤ min(Bgnα+1). By the previous

observation, for each n ∈ ω, there is an hn ∈ [C0]ω1
∗ so that h0

n = gn and h1
n = gn+1. However, P (hn) = 1

implies that Φ(gn+1) = Φ(h1
n) < Φ(h0

n) = Φ(gn). 〈Φ(gn) : n ∈ ω〉 is an infinite decreasing sequence of
ordinals which is impossible. This shows that C0 must be homogeneous for P taking value 0.

Let C1 = {α ∈ C0 : enumC0
(α) = α}. Let C2 be the club of limit points of C1. Let f ∈ [C2]ω1

∗ . Let γ0 = 0.
If α is a limit ordinal and for all β < α, γβ has been defined, then let γα = sup{γβ : β < α}. If α is a successor
ordinal, then let γα = nextC1(γfα). Since f(γfα) ∈ C2 and C2 consists of the limit points of C1, γα < f(γfα).
Define k ∈ [C0]ω1

∗ by recursion as follow: Suppose δ < ω1 and k � γδ has been defined. For each α < γδ+1, let

k(γδ + α) = next
ω·(α+1)
C0

(γfδ+1). Since γδ+1 is indecomposable and γδ+1 ∈ C1 = {α ∈ C0 : enumC0
(α) = α},

Fact 2.12 implies that this defines k � γδ+1 and sup(k � γδ+1) = γδ+1. Thus γkα = γα for all α < ω1. Observe

that for each δ < ω1, γfδ+1 < nextωC0
(γfδ+1) = k(δkδ ) = min(Bkδ ) < sup(Bkδ ) = γkδ+1 < f(γfδ+1) = min(Bfδ+1).

Now suppose g v f and Cg = Cf (that is, for all α < ω1, γgα = γfα). Then we have that for all δ < ω1,

sup(Bgδ ) = δgδ+1 = γfδ+1 < min(Bkδ ) < sup(Bkδ ) = γkδ+1 < f(γfδ+1) ≤ g(γfδ+1) = g(γgδ+1) = min(Bgδ+1). By the

observation above, there is an hg ∈ [C0]ω1
∗ so that h0

g = g and h1
g = k. Then P (hg) = 0 implies that Φ(g) ≤

Φ(k). It has been shown that for all g v f with Cg = Cf , Φ(g) ≤ Φ(k). Hence sup(BΦ,0
f ) ≤ Φ(k) < ω1. �

Lemma 6.15. Assume DC, ω1 →∗ (ω1)ω1
2 and that the almost everywhere short length club uniformization

principle holds at ω1. Suppose Φ : [ω1]ω1
∗ → ω1 is a function so that for µω1

ω1
-almost all f , Φ(f) ∈ Cf . Then

there is a club C ⊆ ω1 and a function ΓΦ : [C]ω1
∗ → ω1 so that that the following holds:

(1) For all f ∈ [C]ω1
∗ , ΓΦ(f) < Φ(f).

(2) For all f ∈ [C]ω1
∗ , ot({α : ΓΦ(f) ≤ α < Φ(α)}) is an additively indecomposable ordinal.

(3) For all f ∈ [C]ω1
∗ , for all g v f with Cf = Cf and g � ΓΦ(f) = f � ΓΦ(f), then Φ(g) = Φ(f).

Proof. By the assumption and Fact 6.9, there is a club C0 so that the following holds.

(a) For all f ∈ [C0]ω1
∗ , if Φ(f) < f(α), then f � α is a continuity point for Φ relative to C0.

(b) Φ(f) ∈ Cf .

For f ∈ [C0]ω1
∗ and β < ω1, let Λ(f, β) = sup(BΦ,β

f ) < ω1 by Fact 6.14 (where BΦ,β is defined in

Definition 6.13). Observe that by condition (b), Λ(f, β) ∈ Cf . Let Zf = {Λ(f, β) : β < Φ(f)}. Let
Γ(f) = min{β < Φ(f) : Λ(f, β) = min(Zf )}. The main property of Γ is that for all β with Γ(f) ≤ β < Φ(f),
Λ(f, β) = Λ(f,Γ(f)). Define Σ: [C0]ω1

∗ → ω1 by Σ(f) = Λ(f,Γ(f)). Again for all f ∈ [C0]ω1
∗ , Σ(f) ∈ Cf .

Applying Fact 6.12 to Σ, Γ, and Φ, there is a club C1 ⊆ C0 on which Σ, Γ, and Φ are subsequence monotonic:
that is, for all f ∈ [C1]ω1

∗ , for all g v f , Φ(f) ≤ Φ(g), Σ(f) ≤ Σ(g), and Γ(f) ≤ Γ(g).
Claim 1: For all f ∈ [C1]ω1

∗ , for all g v f with Cf = Cg and g � Γ(f) = f � Γ(f), Σ(f) = Σ(g) and
Γ(f) = Γ(g).
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To see Claim 1: Because g v f and subsequence monotonicity of Γ, Γ(f) ≤ Γ(g). Hence A
Φ,Γ(g)
g ⊆ AΦ,Γ(f)

f

and thus Σ(g) ≤ Σ(f). However, subsequence monotonicity of Σ and g v f imply Σ(f) ≤ Σ(g). Thus Σ(f) =
Σ(g). Now suppose Γ(f) < Γ(g). This implies that there is an h v g with Ch = Cg, h � Γ(f) = g � Γ(f) =

f � Γ(f), and Φ(h) > Σ(g) = Σ(f). Thus h ∈ AΦ,Γ(f)
f and therefore Λ(f,Γ(f)) ≥ Φ(h) > Σ(f) = Λ(f,Γ(f)),

which is a contradiction. One must have that Γ(g) ≤ Γ(f). Since it has already been observed above that
Γ(f) ≤ Γ(g), Γ(f) = Γ(g). This establishes Claim 1.

Define P : [C1]ω1
∗ → 2 by P (f) = 0 if and only if Φ(f) = Σ(f). By ω1 →∗ (ω1)ω1

2 , there is a club C2 ⊆ C1

which is homogeneous for P .
Claim 2: C2 is homogeneous for P taking value 0.
To see Claim 2: Pick f ∈ [C2]ω1

∗ . Let ρ : ω → Σ(f) be an increasing cofinal sequence with ρ(0) = Γ(f).
One will construct a sequence 〈fn : n ∈ ω〉 with the following properties:

(1) f0 = f . For all n ∈ ω, fn ∈ [C2]ω1
∗ , fn+1 v fn, and Cfn = Cfn+1

= Cf .
(2) For all n ∈ ω, for all α ≥ Σ(f), fn(α) = f(α).
(3) For all n ∈ ω, fn+1 � ρ(n) = fn � ρ(n).
(4) For all n ∈ ω, ρ(n) < Φ(fn) ≤ Σ(f).

Let f0 = f and note that ρ(0) = Γ(f) < Φ(f) = Φ(f0). Suppose fn has been constructed satisfying the
above four properties. Since fn v f , Claim 1 implies Σ(fn) = Σ(f) and Γ(fn) = Γ(f) ≤ ρ(n). By condition
(4), ρ(n) < Φ(fn) and therefore by the main property of Γ, Λ(fn, ρ(n)) = Λ(fn,Γ(fn)) = Σ(fn) = Σ(f).
Since ρ(n+ 1) < Σ(f), there exists an h v fn with Ch = Cfn , h � ρ(n) = fn � ρ(n), and ρ(n+ 1) < Φ(h) ≤
Σ(h) = Σ(f) by Claim 1. Since Φ(h) ∈ Ch (is a closure point of h) by the assumptions, Φ(h) is a limit
ordinal and therefore, Φ(h) ≤ sup(h � Φ(h)) < h(Φ(h)). Since Φ(h) ≤ Σ(f), h � Σ(f) is a continuity point
for Φ relative to C2. Define fn+1 ∈ [C2]ω1

∗ by

fn+1(α) =

{
h(α) α < Σ(f)

f(α) Σ(f) ≤ α
.

Note that fn+1 is indeed an increasing and discontinuous function since Σ(f) ∈ Cf and Ch = Cf imply that
sup(fn+1 � Σ(f)) = sup(h � Σ(f)) = Σ(f) < f(Σ(f)) = fn+1(Σ(f)). Since h � Σ(f) is a continuity point
for Φ relative to C2, Φ(fn+1) = Φ(h). This function fn+1 satisfies all the required properties relative to the
previous fn.

By DC, there is a sequence 〈fn : n ∈ ω〉 with all the required properties. Define fω ∈ [C2]ω1
∗ by

fω(α) = sup{fn(α) : α < ω1}. Note that for all n, fω v fn, Cfω = Cf , and fω � ρ(n) = fn � ρ(n).
(Note that Σ(f) ∈ Cfω since Σ(f) ∈ Cfn for all n ∈ ω.) Since Φ satisfies subsequence monotonicity on C2,
fω v fn implies that ρ(n) < Φ(fn) ≤ Φ(fω). Thus Σ(f) ≤ Φ(fω). Since fω v f and fω � Γ(f) = f � Γ(f),
Claim 1 implies that Σ(f) = Σ(fω). By definition, Φ(fω) ≤ Σ(fω). Hence Σ(fω) = Φ(fω). Since fω ∈ [C2]ω1

∗ ,
P (fω) = 0, and C2 is homogeneous for P , one must have that C2 is homogeneous for P taking value 0. This
completes the argument for Claim 2.

For each f ∈ [C2]ω1
∗ , Φ(f) = Σ(f) = Λ(f,Γ(f)). This implies the club C2 and the function Γ satisfy

condition (1) and (3). For each f ∈ [C2]ω1
∗ , let δf = ot({α : Γ(f) ≤ α < Φ(f)}). Let εf be the least ordinal

so that there exists an additively indecomposable ordinal νf with δf = εf + νf . Let ΓΦ(f) = Γ(f) + εf . Now
ΓΦ satisfies all the desired properties. �

Definition 6.16. Let n ∈ ω, C ⊆ ω1 be a club, and Γ0, ...,Γn−1 : [C]ω1
∗ → ω1 be a sequence of functions.

〈C,Γ0, ...,Γn−1〉 is a good sequence if and only if the following holds.

(1) For all f ∈ [C]ω1
∗ and for all k < n− 1, Γk+1(f) < Γk(f).

(2) For each i < n − 1, ot({α : Γi+1(f) ≤ α < Γi(f)}) is an additively indecomposable ordinals or the
ordinal 1.

(3) For all j < n− 1, for all f ∈ [C]ω1
∗ , for all g ∈ [C]ω1

∗ , if
• g v f and Cg = Cf ,
• for all j < k < n− 1, sup(g � Γk(f)) = sup(f � Γk(f)),
• and g � Γn−1(f) = f � Γn−1(f),

then Γj(f) = Γj(g).
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Lemma 6.17. Assume DC, ω1 →∗ (ω1)ω1
2 , and that the almost everywhere short length club uniformization

principle holds at ω1. If 〈D,Γ0, ...,Γn−1〉 is a good sequence so that Γn−1 is not µω1
ω1

-almost everywhere the
constant 0 function, then there is a C ⊆ D and a function Γn so that 〈C,Γ0, ...,Γn−1,Γn〉 is a good sequence.

Proof. It will be shown by induction on the length n ≥ 1 of the good sequence. Suppose 〈D,Γ0〉 is a good
sequence so that Γ0 is not µω1

ω1
-almost everywhere constantly 0. Depending on whether for µω1

ω1
-almost all

f , Γ0(f) is a successor ordinal, a limit ordinal which is not a closure point of f , or a closure point of f ,
let C ⊆ D and Γ1 = ΓΓ0 be given by Lemma 6.10, Lemma 6.11, or Lemma 6.15. 〈C,Γ0,Γ1〉 is the desired
extension.

Now suppose that n > 1 and that any length n − 1 good sequence where the last function is not µω1
ω1

-
almost everywhere constantly 0 can be extended. Let 〈D,Γ0, ...,Γn−1〉 be a good sequence of length n
with Γn−1 not µω1

ω1
-almost everywhere constantly 0. The restriction 〈D,Γ1, ...,Γn−1〉 is a length n− 1 good

sequence. Applying the induction hypothesis to this sequence, there is a D0 ⊆ D and a function Γ so that
〈D0,Γ1, , ...,Γn−1,Γ〉 is a length n good sequence and by applying Fact 6.9 to Γ, one may also assume that
for all f ∈ [D0]ω1

∗ and α < ω1, if Γ(f) < f(α), then f � α is a continuity point for Γ relative to D0.
(Case 1) For all f ∈ [D0]ω1

∗ , ot({α : Γ(f) ≤ α < Γn−1(f)}) = 1.
Setting C = D0 and Γn = Γ, 〈C,Γ0, ...,Γn−1,Γn〉 is the desired extension.
(Case 2) For all f ∈ [D0]ω1

∗ , ot{(α : Γ(f) ≤ α < Γn−1(f)}) is an indecomposable ordinal.
For all β such that Γ(f) ≤ β < Γn−1(f), let

T βf = {g v f : Cg = Cf ∧ g � β = f � β ∧ (∀0 < i ≤ n− 1)(sup(g � Γi(f)) = sup(f � Γi(f)))}.

Let Eβf = {Γ0(g) : g ∈ T βf }. Let Λ(f, β) = sup(Eβf ) which is an ordinal less than ω1 by Fact 6.14 since

T fβ ⊆ AΓ0,0
f and hence Eβf ⊆ BΓ0,0

f (recall that AΓ0,0
f and BΓ0,0

f were defined in Definition 6.13). Note that

if Γ(f) ≤ β0 ≤ β1 < Γn−1(f), then Λ(f, β1) ≤ Λ(f, β0). Let Zf = {Λ(f, β) : Γ(f) ≤ β < Γn−1(f)}. Define
Γn : [D0]ω1

∗ → ω1 by Γn(f) = min{β : Γ(f) ≤ β < Γn−1(f)∧min(Zf ) = Λ(f, β)}. Define Σ : [D0]ω1
∗ → ω1 by

Σ(f) = Λ(f,Γn(f)). The main property is that for all β with Γn(f) ≤ β < Γn−1(f), Λ(f, β) = Λ(f,Γn(f)) =
Σ(f). Applying Fact 6.12 to Σ, Γn, and Γ0, there is a club D1 ⊆ D0 so that Σ, Γn, and Γ0 are subsequence
monotonic on D1.

Claim 1: For all f ∈ [D1]ω1
∗ , if g ∈ [D1]ω1

∗ has the property that g v f , Cg = Cf , for all 1 ≤ i ≤ n − 1,
sup(g � Γi(f)) = sup(f � Γi(f)), and f � Γn(f) = g � Γn(f), then Σ(f) = Σ(g) and Γn(f) = Γn(g).

To see Claim 1: Since g v f , subsequence monotonicity implies that Γn(f) ≤ Γn(g). Since Γ(f) ≤
Γn(f) and 〈D0,Γ1, ...,Γn−1,Γ〉 is a good sequence, one has by Definition 6.16 condition (3) that for all

1 ≤ i ≤ n − 1, Γi(f) = Γi(g). Hence, one has that T
Γn(g)
g ⊆ T

Γn(f)
f and hence Σ(g) ≤ Σ(f). However by

subsequence monotonocity, one has Σ(f) ≤ Σ(g). Hence Σ(f) = Σ(g). Suppose for sake of contradiction
that Γn(f) < Γn(g). Since Γ satisfies the fine continuity property of Fact 6.9 relative to D0, Γ(g) = Γ(f).
Now since Γ(g) = Γ(f) < Γn(f) < Γn(g), the definition of Γn(g) implies there is an h with Ch = Cg,
h � Γn(f) = g � Γn(f) = f � Γn(f), for all 1 ≤ i ≤ n− 1, sup(h � Γi(f)) = sup(g � Γi(f)) = sup(f � Γi(h)),

and Γ0(h) > Σ(g) = Σ(f). However h ∈ TΓn(f)
f and thus Λ(f,Γ(f)) ≥ Γ0(h) > Σ(f) = Λ(f,Γ(f)) which is

a contradiction. This shows that one must have Γn(f) = Γn(g). The proof of Claim 1 is complete.
Define P : [D1]ω1

∗ → 2 by P (f) = 0 if and only if Γ0(f) = Σ(f). By ω1 →∗ (ω1)ω1
2 , there is a club D2 ⊆ D1

which is homogeneous for P .
Claim 2: D2 is homogeneous for P taking value 0.
First, if there is an f ∈ [D2]ω1

∗ such that Σ(f) is a successor, then the supremum in the definition of
Σ(f) = Λ(f,Γn(f)) is obtained. That is, there is a g v f with Cg = Cf , g � Γn(f) = f � Γn(f), for all
1 ≤ i ≤ n− 1, sup(g � Γi(f)) = sup(f � Γi(f)), and Γ0(g) = Σ(f). By Claim 1, Σ(g) = Σ(f). Thus P (g) = 0
and since g ∈ [D2]ω1

∗ , D2 must be homogeneous for C taking value 0.
Thus assume that for all f ∈ [D2]ω1

∗ , Σ(f) is a limit ordinal. Pick any f ∈ [D2]ω1
∗ . Let ρ : ω → Γn−1(f)

be an increasing cofinal sequence through Γn−1(f) with ρ(0) = Γn(f). Let τ : ω → Σ(f) be an increasing
sequence through Σ(f). One will construct a sequence 〈fk : k ∈ ω〉 with the following properties:

(1) f0 = f . For all k ∈ ω, fk ∈ [D2]ω1
∗ , fk+1 v fk, and Cfk+1

= Cfk = Cf .
(2) For all k ∈ ω, for all α ≥ Γn−1(f), fk(α) = f(α).
(3) For all k ∈ ω, fk+1 � ρ(k) = fk � ρ(k).
(4) For all k ∈ ω, τ(k) < Γ0(fk+1) ≤ Σ(f).
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Let f0 = f . Suppose fk has been constructed satisfying the above properties. Claim 1 implies that Σ(fk) =
Σ(f) and Γn(fk) = Γn(f). The main property above and the fact that ρ(k) ≥ ρ(0) = Γn(fk) give that
Λ(fk, ρ(k)) = Λ(fk,Γn(fk)) = Σ(fk) = Σ(f). Thus there is an h v fk with Ch = Cfk , h � ρ(k) = fk � ρ(k),
for all 1 ≤ i ≤ n− 1, sup(h � Γi(fk)) = sup(fk � Γi(fk)), and τ(k) < Γ0(h) ≤ Σ(fk). Now define fk+1 by

fk+1(α) =

{
h(α) α < Γn−1(f)

f(α) Γn−1(f) ≤ α
.

Since 〈D0,Γ1, ...,Γn−1,Γ〉 is a good sequence and h � Γ(f) = f � Γ(f), one has that Γi(h) = Γi(f) for
all 1 ≤ i ≤ n − 1. (In particular, Γn−1(h) = Γn−1(f).) Since fk+1 � Γn−1(h) = h � Γn−1(h), for all
i < n − 1, sup(fk+1 � Γi(h)) = sup(h � Γi(h)), and 〈D,Γ0, ...,Γn−1〉 is a good sequence, one has that
Γ0(fk+1) = Γ0(h) > τ(k). Thus fk+1 satisfies the required properties.

By DC, there is a sequence 〈fk : k ∈ ω〉 with the desired properties. Define fω ∈ [D2]ω1
∗ by fω(α) =

sup{fk(α) : k < ω}. Since fω v fk+1, the subsequence monotonicity of Γ0 implies that τ(k) < Γ0(fk+1) ≤
Γ0(fω). Hence Σ(f) ≤ Γ0(fω). Claim 1 implies that Σ(f) = Σ(fω). Therefore, Σ(fω) ≤ Γ0(fω). Since
Γ0(fω) ≤ Σ(fω) by definition, one has shown that Γ0(fω) = Σ(fω). Since P (fω) = 0 and fω ∈ [D2]ω1

∗ , one
must have that D2 is homogeneous for P taking value 0. This completes the proof of Claim 2.

Claim 2 implies that 〈C,Γ0, ...,Γn−1,Γn〉 is a good sequence where C = D2. This completes the argument.
�

Theorem 6.18. Assume DC, ω1 →∗ (ω1)ω1
2 , and that the almost everywhere short length club uniformization

principle holds at ω1. Let Φ : [ω1]ω1
∗ → ω1. There is a club C ⊆ ω1 and finitely many functions Υ0, ...,Υn−1

so that for all f ∈ [C]ω1
∗ , for all g ∈ [C]ω1

∗ , if Cg = Cf and for all i < n, sup(g � Υi(f)) = sup(f � Υi(f)),
then Φ(f) = Φ(g).

Proof. Fix Φ : [ω1]ω1
∗ → ω1. Let T consists of good sequences 〈C,Γ0, ...,Γn−1〉 with Γ0(f) = Φ(f) for all

f ∈ C. Define an ordering on ≺ on T by 〈D,Ψ0, ...,Ψm−1〉 ≺ 〈C,Γ0, ...,Γn−1〉 if and only if m < n, D ⊆ C,
and for all f ∈ [D]ω1

∗ , for all i < m, Γi(f) = Ψi(f).
Claim 1: There is a 〈C,Γ0, ...,Γn−1〉 ∈ T so that Γn−1 is µω1

ω1
-almost everywhere constantly 0.

To see Claim 1: Suppose not. Then Lemma 6.17 implies that (T ,≺) is a tree with no dead branches. DC

implies there is an infinite ≺-descending sequence 〈〈Cj ,Γj0, ...,Γ
j
j〉 : j ∈ ω〉. Let C =

⋂
j<ω Cj . Pick f ∈ [C]ω1

∗ .

Then 〈Γii(f) : i ∈ ω〉 is an infinite descending sequence of ordinals. Contradiction. This completes the proof
of Claim 1.

Let 〈C,Γ0, ...,Γn−1〉 be a good sequence so that for all f ∈ [C]ω1
∗ , Γ0(f) = Φ(f) and Γn−1(f) = 0. Now

suppose f, g ∈ [C]ω1
∗ with the property that Cg = Cf and for all 0 < i < n, sup(g � Γi(f)) = sup(f � Γi(f)).

Let h : ω1 → ω1 be defined by h(0) = min{f [ω1] ∪ g[ω1]}. Suppose h � α has been defined. Let h(α)
be the least element of f [ω1] ∪ g[ω1] greater than sup(h � α). Note that h ∈ [C]ω1

∗ , i.e. is increasing,
discontinuous, and has uniform cofinality ω. For each 0 < i < n − 1, let Ki = {α : Γi+1(f) ≤ α < Γi(f)}
and νi = ot(Ki) which is either an additively indecomposable ordinal or 1. Therefore for each 0 < i < n− 1,
ot({h(α) : α ∈ Ki) = νi. Hence for each 0 < i < n, sup(f � Γi(f)) = sup(g � Γi(f)) = sup(h � Γi(f)),
Cf = Cg = Ch, f v h, and g v h.

Claim 2: For all k < n, Γn−1−k(h) = Γn−1−k(f) = Γn−1−k(g).
To see Claim 2: This will be shown by induction on k. If k = 0, then Γn−1(h) = Γn−1(f) = Γn−1(h) = 0.

Now suppose k < n and for all j < k, it has been shown that Γn−1−j(h) = Γn−1−j(f) = Γn−1−j(g). Since it
was shown above that f v h, Cf = Ch, sup(f � Γn−1−j(h)) = sup(f � Γn−1−j(f)) = sup(h � Γn−1−j(f)) =
sup(h � Γn−1−j(h)) for each j < k, Definition 6.16 condition (3) for the pair (f, h) at Γn−1−k implies that
Γn−1−k(f) = Γn−1−k(h). The same argument for the pair (g, h) implies Γn−1−k(g) = Γn−1−k(h). This
concludes the proof of Claim 2.

Applying Claim 2 for k = n− 1, one has that Φ(f) = Γ0(f) = Γ0(h) = Γ0(g) = Φ(g). For each i < n− 2,
let Υi = Γi+1. Then C and the function Υ0, ...,Υn−2 are the desired objects. �

Next, one will show that the continuity property expressed in Theorem 6.18 holds under the axiom of
determinacy. The following is a consequence of the Moschovakis coding lemma:

Fact 6.19. Assume AD. P(ω1) = (P(ω1))L(R).
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The next fact asserts that every function Φ : [ω1]ω1
∗ → ω1 is equal to a function in L(R) µω1

ω1
-almost

everywhere.

Fact 6.20. ([2]) Assume AD. Suppose Φ : [ω1]ω1
∗ → ω1. Then there is a club C ⊆ ω1 so that Φ � [C]ω1

∗ ∈
L(R).

It is not known if AD implies DCR; however, Kechris showed that L(R) satisfies DC.

Fact 6.21. ([11]) Assume AD. Then L(R) |= AD + DC.

Theorem 6.22. Assume AD. Let Φ : [ω1]ω1
∗ → ω1. There is a club C ⊆ ω1 and finitely many function

Γ0, ...,Γn−1 so that for all f ∈ [C]ω1
∗ , for all g ∈ [C]ω1

∗ , if Cg = Cf and for all i < n, sup(g � Γi(f)) = sup(f �
Γi(f)), then Φ(f) = Φ(g).

Proof. By Fact 6.20, there is a club C0 ⊆ ω1 so that Φ � [C0]ω1
∗ ∈ L(R). By Fact 6.21, L(R) satisfies AD

and DC. AD implies ω1 →∗ (ω1)ω1
∗ by Fact 2.16. The almost everywhere short length club uniformization

for ω1 holds by Fact 6.5. Fact 6.19 implies ω1 = (ω1)L(R). Theorem 6.18 applied inside L(R) for Φ � [C0]ω1
∗

will provide a club C1 ⊆ C and functions Γ0, ...,Γn−1 which satisfies the required property in L(R). Fact
6.19 will imply that these objects continue to have the desired property in the original universe satisfying
determinacy. �
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