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1. THE m POINT PROPERTY FOR m > 3.

We consider here several questions concerning infinite partitions of lines,
planes, etc. in R, in particular, colorings of R” with prescribed intersection
sizes for the lines and points of a given “color”. We are particularly con-
cerned with questions which relate set-theoretic partition properties with
the underlying geometry of lines, points, etc., in R”. The results presented
here extend some of those of [2], answer some of the questions raised there,
and introduce some new questions as well. In particular, these results lead to
some interesting connections between set-theoretic partition questions and
purely geometric questions.

Throughout, we use the notions of a partition of a set, A = Ag U A; U
Ay ..., and a coloring of the set f : A — w interchangeably. P<“(w) denotes
the finite subsets of w, the natural numbers. M A denotes Martin’s axiom
(c.f. [4],[5]), the statement that for any c.c.c. partial order, there is a filter
meeting any collection of < 2“ many dense sets. We recall that M A is
consistent with ZFC' and imposes no bound on the size of the continuum.

In [1] it was shown in ZFC that for every infinite partition L = J; L;
of L, the set of all lines in R”, there is a partition, R* = |J,;,, Si, of the
points in R" such that VI € L; (]l N .S;| is finite). Furthermore, if 2¢ < wy,,
then “finite” may be replaced by m + 1. These results were generalized
and extended in [2]. It was also asked in [2] whether the converse must
hold. That is, does the partition property with size m + 1 intersection imply
2¥ < wpy, or any bound on 2?7 We show in theorem 1.1 that this is not the
case.

By the m point property, we mean the statement that given any partition
L = LyUl U... of the lines in R* (n > 2), there is a partition R* =
SoU S U... of the points in R" such that VI € L; (|l N .S;| < m.

Theorem 1.1. Assume ZFC + MA. Then for any partition L = |J
of the lines in R™(n > 2), there is a partition R* =
R™ such that V1 € L;(|]l N S;| < 3).

€W Li
Si of the points in

€W

A related question is addressed in the next theorem.

Theorem 1.2. Assume ZFC + MA. Let S CR" be such that any line l in
R™ meets S in a finite set. Then there is a partition S =, Si such that
any line [ in R" meets any S; in at most 8 points.

1Ew

The proofs of theorems 1.1, 1.2 are similar. We consider first theorem 1.1.

Lemma 1.1. Assume ZFC + MA. Let A= LUS be a set of lines L and
points S in R™ with |S| < 2%, and let g : S — P<“(w). Assume that VI € L,
|IN S| is finite. Then there is a partition S = Sy U Sy U--- such that:

(1) Va € 8i(i ¢ g(x).

(2) Yie LYi(|lNnS;| <2).

Note . g prescribes a finite set of “forbidden colors” which we are to avoid
in coloring the points of S.
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Proof. Let A = LUS, g : S — P<¥(w) be as in the statement of the
lemma. Let P = {(p,f) :p€ S, f:p— wVz €p (f(x) ¢ g(x)),VI €
L Vi =3z, 29,23 € p (21, 22,23) are distinct, f(z1) = f(z2) = f(z3) = 1,
and z1,x9,x3 € [)}. Thus, P consists of the “finite approximations” to
the desired coloring of S. We consider the partial order <p on P given by
(p1, f1) < (p2, f2) provided p1 2 p2 and fo = f1 [ p2.

If we let, for x € S, D, = {(p, f) € P: z € p}, then D, is clearly dense,
since we may extend a condition (p, f) € P to (pU{z}, f') by coloring = any
non-forbidden color (i.e., not in g(z)) not in range(f [ p). If G is a filter
on P which meets all of the D, for x € S, then clearly G defines a coloring
fa:S — wsuchthat Vo € S fa(z) ¢ g(z) and VI € L Vi—3x1, z2, x3 distinct
in S (fa(z1) = fa(x2) = fa(rs) =i and z1,z9,23 € 1). [Set fo(z) =i iff
A(p, f) € G(z € pA f(z) = 1)]. This coloring f¢ is as required in the lemma.

By MA, such a filter G exists provided P is c.c.c., which we now show.
Suppose, towards a contradiction, that P is not c.c.c., and let (pq, fo), @ <
w1 be an antichain in P. Without loss of generality, we may assume that
|pa|] = k for all «, for some fixed k € w, and further that the family {p,}
forms a A-system, that is, there is a “root” r € S<% such that Va # 8 <
w1, PaNpg = r. We may also clearly assume that for all o, B < w1, fo [ 7=
fs I . Having extracted such a A-system, we now consider only the first w
many elements of the anti-chain: (py, f). Let < be a fixed well ordering of
U,, pn of type w. If n < m, since (pp, fn), (Pm,fm) are incompatible, and
since pp, Npm =7 and fp, [ 7 = fn | 7, we must have that (p, Upp, fn U fim)
fails to be a condition by virtue of there being, for some line [l € L and i € w,
distinct 1, x9, x3 in pp Upy, with f,Ufp(z1) = fnUfm(z2) = frUfm(zs) =1
and z1,x0,x3 € I. We call such a triple x1, x93, z3 bad for [. We clearly can
not have two (or more) of the 3 points in r, since then one of p,,, p,, would
contain all three of z1,z9,x3, contradicting py,,p, € P. Thus, whenever
n < m, at least one of the following holds.

1. There are two points, say z1,z2, in p, \ 7 and a point x3 € p,, \ r with
T1,T9, 3 bad for some [ € L.

2. There is a point, say z1, in p, \ 7 and two points z2, z3 € py, \ © with
x1, %2, x3 bad for some [ € L.

3. There is a point, say z1, in p, \ r, a point 2 € py, \ r, and a point
3 € r with x1, 22, 23 bad for some [ € L.

For all n < m consider the least case which applies. For this case, we
associate to 1,9, s integers o(x1),0(x2),0(x3) which give the ranks of
x1,T2,z3 in the ordering < restricted to the sets p, \ r, pm \ 7, 7 (and we
assume, for example, that if 1,29 € p, \ 7, then 21 < z9). Of course,
o(x1),0(x2),0(rs3) < k.

We now define a partition h : (w)? — 3 x k x k x k by h(n,m) = (i,a,b,c)
iff 0 <4 <2 and 7 is the least case which applies to (pp, fn), (Pm, fm), and
o(z1) = a,0(x2) = b,o(x3) = c. Since the range of h is finite, by Ramsey’s
theorem there is an infinite homogeneous set H C w for h. Replacing w by
H, and considering only those (py, f,) for n € H, we may now assume that
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for all n < m, h(n,m) has a constant value. In particular, one of the 3 cases
applies for all n < m.

Suppose first that case (0) applies for all n < m. For each m € w,
consider (po, fo), (Pm, fm)- Let z1(m), z2(m), z3(m) be the 3 points of case
(0) corresponding to the a, b, c of h(0,m) = (0, a,b,c). Thus, z1(m),z2(m) €
po \ r, and z3(m) € py, \ r. Since py \ 7 is independent of m, x;(m) =
z1, x2(m) = zo for all m. Also, Vm3i 3] € L (z1,x2,z3(m)) are bad for [.
Since, 1, x9 €1, [ is determined by x1, x2, and is therefore also independent
of m. Thus, z1,x9,x3(m),x4(m),... are all on a single line [ € L. This,
however, contradicts our assumption that VI € L, [ NS is finite.

Assume now case (1) applies for all n < m. Consider (py, fo), (P1, f1), (P2, f2)-
Let x0, 21,22 be the triple corresponding to (pg, fo) and (p2, f2), and let
xy, x},xh be the triple corresponding to (p1, f1), (p2, f2). Thus, zy € po \
r, T1,L2 € pa \ 7, 2y € p1 \ 1, 2),25 € po\ r. Since h is constant, we
have z; = =, 29 = z,. Thus, both zg,z{ are on the line | € L deter-
mined by z1,z2 € pa \ 7. (Note zy # (). For m € w, consider the pairs
(Po, fo), (Pm, fm) and (p1, f1), (Pm, fm). For the first pair, we get a corre-
sponding triple zo(m), z1(m), z2(m) where zo(m) € po \ r,z1(m), z2(m) €
pm \ 7. We also have zo(m) = z¢ from the constancy of h. Similarly, for
the second pair we get z((m) € pi \ v,z (m), z5(m) € py \ r, and we also
obtain zy(m) = zj, and z1(m) = z}(m),z2(m) = z4(m). Thus, the line
through z1(m), z2(m) also passes through zg, z{,. Thus, for all m > 2, there
is a point x1(m) € py, \ r on the line [ € L through zg, z{, a contradiction.

Finally, the argument for case (3) is essentially identical to that for case
(1). In all cases, we contradict the assumption P is not c.c.c., and this
completes the proof of lemma 1.1. O

Lemma 1.2. Assume ZFC + MA. Let A = LUS be a set of lines and
points in R™ of size < 2¥. Let L = LoUL;U--- be a partition of the lines
in A, and let g : S — P<¥(w). Then there is a partition S = Sy U S U---
such that:

(1) Vo € S; (i ¢ 9(a))

(2) VieL; (|l ﬂSl| < 2).

Proof. Let w = By U By U By U --- be a partition of w into infinitely many
disjoint infinite subsets. For A, g as given in the lemma, consider the new
partition of L defined by L = MoUM;U---, where l € M; iff 3j[l € LjAnj €
Bj].

JFrom corollary 8 of [2], there is a partition S =Ty UT; U--- such that
VI € M; (|INT;] is finite). For each ¢ € w, consider A; = M;UT;, so |4;] < 2¥.
Consider the partition M; = L;, U L;; U ---, where B; = {io,71,... }.

By lemma 1.1 (identifying w with B;) there is a partition T; = Sfo U Sfl U
SRRV S’fk U---, such that Vz € ka(zk ¢ g(z)) and VI € L; (]l N ka| < 2).
Define the partition of S by: z € Sy iff Ji[z € Si]. The sets Sy form a
partition of S. Also, if z € Sy, then k ¢ g(z). Let [ € L, say [ € L;. Let i be
such that 7 € B;, sol € M;. By construction, [ meets at most two points in
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S’; However, the points in S’;- are the only points in S which receive color
J, since j belongs only to B;. Thus, [ meets at most 2 points from S;. [

Proof. [of theorem 1.1] Let L = |J, L; be as in the statement of the theorem.
We say a set A = LU S of lines and points in R” is good if:

(1) Vx #y € S the line [(x,y) determined by z,y is in L.

(2) Viip#Il, € LNy € A.

Write L UR" = (J, 90 Aq Where each A, = Lo U S, is good, the A,
are increasing, and |A,| < 2“. We define the coloring @ : R* — w. We
assume that Q<o = Q [ S<o has been defined, where Sco = (Jy (o Sar-
For z € Sy — Scq, let go(z) = {i€w:3N € LoonNLi(z €l)}. Note that
|g(x)| < 1since if [1,ls € L. then l1 Ny € S<q.

Consider B, = (A, N L)U (Aa —Uw<a Aa:) NR". By lemma 1.2 applied
to Lq, Sq — S<a, and g4, there is a coloring Qa : So — Scq = w such that
V& € Sy — Sca, Qalz) ¢ g(x), and VI € L, N L;, | meets at most 2 points of
Sy — Scq of color i. Let Qo = Qea U Q.

Doing this for each o < 2¥ (using AC) defines the coloring @ : R" — w.
We show @ works. Suppose | € (Lo — L<y) N L. There is at most one
x € Scq N1 by goodness. There are at most two z € (So, — S<o) N1 of Q
color i. Finally, if x € [N (S — S,), then Q(z) # ¢, since i € gg(x), where
x € S5 — Scp- O

Corollary 1.1. The “3 point partition property” (i.e.,the statement that for
any partition L = J, L; of the lines in R™ there is a partition R" = |J, S;
such that VI € Li|l N'S;| < 3) is consistent with ZFC + 2% > wy,ws, etc.

We consider now theorem 1.2; the proof is similar to that of theorem 1.1,
so we will merely outline the differences. Write S' = (J, v Sa, an increasing
union, where each S, is closed, that is, if z,y,z,w € S, and I(x,y),l(z,w)
are distinct, non-parallel lines with [(z, y)Ni(z,w) € S, then I(z, y)Nl(z, w) €
Sa.

We define by induction on S, the coloring Q, : So — w (with Qg
extending Q, if @« < (). At step «, for each x € S, — Uﬂ<a Sg, let

glz) ={i€w:3Ty,z € Uﬁ<a Sg [(x,y, z) are collinear and (Uﬁ<a Qg) (y) =

(U[ka Qg) (z) = i]}. We easily have g(x) is finite, and we then apply
lemma 1.1 (with L= all lines in R™) to color the points in S, — S<. This
coloring easily works.

By corollary 1.1, the three point partition is consistent with the con-
tinuum being “arbitrarily large.” It is natural to ask whether this is also
true for the two point property, or indeed whether the two point property
is consistent with ~C'H. Consideration of this question leads to a purely
geometric question. This analysis is sufficiently detailed to warrant discus-
sion elsewhere ([3]), but we briefly sketch here the main points (though the
consistency of the two point property with ~C'H as well as the geometry
problem are open).
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Assume M A, and let Q : L — w be a given coloring of the lines L in
R?. The basic idea is to first do a preliminary coloring of the points (as
in the proof of lemma 1.2) in R?, using theorem 1.1, so that every line in
R? meets at most 3 points of its color. Given then a set S C R? such that
VI € L|IN S| < 3, it suffices to define P : S — w such that VI € L|{z €
INS: P(z)=Q()} <2. To do this, write (L, S) = (J,co0 (La, Sa), where
|Lal, |Sa| < 2%, and each (Lq, Sq) is “sufficiently closed” in (L, S) (e.g., the
intersection of (L, S) with an increasing union of models of a large fragment
of ZFC). For each a < 2¥, there is a naturally defined partial order P,
which attempts to extend the coloring P, = P [ S, to P,y maintaining
the two point property. If each P, is c.c.c., we can inductively define, using
M A, the colorings P, and complete the proof.

Arguments along the lines of lemma 1.1 (though more involved) reduce
this problem to purely geometric questions. Specifically, we introduce the
following geometry conjecture:

Conjecture . There is an integer k£ € w such that the following holds. Let
Z1y--+ Tk, Y1s--- , Yk be points in R” such that any line [(z;,y;) meets no
other points of the set. For each 1 <1i,5 <k, let z;; € I(2;,y;). Then there
are only finitely many tuples (2],... ,z};v],... ,y;) such that V1 <i,j <k
zi,j € U(z},y5), and I(27,y;) meets no other point of (z7,... ,2}; Y, ..+, Yp)-

Thus, this conjecture along with M A implies the two point partition
property. Likewise, consider the second version of the two point property
( corresponding to theorem 1.2): if S C R™ is such that any line [ in R
meets S in a finite set, then there is a partition S = (J;,, S; such that any
line [ in R™ meets any S; in at most 2 points. Then M A plus the following
somewhat weaker variation of the geometry conjecture suffices:

Conjecture . There is an integer k£ € w such that the following holds. Let
zjj for each 1 < 4,5 < k be points in R", no three of which are collinear.

Then there are only finitely many tuples (z1,... ,Zk;y1,... ,yx) of points in
R™ such that z;; € [(x;,y;) for all 1 <4,j <k and such that every I(z;,y;)
meets no other point of (z1,... ,Zk;y1,... , Yk)-

The least integer for which these conjectures are reasonable is k = 4, and
for this k& we refer to them as the “16 point” problem. As a preliminary,
one can consider the version of the geometry problem corresponding to the
complete graph on k vertices rather than the bipartite graph on 2k vertices.
Here it has been shown ([3]) that for ¥ = 5 (the smallest reasonable value)
the result is true. Specifically:

Theorem 1.3. Let zj for 1 < i < j <5 be 10 points in R?, no three of
which are collinear. Then there are at most finitely many tuples (x1,...,xs5)
of distinct points such that V1 <1 < j <5 z; € l(x;,xj).

This result shows that the bipartite versions of the geometry conjecture
are at least plausible, and are of interest in their own right.
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2. HIGHER DIMENSIONAL PLANES

In this section, we extend the previous results concerning lines in R” to
higher dimensional hyperplanes in R”. By a k-plane we mean a translate
of a k-dimensional subspace of R”. Let Hj be the collection of k-planes in
R* for 1 <k <n-—1. Let hy, 4, or Span(zi,...,z,) denote the smallest
plane containing z1,...,Zy,.

It was shown in [2] that, in ZF, the “one-point” partition property for lines
in R? (hence in R*, n > 2) is false. That is, there is a coloring P : L — w,
L = the set of lines in R?, such that there is no @ : R> — w such that
VieL|{z eR:x2€lAQ(x) = P(l)}| < 1. It was also shown, in ZFC,
that there is a set of lines and points in R? of size w; for which the one-point
partition property fails.

We first extend these negative results to higher dimensions.

Theorem 2.1. (ZF) There is a coloring P : Hp_1 — w such that for all
colorings @ : R — w there is an h € Hp_1 such that Span({z € h: Q(z) =
P(h)}) = h. Also, any n hyperplanes with distinct P colors meet in at most
a point.

Corollary 2.1. (ZF) There is a coloring P : Hp—1 — w such that there is
no Q: R" — w such that Vh € Hp—1 [{x € R" :z € hAQ(z) = P(h)}| <
n — 1. Also, any n hyperplanes with distinct P colors meet in at most a
point.

Proof. Let vi,v2,v3,... € S"! be “directions,” and let v; € N; be neighbor-
hoods of S”~! which are pairwise disjoint, and assume that any n distinct
vectors from distinct neighborhoods N; are linearly independent.

Define P by P(h) = i if v, € N; where vy, is the unit normal to h, and P is
arbitrary otherwise. Suppose @ : R” — w is such that Vh € H,_1 Span({z €
h : Q(x) = P(h)}) € h. We construct a sequence of open balls in R,
B() 2?1 QBI QFQ QBZ Do such that Bkﬂ{IQ(I) :k}:(bfor all
k. If x € () By, we then have Q(z) # k for any k € w, a contradiction.

We use the following elementary fact from linear algebra.

Lemma 2.1. Let v € S,_1, N C S,_1 an open neighborhood of v, B C R"

open, and 1,... ,2p € B, p < n—1, and suppose there is a hyperplane h
containing x1,. .. , T, with normal ny, € N. Then there is an open B' C B
such that every y € B' lies on a hyperplane also containing z1,... ,zp, and

with normal n, € N.

Set B_; = R". Suppose that Bj has been defined, and we define By .
Let B; be open such that (B}) C By. If there is no z € Bj such that
P(z) = k+1, then we let By = Bj,. Otherwise let x| € By, P(z;,,) =
k+1. Let hy be a hyperplane through x}cﬂ with normal n; € Ni ;. By the
lemma, there is a ball C' C (B},) such that for all y € C there is a hyperplane
containing «}_,, y and with normal in Nyyy. If Cn{z: P(z) = k+1} =0,
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set Bi11 = C. Otherwise, let :L“%Jrl eC, mzﬂ # m}cﬂ, with P(:L“%H) =k+1,
and let ho be a hyperplane containing x}c_i_l,x%_ﬂ with normal ng € Ni41.

Continuing, we define x,lc_i_l # (II%_H TR xﬁj& (or else By has.been
defined). We may assume that C' is chosen at each step to guarantee x}c':_ll ¢
Span(w,ch, e T )

By the lemma again, we get Bii1 C (By)' such that for all y € By,
there is a hyperplane containing :IJ,ICH,... ,:L“Z_T_%,y with normal in Nyiq.
We may assume that for y € Byy1, y ¢ Span(w,lc+1,... ,x?;%) i From
the definition of P and the assumed property of @, it follows that for any
Yy € Biy1, Q(y) # k+1 (as the points z ... ,xz_i__% already span an n — 2

dimensional plane). O

As with the case for lines, we can improve this negative result assuming
ZFC.

Theorem 2.2. (ZFC) There are wy hyperplanes H = {hy : o < w1} in R”
and wy points {xq : @ < w1} in R”, and a coloring P : H — w such that
any n hyperplanes of distinct colors meet in at most a point, and such that
for all Q : R" — w there is an h € Hyp—1 such that Span({z € h : Q(z) =
P(h)}) = h. In particular, there is no coloring Q : {zs: o < wi} — w such
that Va < wi |B: 23 € ha ANQ(23) = P(hy)| <n—1.

Proof. We need the following lemma which is a slight generalization of a
theorem of Todorcevic [6]. The proof is also a slight generalization of that
proof.

Lemma 2.2. (ZFC) There is a partial coloring P : D — w, D C (w1)",
such that for any A C wy of size wy, and any k € w, dJag < as < --- < ap €
A P(ai,... ,apn) = k. Furthermore, if P(ay,... ,an) =k, P(B1,... ,0,) =
land {aq,... ,an} N{B1,... ,0u}| > 2, then k =1.

Proof. By induction on n. For n = 2, this is just a result of [6] (and also
follows from the argument here, ignoring P, D). Let w; = Sy U S; U So U

- where the S; are pairwise disjoint and stationary. By induction, let
P: D — w, where D C (wy)" ! satisfy the lemma for n — 1. Following
[6], let 7 : w1 — 2“ be one-to-one, and e, : @ — w a bijection for all
a < wi. Let o(a,3) = the least n such that r(a)(n) # r(6)(n). Let
Fola) = {8 < a:ey(B) < n}. Weset Play,...,a,) = k if and only if
P(ay, ... ,ap_1) = kand if 8; = min{ Fo(a; a,)(n) —aj}, for 1 <j <n-—1,
then fy = B2 =+ =1 =P € S

Let A C wy, |A| = w1, and let k € w. We must show that Jaq,... ,a, €
A P(ay,...,ap) = k. Let X be a sufficiently large regular cardinal. If suffices
to show that if M < V) is countable elementary, M contains (S;;i € w), P,
A, and if 6 = M Nwy, then daq,... ,q, € A such that 6 = B = --- =
Bn_1 = 0, and P(ai,... ,an_1) = k. Fix such 6, M, and let oy, € A,
apn > 0. Let ng be large enough such that 6 € F, (ay). Let ny > ng be
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such that there are w; many v € A such that r(y) [ n1 = r(ay) [ n1 but
a = r(y)(n1) # r(a,)(n1). Let ¢ < 0, e > sup Ry, (a,) NJ. Since M |=
“theorem is true for n — 1 using P, § =wy; N M, and M = “ANn{y:r(y) |
ny = r(ay) [ ny Ar(y)(ny) = a} has size w1”, let e < g < -+ < ap_1 <9

be in A such that P(aq,... ,ap_1) = k and r(a1) [ ny = - = r(a,_1) |
ny = r(ay) | ni, r(ar)(n) = -+ = r(ap—1)(n1) = a # r(ap)(n1). Then
clearly gy = --- = 8,1 = 9. U

If now we choose wy points {zq,a < wi} in R" in sufficiently general po-
sition, then it is easy to see that for any n tuples t; = (z},...,2L),... ,t, =
(z%,...,zy) from the z, such that |t; N¢;| < 1 for all 4 # j, the n hyper-
planes hq, ..., hy, determined by t,... ,t, satisfy |hy N ---Nh,| < 1. Also,
for distinct zq,, ..., Ta, , Span(Tae,,-.-.,%aq,) is n — 1 dimensional.

Fix such points R = {z, : @« < w1} in R?, and fix a function P : D — w,
D C (w1)™ as in the lemma. Consider the set H of hyperplanes Po o ton
determined by t = (ay,... ,a,) € (w1)" such that P(aq,... ,q,) is defined.
Color these hyperplanes by P(ha,, ... z,,) = P(a1,... ,a,). Given n hyper-
planes hy,... ,h, € H of distinct P color, by the lemma we have that the
corresponding tuples of points #1,... ,t, satisfy |t; Nt;| <1 for i # j. We
then have |hy N---Nhy,| < 1 by the property of the z,,. Thus, any n of the
hyperplanes in H of distinct P color meet in at most one point.

Suppose @ : R — w is a coloring of R. Fix k € w such that {v :
Q(zy) = k} has size w;. By the lemma, there are ; < --- < 1, such that

Q) =---=Q(m) =k, and P(y1,... ,ym) = k. Then, P(hy, .2, ) =k,
and hence there is a hyperplane in H,,_; meeting n points of its color in R
which span it. O

Remark 2.1. 1t follows from theorem 2.6 below that one can not strengthen
theorem 2.2 for n > 2 by requiring that any n distinct hyperplanes in H
meet in at most one point.

Remark 2.2. Theorem 2.1 has an extension to Hilbert space as well: There is
a coloring P of the co-dimension 1 planes in #? such that for any Q : > — w
there is a plane h such that cl(Span({z € h : Q(z) = P(h)})) = h. To see
this, fix an orthonormal basis Ny, Ni,--- € ¢? for /2. For h a hyperplane
with unit normal ny, let ¢, € w be least such that nj - N;, # 0. Set
P(h) = i iff ny, - N;, € U;, where {U;} are fixed, pairwise disjoint, open
subsets of (0,1) all having 0 as a limit point. Suppose Q : #2 — w were such
that Yh h # cl(Span({z € h : Q(z) = k + 1})). We follow the outline of
theorem 2.1. Suppose By has been defined, and let Bl,’C be open of diameter
< 2% such that (B}) C By. If cl(Span({z € B}, : Q(z) = k + 1})) # £2,
then let By, C By, and By Ncl(Span({z € By, : Q(z) = k+1})) = 0.
Otherwise, let H be a co-dimension 2 plane such that H = cl(Span({z €
HN By : Q(z) = k+ 1})). Fixing an origin within H, we may identify H
with a co-dimension 2 subspace of ¢?. Let z,y extend H to a basis for /2.
Let j be least so that at least one of = - Nj, y - N; is non-zero. We may then
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find a unit vector of the form n = ax + By so that n- N; € Upi1. Let h
have normal n (and containing our new origin). Thus, P(h) =k + 1. Also,
there is an open By C B/,’c — H such that all x € By lie in a co-dimension
1 plane with normal oz + 'y € Ugy1. From the assumed property of @,
Q(z) # k + 1 for all z € Byy;. Continuing, we reach a contradiction.

We now consider the positive partition results for higher dimensions. First
we extend corollary 8 of [2] from lines in R™ to hyperplanes. Clearly, if there
are hyperplanes of every color where intersection contains a subspace of
dimension > 1, then there is no coloring of the points of this subspace such
that every hyperplane meets only finitely many points of its color. Thus,
restriction on the coloring P of the hyperplanes is necessary.

Definition 2.1. If H C Uz;% Hi and P: H — w<¥, we say P is acceptable
ifVe £y e R, J{P(h) :h€ HA z,y € h} is finite.

Theorem 2.3. (ZFC) Let P : UZ;% Hi — w be an acceptable coloring of
the k-planes, 1 < k <n —1. Then there is a coloring @ : R* — w such that
any h € UZ:% Hi meets only finitely many points of its color.

The following definition, and variations of it, will be used frequently.

Definition 2.2. If A = HU S, where H C (]| Hy, S C R, we say A is
good provided:

(1) Ifzy,... ,zp € S, then hy, . . € H.

(2) If ha,... ,hy € H and |hy N~ Nhy| =1, then hy N--- Ny € S.

IfA=HUSC (UpZ Hi) UR? and P : H — (w)<¥ is acceptable, then
there is a good A' D A such that |A| = |A'|. Define P! : AN (Up_] Hy) —
w<¥ by: PY(h') = U{P(h) : h € H,h' C h}. Then, P! is an acceptable
coloring of A', and if h C A/, then P(h') C P(h).

To prove the theorem, it thus suffices to prove the following lemma.

Lemma 2.3. Suppose A= HUS C ( Z;% Hy)UR™ 4s good, P : H — (w)<¥
is acceptable, and P(h') C P(h) whenever h C h'. Suppose also g : H — w<¥

(giving “forbidden colors”) is given. Then there is a Q : S — w such that
Vz e S (Q(x) ¢ g(x)) and Vh € H {x:x € hN S AQ(x) € P(h)} is finite.

Proof. By induction on k = |A|. If kK < w, the lemma is obvious (letting Q
be 1-1 and avoiding g). If |A| > w, let A = |J,., Aa be strictly increasing,
where each A, = H, U S, is good. Note that each (H,, P | H,) is also
acceptable. Let A., denote Uﬂ<a Apg, and similarly for H.,, S<,. Suppose,
inductively, that QQ [ S<, has been defined and A, P [ Hew, Q | S<a
satisfy the conclusion of the lemma. For z € S, define:

, g(x) UU{P(h) :h€ Heq and z € h} ifx € Sy — S<q
g'(z) = :
g(x) ifreSq,
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By acceptability and goodness, it follows that ¢'(x) is finite for all z € S,,.

By induction, let Ay, P [ Hy, Q! satisfy the conclusion of the lemma using
!

g.

Let

Qu () = Q' () %f z €Sy — Scq
Q<o¢($) ifz e S<a

Let Q@ = Uy<) Qa» we show @ satisfies the conclusion of the lemma for
A, g. Clearly if z € S, Q(z) ¢ g(z).

Let h € Hy — H.,, and suppose z1,x2,Z3,... are distinct points in S
with z; € h and Q(z;) € P(h). Say, w.lo.g Q(z;) = r for all 4. If
x; ¢ Sa, then Q(z;) ¢ P(h), since at the stage where Q(x;) is defined, we
have P(h) C ¢'(z;). Also, by induction, only finitely many of the z; are in
Sq — S<q. So assume w.l.o.g. that all z; € S.,. Let ap < a be least such
that at least two of the z; are in A,,. Let hg = Span{z; : z; € Sa,}. Then
ho € Hy,, and r € P(hg). By induction, only finitely many of the z; lie in
Seg-

However, if x; € So — Sa,, then z; ¢ hg, since otherwise at the stage
B > ag where Q(z;) is defined, r € ¢'(z;). Let a; > ag be least such that
some x; € So, — S<q,. Let hy = Span{z; : ; € S,,}. By induction, only
finitely many of the z; lie in S,,. Continuing, we produce hg C hy C --- C h,
a contradiction. O

Theorem 2.3 implies a result concerning simultaneous colorings of the
points and lines.

Theorem 2.4. (ZFC) Let P : UZ;}n Hi — w be an acceptable coloring
of the k-planes in R", m < k < n — 1. Then there is a coloring @ :
(R* U U Hi) — w such that any h € JPZ| Hy meets only finitely many
points of its color, and contains only finitely many h' € UZ’:_II Hy of its
color.

Proof. Let P : Uz;rln Hr — w be an acceptable coloring. Extend P to
P' Ui My — w by: P'(h') = U{P(h) +i : dim(h) > m,h' C h,0 <i <
m — dim(h’)}. Here, P(h) + i abbreviates {j +i : j € P(h)}. Easily, P’
is acceptable, and hy C hy implies P'(hy) C P'(h1). Extend @ to Q' on

"~ H,, by defining, for b’ € "~ Hy, Q'(h') = sup(P'(h')). Lemma 2.3
extends Q' to R* so that Vh € J}Z| Hix {x € h: Q'(z) € P'(h)} is finite.
Note also that if » € (J;_; Hy, then h properly contains no h' € UZ’:_II Hy
with Q'(h') € P'(h). 0

The next theorem strengthens the previous theorem in that one may
prescribe the cardinality of the intersections of the planes with points of
same color (with “finite” as a lower bound).

Theorem 2.5. (ZFC) Let P: || Hj — w be a coloring of the planes in
R™ which is acceptable. Let ¢ : J}Z{ Hy — {1} U{a € ON : w, < ¢} be
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such that if hy C he and P(hy) = P(hsg), then c(hy) < c¢(hg). Then there is
a coloring @ : R — w such that for all h € UZ;% Hy, h meets exactly w.p,)
many points x© such that Q(z) = P(h). (where w_1 means “finite”).

As before we proceed by showing a stronger, but more technical lemma.

n—1
Lemma 2.4. There is a function F' which assigns to each h € U Hi a set
k=1
F(h) C h of size 2¥ such that:
(1) If hy # hy then F(hl) ﬂF(hg) = 0.
(2) For all hy C hg, hi N F(hg) is finite.

Proof. Let F(h) C h be a set of size 2* such that for all ' C h, A’ N
F(h) is finite [may assume h = RF in which case let F'(h)=range of map
t— (6,123, -~ ,1F)]. Let ha,a < 2¥ be an enumeration of (J}=| Hy. We
define F(hy) C F(hy) by induction on . Assume F(hgy) defined for all
o < a. For all o < o, F(hy) N F(hy) is finite using the fact that if
hat D ha thenAF( )N F(he) C (her Nha) N F(hg), and if her D he then
F(ha) N F(hg) C ha N F(hg )TMsmeﬁﬂw)ﬂFm@h%$m<2%
and we let F(hy) = F(hg) — Uw <o Fhar). O

The function F' of lemma, 2.4 is fixed for the remainder of the paper. The
next lemma immediately implies the theorem.

Lemma 2.5. Let A= HUS C ( Z;% Hi) UR™ be good of size K > w,
and P : H — w<¥ be acceptable. Assume that Vh € H |F(h) N S| = &.
Let d be a (partial) function which assigns to h € H and | € P(h) a value
d(h,l) e {-=1} U{a € ON : w, < K} satisfying:
(1) If hy C hy and d(hy,l), d(hg,l) are defined, then d(hy,l) < d(he,l).
(2) For all h,l such that d(h,l) is defined, if d(h,l) > —1 then wqq, ;) >

Z wq(n ). Here we say h € H is [-minimal if d(h,1) is defined and

h'Ch
h'is 1—minimal

—3K' C h d(h,1) = d(B',1)).
Then there is a coloring Q : S — w such that Vh € H VI € P(h) |{z €
SNh: Q(ZE) = l}| = wd(h’l).

Proof. We may assume hy C hy — P(hy) D P(hg) for all hy,hy € H. Let
F be as in the lemma 2.4, and we may assume (by considering F'(h) N S)
F(h) ChNS,and |F(h)| =k for all h € H. Fix a bijection a — (g, a1, kq)
between s and k? X w.

Write A = (J, ., Aa where:

(1) Each Ay, = Hy, U S, is good and has size K, < K.

(2) For all a < K, if the off* plane hy, (in some fixed enumeration of H)
is in H., then 3z € S, S'<a (2 € F(hay) —U{K : B € Hegy B C hoy}).

For each « as in (2), we pick a point z, € S, — S<, which is as in (2).
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We define now @, = @ | S, by induction on a < k. Assume )., has
been defined. Define g, : So — (w)<¥ by ga(z) = 0 if z € S—,, and for
x € Sq — Scas galz) = U{P(H) : b € Heo, x € h'}. By acceptability
and goodness, go(x) is a finite set. From lemma 2.3, let Qo be a coloring
extending Q. of S, such that Vo € Sy — Scq Qo) ¢ go(z) and any
h € H, meets only finitely many z € S, with Q. (z) € P(h).

If 2, is not defined, we set Qq = Q. If 2, is defined, we also set Qq = Q4
for all points except zo. If kq & P(hq,) or d(hqy,kq) is not defined, or if
hag is not ke-minimal, we set Qq(2zq) = Qa(za). If ho, is kq-minimal, and
{z € hagNS<a : Qealz) = ka}| = Wd(haygska) then we set Qq(2a) = Qa(za),
and if [{z € haoNS<q : Qcalx) = ko }| < Wil ke ) then we set Qu(za) = kq.-

To see this works, fix @ < k, and h € Hy, — H., and | € P(h) with d(h,1)
defined. We must show that [{x € hN S : Q(z) = I}| = wyn,)-

As in lemma 2.3, there are only finitely many points z € h N .S not of
the form zg with Q(z) = [. Thus, we need only consider points of the form
zp for some B # a. Clearly, [{z5 : z3 € h A Q(23) = I} > wq(n,) as there
are £ > wq(p,) many (3 for which 2z is on h and ks = 1, where h C his
[-minimal.

Suppose [{z5 : 23 € h A Q(zp) = I}| > wy(n,y- We assume h is chosen
with dim(h) minimal. Thus, for all A" C h which are [-minimal, [{z5 : 23 €
h' A Q(zg) = I}| = waqw 1) and hence [{zg : 23 € U, wer KA Q(zp) =

!—minimal

I} < Y wi) < wy(nygy- Thus, we need only consider 25 which do not lie
in an /-minimal subspace h' of h. Then, z3 € F(h') for some l-minimal A/,
and this A’ is not a proper subspace of h. We may also assume h' # h as
easily < wgp,) points in S(h) have color I. Thus we may assume h' N h is
proper subspace of A’ for each z3.

If > «, it then follows from the definition of zg that z3 ¢ h. So assume
B < a. Let By < a be least such that two of the zg, say 21,22 are in Sg,.
Thus h;, ., € Hp, by goodness. Easily, at most wy, ) many of the z5 of
color [ are in h;, ,,. Let 31 < a be least such that some such zg, say z3 lies
in Sg, — hyy 2. Thus, hy, 2, 20 € Hp, . Again, at most wg(p,) many of the z3
of color [ lie in h;, ,, ,,. Continuing, we produce h;, ,, C h;, 2520 C -+ Ch,
a contradiction. O

As an immediate corollary we have:

Corollary 2.2. Suppose P : H; — w<¥ is an acceptable coloring of the
k-planes in R™, and d assigns to each k-plane h, and each | € P(h) a value
d(h,l) e {-1} U{a : ws < 2¥}. Then there is a coloring @ : R — w such
that Vh € HyVl € P(h) [{z:z € hAQ(z) = I} = wyn,)-

Theorem 2.3 shows that the hypothesis of acceptability on the coloring of
planes in R" is enough to get a coloring of the points of R” with the “finite
intersection property.” We turn now to the problem of getting a uniform
bound for the finite size of their intersections, as discussed for lines in § 1.
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Before discussing the ZFC problem, however, we consider the correspond-
ing results assuming bounds on 2¥. The first theorem below uses a stronger
hypothesis on the planes than acceptability, but get a stronger bound. The
hypothesis applies, for example, to a partition of planes perpendicular to a
coordinate axis. The second theorem requires just acceptability.

We introduce some notation for the theorems. Suppose H C UZ;% Hy is a
family of planes in R, P : H — w<¥, and d is a partial function from {(h,[) :
h € H,l € P(h)} to the cardinals. We say h € H is [-minimal if d(h,l) is

defined and —31' C h (d(W',1) = d(h,0)). If Y d(W,1) is infinite,

W Ch
h [—minimal
*
! ! ! . .
we define E d(h',l) = E d(h',1). If E d(h',1) is finite,
W/ Ch W Ch W Ch
h |—minimal h [—minimal h |—minimal
*
! . .
we define E d(h',l) = to the maximum size of Z C |J wecn I
h I—minimal
W Ch
h |—minimal

such that |Z N A'| = d(k',l) for all -minimal A" C h. For example, if
h = R?, Iy,ly,l3 are three lines in R? forming a triangle, and d(ly,l) = 3,
d(ly,1) = 3, d(I3,1) = 3, d(ly Nly,l) = 1, then Z d(h',1) = 8. For all

h'Ch
h l—minimal

mi, SO Ay < ST A,

h! Ch h! Ch
h l—minimal h l—minimal

Theorem 2.6. Assume 2% < wy,.

(A) Let H C UZ; Hy be a family of planes in R™ such that the intersec-
tion of any infinite subset of H contains at most one point. Let P : H —
(w)<¥. Then there is a coloring Q : R" — w such that Yh € HYl € P(h) h
meets at most (m + 1) points in R™ of Q color I.

(B) Let H,P be as above. Let d be a partial function from {(h,l) : h €
H,l € P(h)} to the set of cardinals > m + 1 and < 2¥. Assume that if
d(h,1) is defined, then d(h,1) > (m+1)+ Y d(h',l) Then there is a

h'Ch
h l—minimal

coloring @ : R — w such that Vh € HVIl € P(h), if d(h,l) is defined then
H{x € h:Q(x) =1} =d(h,l).

Remark 2.3. The m-term in (B) may seem peculiar, but (B) is false assum-
ing only d(h,1) > > d(W,]).

h'Ch
h l—minimal

(A) follows from the following lemma.

Lemma 2.6. Let A= HUS C (J}Z| Hx) UR", |A| = wp, be such that
the intersection of any infinite subset of H contains at most one point. Let
P:H — (w)<¥, and g : S — w<*. Then there is a coloring Q : S — w such
that Yz € S Q(x) ¢ g(x) and Vh € HYl € P(h) h meets at most (m + 1)



ON INFINITE PARTITIONS OF LINES AND SPACE 15

points in S of Q color l. Furthermore, if zqg € S, lg € w are fized, and
lo & g(xp), then there is a Q as above also satisfying Q(zoy) = lo.

The proof of lemma 2.6 is exactly like that for lines (c.f. corollary 9
of [2]) so we omit it (the furthermore clause is trivial when m = 0. For
m > 0, when writing A = |J Ag, require that zyp € Ag and proceed
inductively).

(B) follows immediately from the following lemma.

a<wWm

Lemma 2.7. Let A= HUS C (U}Z| Hx) UR", |A| = wy. Assume the
intersection of infinitely many distinct planes in H contains at most one
point, P,d are as in (B), and Vh € H |F(h) N S| = wy,. Then there is a
Q: S — w as in the conclusion of (B).

Proof. The lemma, is true, but not needed, for m = 0 by a similar argument
which we therefore leave to the reader. So assume m > 1. Fix a bijection
a — (ag, a1, kq) between wy, and (wp,)? x w. Write A = |J A, as an
increasing union of sets A, = H, U S, of size < w,,, where:

(1) Each A, is good, which means here that if z,y € S, then the finitely
many planes in H which contain z,y are also in H,, and if Hy,...,H, € H,
intersect in a point z, then z € S,.

(2) If the o plane hy, lies in H, then 3z, € (Sy — S<a) N (F(hay) —
UK € Heg B C hiag ).

Assume (), is defined, and we define Q).

(Case I) z, is not defined, ky & P(hqy) Or d(hag, ka) is not defined.

Let go(z) = U{P(h) : h € Hewq,z € h} for z € Sy — S<q, and go(z) = 0
otherwise. Let Q, be the restriction to S, — S<q of the coloring given by
lemma 2.6 applied to Hq, Sa, ga-

a<wm

In the remaining cases, assume z,, d(hq,, ko) are defined.

(Case II) d(hay, kq) is finite.
For h € Heg let m(h) = [{z € S<ca : ¢ € h A Qealx) = ko}|. If for all
| — minimal % such that h C ha, we have h € H., and r(h) = d(h, ka), and
if r(hay) < d(h,kq), we let g, be as in case (I), except we set gqo(za) = 0.
We then let Q, be given by lemma 2.6 applied to Hy,, Sa, 9o, requiring
Qa(2a) = ko. Otherwise, we define @, as in case (I).

(Case III) d(hay, ha) is infinite.
If r(h) < d(hqg, ko) we let gq be as in case (I), except we set gq(2q4) = 0. We
let Q. be given by lemma 2.6 applied to Hy, Sa, ga, requiring Qo (zq) = ka-
If 7(h) = d(hag, ko), we define Q, as in case (I).

To see this works, suppose h € Hy, — Hq, | € P(h), and d(h,1) is defined.

We consider the case Z* d(h',1) is finite, the other case being similar

h'Ch
h l—minimal

but easier. Note that in all of the above cases, h meets at most m points
in S, — Scq of Q, color [. Also, h contains at most one point z € S, by
goodness. Thus, A meets at most m + 1 points in S, of @, color [. Any
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x € hN (S —8,) of @ color I must be of the form zg for some 8 > . An
initial segment of these zg, say zg,,..., 23, are such that h(g,), is a proper
[-minimal subspace of h. By induction on dimh, we therefore have that
{z€hnSs, Q) =1} < (m+1)+ S di,l) <d(h,). The only

h'Ch
h l—minimal

zp for 8> By of Q) color [ which are added to h are such that h(z), = h. It
follows that {z € hN S : Q(z) =1} < d(h,l).

We also easily have |[{z € hNS : Q(z) =1}| > d(h,l), as there are k£ many
B such that By = o and kg = [. O

We now consider the second version of this theorem.

Theorem 2.7. Assume 2% < w,,.

(A) Let H C J}_{ My, and P : H — ()< be acceptable. Then there
is a coloring Q : R" — w such that YVh € HVl € P(h), h meets at most
p(dim h,m) many points of Q color I; where p : wt X w — w™ is defined by:

pla,0) = 1, p(a,8) = (Sycqpl@sb—1)) +1.

(B) Let H C UZ; Hy and P : H — (w)<¥ be acceptable. Suppose d is
a partial function from {(h,l) : h € H, | € P(h)} to the set of cardinals
with 2¥ > d(h,l) > p(dimh,m) + Z d(h',1). Then there is coloring

h'Ch
h l—minimal

Q : R" = w such that Vh € H Vi € P(h) if d(h,l) is defined then |{x € h :
Q(x) = 1} = d(h,1).

The following table gives some values for the p function.

m=0 m=1 m=2 m=3 m=4
dim(h)=1 1 2 3 4 5
dim(h)=2 1 3 6 10 15
dim(h)=3 1 4 10 20 35
dim(h)=4 1 5 15 35 70

Consider first (A). We may assume without loss of generality that H =

"~ Hy, and that if hy C hy then P(h;) D P(hg). Tt A C (J}Z] i) UR”
we define A being good as in theorem 2.3. It now suffices to prove the
following lemma.

Lemma 2.8. Let A = HUS C (U}Z] Hi) UR™ be good, |A] = < wy,
and P : H — (w)<“ be acceptable. Let g : S — (w)<“. Then there is a
coloring @ : S — w such that Vz € S Q(z) ¢ g(z) and Yh € HYI € P(h)
Hzx e hnS: Q(z) =1} < p(dimh,k). Furthermore if xg € S and ly € w,
then there is a Q as above with Q(xo) = lo.

Proof. Write A =, <wi A, as an increasing union of good sets A, = Hy U
Sa, each of cardinality < wg. Assume @, is defined. Define g, on S, —S<,
by go(z) = g(z) UU{P(h) : h € H., = € h}, and set g, = g on S<,. By
induction, there is coloring Qq of Sq — S<q such that Qa(ac) ¢ ga(x) and
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Vhe HyVl € P(h) [{z € Sy — Scq: 2 € hAQu(x) =1} < p(dimh, k — 1).
Let Qo = Q<a U Qa-

To see this works, fix h € Hy, — Hey, | € P(h). There are at most
p(dimh,k — 1) points z € S, — Scq on h of color I. If x € hnN (S — S,),
Qa(x) # 1, since | was ”forbidden” at the step where 2 was colored.

We consider z € S.,. Let ¢ = dim(h). Let B = {z € Scq : z €
h A Q(xz) =1}. Let e; be the dimension of Span(B). Note that e; < ey by
goodness. Let a; < « be least such that Span(B N S,,) = Span(B). Note
that Span(B) € H,, and [ € P(h) C P(Span(B)). By induction on «, there
are at most p(e1, k) many points z € Span(B) NS of @ color . Also, if
a; < f<aand z € hN(Sg — Scp), then z € Span(B) and so Q(z) # .
Thus, at most p(er, k) + p(eg, k — 1) < p(eg — 1, k) + p(eg, k — 1) = p(eo, k)
many points z € S of @ color [ lie on h. (a minor variation is required when

€y = 1).
If zp € S and [y € w are fixed, we again proceed as above, except we
require zy € Sy, and use induction (when k = 0 the result is easy). O

Consider now (B). Let F' be as in lemma 2.4, and define good as in
theorem 2.3. It suffices to show the following lemma.

Lemma 2.9. Suppose A=HUS C ( Z;i Hy) UR"™ is good of size < wy,
P: H — (w)<¥ is acceptable, d is a partial function from {(h,l) : h € H,l €
P(h)} to the cardinals < wy, d(h,l) > p(dimh, k) + Z d(h',1), and

h'Ch
h l—minimal

Vh € H |F(h) N S| = wg. Then there is a coloring Q : S — w such that
Vh € HYl € P(h) if d(h,l) defined then {z € hN S : Q(x) =1} =d(h,l).

Proof. Let o — (a, a1, ko) be a bijection between wy, and wi x w. Write
A=, <wi A, as an increasing union of good sets A, = H, U S, each of

size < wy, such that for all a < wy, if the a'f]h plane h,, in H lies in H,,
then 3z, € S — S<a (20 € F(hay) — U{W : B C hoy, h' € Hep}).

Assuming ()., is defined, we define @), exactly as in lemma 2.7.

To see this works, fix h € Hy, — H.,, and | € P(h) with d(h,l) defined.
We again consider the case d(h,l) finite as the other case is similar but
easier. Let By = {z € hN Scy : Qealz) = 1}. Let oy < «a be least
such that Span(B; N S,,) = Span(B;). Note that Span(B;) € Hy,, | €
P(Span(B1)), and e; = dimSpan(By) < dimh = ey. If &1 < f < a, and
x € hN(Sg—S<p) has @ color [, then z = z3 and hg, is an [-minimal subspace
of Span(By) C h. Also, [{x € hN (Sa, — S<a,) : Q(z) =1} < pler, k —1).
Let By = {z € hN Scq, : Qealz) = 1}. Let ag < aq be least such that
Span(By N S,,) = Span(Bz), and let eo = dim Span(B3). Thus, ez < e;. If
az < f < ai,and z € hN (Sg — S<p) has Q color I, then = z3 and hg,
is an [-minimal subspace of Span(Bsy) C h. Also, [{z € hN (Sa, — S<a,) :
Q(z) = l}| < p(ez, k —1). Continuing, let C = {z € hN S : Q(z) = I}
N((Say — S<ay) U (Say — S<ay) U...). If z € hn (S — S,) has Q color [,
then = zg for some 3 > « such that hg, is an [-minimal subspace of h.
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An initial segment of these, say zg,,..., 23, are such that z(4,), is a proper
subspace of h. Thus we can write {z € hN Sy, : Q(z) =1} = C' U D, where
|IC| < 14+p(1,k—=1)+---+p(eg—1,k—1) = p(eq, k), and every x € D lies in an
[-minimal proper subspace of h. By induction on dim A, it follows that |D| <

S d(W,1). Thus, [{z € hnSp, : Q(z) = 1}] < pleo, k)+ Y d(H',1)

W Ch K Ch
h l—minimal h l—minimal
< d(h,l). It follows easily that |[{z € hNS: Q(z) =1}| = d(h,]). O

We now turn to consistency results for planes in R”.

Theorem 2.8. Assume ZFC + MA.

(A) Let H C UZ;% Hi and P : H — (w)<¥, and assume that the inter-
section of any infinite subset of H contains at most one point. Then there
isa Q:R" = w such that Vh € HVl € P(h) {x € h: Q(z) =1} < 3.

(B) Let HC Uz;% Hy and P : H — (w)<Y¥ be acceptable. Then there is a
Q:R" = w such that Yh € HYI € P(h) |{z € h: Q(z) = [}| < 2dimh+1 1,

The proof of (A) is entirely similar to that of theorem 1.1, so we omit it.

Lemma 2.10. Assume ZFC + MA. Let H C \J}Z| Hp, P: H — (w)<¥
be acceptable. Let S C R™ have size < 2¥, and let g : S — (w)<“. Then
there is a Q : S — w such that Vo € S,Q(z) ¢ g(z) and Yh € H VI € P(h)
Hzx e hnS:Qx) =1} <2dimh,

Proof. jFrom theorem 2.3 and the argument of lemma 1.2, we may assume
that Vh € H hN S is finite. We may further assume that Vzi,...,2, € S,
if hyy,...o, ©h € H, then hy, . ., € H and Vhy C ho in H, P(hy) 2 P(hs).
Let P = {(p,f) :p€ S f:p— wVr e€p f(z) & glx),Yh € HVI €
P(h) |hn{z € p: flz) =1} < 29™h As usual, set (p1, f1) <p (p2, f2)
iff p1 D py and fo = f1 | po. It suffices to show that PP is c.c.c. Assume
not, and let (pa, fo), @ < wi be an antichain. We may assume |[p,| = ng
for all @ < wy, the p, form a A-system with root » € S<¥, and Va, 3 py |
r = pg | r. Consider then the first w elements (py, f,) of the anti-chain.
By Ramsey’s theorem, we may assume that for some 1 < dy < n — 1 that
Vi < jEIhi,j € Hﬂli,j (dimhi,j = dy /\|hi,j N {(II € p;: fZ(III) = li,j}| =1
/\|hi,j N{z € pj: f]((L‘) = li’j}| =y, and I} + 5 > 2d0), but for all d < dy,
Vi < j¥h € HYl € P(h) [hn{z € (p; Up;) : (iU fj)(z) =1} < 24, We
may further assume that Vi < j the [y points in p; have fixed ranks in <[ p;
and similarly for the lo points in p;, where < denotes a fixed well-order of
R™. We assume [; < [y, the other case being easier. Since 1 + [y > 2d0,
lo > 2%~1 Fix a j € w, and consider the planes hij,hojy... hj_1 ;.
Let h(j) be the span of the corresponding l» points in p;. Since l;_q; €
P(hj-1;) C P(h(j)), and I > 2%~1 we must have dim(h(j)) = do, and
hence h(j) = h1j = haj = -+ = hj_1;. Let B; be the span of the union
of the [; points from pi,...,p;. Let j be large enough so that B; = Bj
for all 7/ > j. However, h(j) then contains infinitely many points of S, a
contradiction. O
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Proof. [of theorem| Let H, P be as in (B), and let A = H UR". We may
assume H = UZ;% Hy. Write A = J,co0 Aa, €ach A, = Hy U S, is good,
and |A,| < 2¥. Assuming Q. defined, let for z € S, — S, g(z) = J{P(h) :
h € Heo,z € h}. Apply the lemma to get a coloring Q : (Sy — S<q) — W
such that Vz € Sy — S<q Q(2) ¢ ga(x) and for any h € H, and [ € P(h), h
meets at most 24™ % points of S, —S<, of color 1. Let Qn = Q<aUQ,. Easily,
if h € Hy— H.y and [ € P(h), h meets at most 1 + 2+ 22 4 ... 4 2dim(h) —

2dim(h)+1 _ 1 many points in S of color I. O

As for the case with lines, we conjecture that the C H result is consistent
with -C'H. That is:

Conjecture . The following is consistent with ZFC 4+ -~CH. For any P :
H C Uz;% H; — w which is acceptable, there is a ) : R* — w such that
Vh € HVYl € P(h) {z € h: Q(z) =1} < (dimh) + 1.

Notice that the gap between the C'H results and those of theorem 2.8
widen as dim(h) increases. Thus, for lines only the consistency of the 2 point
property with ~C'H is open, but for 2-planes (and acceptable colorings), it
is open for intersections of sizes 3,4.
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