THE ORDER TYPE OF THE SET OF PISOT NUMBERS

David W. Boyd* and R. Daniel Mauldin†

University of British Columbia and University of North Texas

September 7, 1994

ABSTRACT. Set $a_1 = \omega + 1 + \omega^*$ and for each positive integer n, set $a_{n+1} = a_n\omega + 1 + (a_n\omega)^*$. We show the order type of S, the set of Pisot-Vijayaraghavan numbers, is the ordered sum, $\sum_{n=1}^{\infty} a_n$.

Let S be the set of Pisot (or Pisot-Vijayaraghavan) numbers. Thus, S is the set of all algebraic integers $\theta > 1$ all of whose other conjugates lie inside the unit circle. This remarkable closed countable set has many interesting topological and analytic features. For example, the Cantor-Bendixson derived set order of S has been known for some time. To see this, we recall that Dufresnoy and Pisot showed that the minimal element of the nth derived set, $S^{(n)}$, is greater than $n^{1/4}$. On the other hand, the best result concerning upper bounds of $\min S^{(n)}$ seems to be one of Bertin [B]. She showed that $k \in S^{(2k-2)}$, for k > 1. It follows from these facts that the Cantor-Bendixson derived set order of S is ω . In this note, we make some observations which yield a characterization of one more facet of the topological distribution of S, the order type of S. This question was raised by Mauldin [MR,Problem 1071]. We make some notation: set $a_1 = \omega + 1 + \omega^*$ and for each positive integer n, set $a_{n+1} = a_n\omega + 1 + (a_n\omega)^*$. The order type of S is given in the last theorem of this note:

Theorem 6. The order type of S is the ordered sum, $\sum_{n=1}^{\infty} a_n$.

In order to prove this theorem, we need the fact that each element of $S^{(n)}$ is a limit from both sides of elements of $S^{(n-1)}$. We first present a proof of this fact in some detail.

Given a Pisot number θ , let P(z) be its minimal polynomial, so P(z) is an irreducible monic polynomial with integer coefficients having $P(\theta) = 0$ and such that all other roots of P(z) lie in |z| < 1. All roots of P(z) are simple and θ is its unique root in the interval $(1, \infty)$ so P(1) < 0. We will write Q(z) for the reciprocal of P(z), i.e. $Q(z) = z^{\deg(P)}P(1/z)$, and hence Q(0) = 1, Q(1) < 0 and Q(z) has a unique root in |z| < 1, namely $1/\theta$, with all other roots being in |z| > 1.

Let \mathcal{C} denote the set of rational functions f(z) = A(z)/Q(z), where A and Q are polynomials with integer coefficients, Q is the reciprocal of a minimal polynomial

¹⁹⁹¹ Mathematics Subject Classification. 1980 Mathematics Classification. Primary 54C50, 12A15.

Key words and phrases. order type, Pisot number.

^{*} Supported by NSERC

†Supported by NSF Grant DMS 9303888

of a Pisot number θ , $A(0) \neq 0$, $A(1/\theta) \neq 0$, and $|A(z)| \leq |Q(z)|$ on |z| = 1. Thus $|f(z)| \leq 1$ on |z| = 1 and f(z) has a unique pole in |z| < 1, this pole being a simple pole at $1/\theta$. Give \mathcal{C} the topology of uniform convergence on compact subsets of the sphere. Then subsets of \mathcal{C} corresponding to bounded sets of θ are compact. (See Theorem 2.2.1 of [BD]). Corresponding to each Pisot number there are (usually many) f in \mathcal{C} . The mapping of \mathcal{C} to S defined by $f \to \theta$ is continuous.

If $\theta \in S^{(n)}$ then there is an $f \in \mathcal{C}^{(n)}$ with pole $1/\theta$. The set \mathcal{C}' was characterized by Dufresnoy and Pisot [DP] as the set of $f \in \mathcal{C}$ for which |f(z)| < 1 for all but a finite subset of |z| = 1. Thus the isolated points of \mathcal{C} consist of those f for which |f(z)| = 1 everywhere on |z| = 1. For these f, $A(z) = \pm P(z)$. For $n \geq 2$, the set $\mathcal{C}^{(n)}$ was characterized by Grandet-Hugot [GH,p.20]. The following notation is used: Given $n \geq 1$, let $N = \{1, 2, \ldots, n-1\}$, and if (m_1, \ldots, m_{n-1}) is a vector of integers, let $M(I) = \sum_{i \in I} m_i$, for any subset $I \subset N$.

Theorem 1 (Grandet-Hugot). In order for $A/Q \in \mathcal{C}^{(n)}$, it is necessary and sufficient that there exist polynomials $B_I(z)$, $C_I(z)$ with integer coefficients, indexed by the subsets of N with $B_\emptyset = A$, $C_\emptyset = Q$, having the following properties:

- (1) For each $j \in N$, there is a subset $J \subset N$ with $j = \max J$ such that at least one of B_J or C_J is not identically zero.
- (2) For all |z| = 1, the inequalities $|B_I(z)| \le |Q(z)|$ and $|C_I(z)| \le |Q(z)|$ hold, with equality for at most a finite set of z, (except for $C_{\emptyset} = Q$).
- (3) For each vector of positive integers (m_1, \ldots, m_{n-1}) , define $B(z) = \sum_{I \subset N} z^{M(I)} B_I(z)$ and $C(z) = \sum_{I \subset N} z^{M(I)} C_I(z)$. Then the rational function $B/C \in \mathcal{C}'$.

The condition (3) of this theorem is stated somewhat differently in [GH] but can be deduced from the proof given there. Note that it is quite possible for B and C in (3) to have a common factor.

We begin with a short discussion of the equation $Q_m(z) = Q(z) + z^m A(z)$, where $A/Q \in \mathcal{C}'$, following [BP]. In addition to the Pisot numbers, this requires consideration of the Salem numbers which are those algebraic integers $\theta > 1$ all of whose other conjugates lie in the closed unit disk $|z| \leq 1$ with at least one conjugate on |z| = 1. Let $0 \leq t < 1$. Then, by Rouché's theorem, for all $m \geq 0$, $Q(z) + tz^m A(z)$ has a unique root in the open unit disk. This root, z(t), is clearly real and non-zero. Since it is a continuous function of t and $z(0) = 1/\theta > 0$ it follows that 0 < z(t) < 1. As $t \to 1$, z(t) tends to a root $0 < z(1) \leq 1$ of $Q_m(z)$ which we denote $1/\theta_m$. If $\theta_m > 1$ then $1/\theta_m$ is the unique root of $Q_m(z)$ in |z| < 1. Otherwise $Q_m(1) = 0$ and $Q_m(z)$ has no roots in |z| < 1. The polynomial $Q_m(z)$ may also have other roots on |z| = 1 at points where |Q(z)| = |A(z)|. These will be roots of the polynomial $\Omega(z) = z^r (Q(z)Q(1/z) - A(z)A(1/z))$, where r > 0 is chosen so that Ω is a polynomial with $\Omega(0) \neq 0$. The roots on |z| = 1 are necessarily simple except that if $\theta_m = 1$ then z = 1 may be a triple (but never a double) root.

The root inside the unit disk, if it occurs, is thus of the form $1/\theta_m$, where θ_m is either a Pisot or a Salem number. This follows from the fact that all of the conjugates of $1/\theta_m$ lie in $|z| \geq 1$. The roots of $Q_m(z)$ on |z| = 1 are either roots of unity or possibly conjugates of $1/\theta_m$ if θ_m is a Salem number.

It is not hard to see that $\theta_m > 1$ for sufficiently large m. For $Q_m(0) = 1$ and since $|A(1)| \leq |Q(1)| = -Q(1)$ we have $Q_m(1) = A(1) + Q(1) \leq 0$. Thus, if A(1) < -Q(1) then $Q_m(1) < 0$ and hence $Q_m(z)$ has a root in 0 < z < 1 for each

 $m \geq 0$, i.e. $\theta_m > 1$ for any m in this case. On the other hand, if A(1) = -Q(1), so $Q_m(1) = 0$, then $Q_m(z)$ will have a root in 0 < z < 1 if the derivative $Q'_m(1) > 0$, and this holds as soon as m > (-Q'(1) - A'(1))/A(1).

It is easy to see that if $1/\theta < 1$ is the root in |z| < 1 of Q(z) then $\theta_m \to \theta$ as $m \to \infty$. Also, the numbers θ_m are eventually distinct since a common root of $Q_m(z)$ and $Q_n(z)$ would be a root of $(z^m - z^n)A(z)$, and A(z) is non-zero in a neighbourhood of $1/\theta$ since $A(1/\theta) \neq 0$. Furthermore, θ_m must eventually be a Pisot number and not a Salem number. For, if θ_m is a Salem number then its conjugates on |z| = 1 are roots of the fixed polynomial Ω and hence θ_m is also a root of Ω . This can only occur for a finite set of m. In the following proof, we will need the following more precise result from [BP].

Lemma 2. Suppose that $A/Q \in \mathcal{C}'$, m > 1, $m \neq deg(Q) - deg(A)$ and that $\theta_m > 1$. Then θ_m is a Pisot number.

As a consequence of Theorem 1 and Lemma 2, we have the following result, stated on p.24 of [GH], with the condition "for all sufficiently large m" omitted, and with the remark that "it follows from the preceding proof". We give more details of the proof here.

Theorem 3. If $A/Q \in \mathcal{C}^{(n)}$, for $n \geq 1$, and if $Q_m(z) = Q(z) + z^m A(z)$, for each positive integer m, then, for all sufficiently large m, $Q_m(z)$ has a root $1/\theta_m < 1$ for which $\theta_m \in S^{(n-1)}$.

Proof. By the above discussion, there is an M_0 such that $m \geq M_0$ implies that $\theta_m \in S$. We must show that there is an $M_0'' \geq M_0$ for which $\theta_m \in S^{(n-1)}$ if $m \geq M_0''$. Let m be fixed with $m \geq M_0$.

Given a vector of positive integers (m_1, \ldots, m_{n-1}) , let B(z) and C(z) be as in (3) so that $B/C \in \mathcal{C}'$. As in the discussion preceding Lemma 2, $C(z) + z^m B(z)$ has at most one root in |z| < 1 and if this root exists, then it is real and positive. If this root exists, we denote its reciprocal by $\theta(m_1, \ldots, m_{n-1})$, otherwise we write $\theta(m_1, \ldots, m_{n-1}) = 1$. If $\theta(m_1, \ldots, m_{n-1}) > 1$ then it is a Pisot or a Salem number. We will denote $C(z) + z^m B(z) = R_n(m_1, \ldots, m_{n-1})$ whenever it is necessary to indicate the dependence on n and m_1, \ldots, m_{n-1} .

We are going to let m_{n-1}, \ldots, m_1 tend to ∞ in the order just listed. We must insure that we are dealing at each stage with a sequence of eventually distinct elements of S.

In order to insure that the $\theta(m_1,\ldots,m_{n-1})$ are Pisot numbers and not Salem numbers, it suffices by Lemma 2 to have m>1 and $m+\deg(B)\neq \deg(C)$. This latter condition will require restrictions on m_k of the form $m_k\geq M_k'(m,m_1,\ldots,m_{k-1})$. For uniformity, define $m_0=m$ and let K denote the set $\{0,1,\ldots,n-1\}$. Also, if $I\subset K$ write $D_I=C_I$ if $0\notin I$ and $D_I=B_J$ if $0\in I=\{0\}\cup J$. Then $C+z^mB=\sum_{I\subset K}z^{M(I)}D_I$. It will be enough to show that we can restrict (m_0,m_1,\ldots,m_{n-1}) so that all of the non-zero terms of this sum have distinct degrees, that is, $M(I)+\deg(D_I)$ with $D_I\neq 0$ should be distinct. For, in this case

$$\deg(C) = \max_{I \subset N} (M(I) + \deg(C_I)) \neq m + \deg(B) = \max_{I \subset N} (m_0 + M(I) + \deg(B_I)).$$

We now show how to insure that the $M(I) + \deg(D_I)$ are distinct. Given $I \neq J \subset K$ with D_I and D_J non-zero, let k be the largest element in the symmetric

difference $(I \setminus J) \cup (J \setminus I)$. Assume that $k \in I$ without loss of generality. Then $M(I) - M(J) = m_k + L(m_0, \ldots, m_{k-1})$, where L is a linear combination of m_0, \ldots, m_{k-1} with coefficients in $\{-1, 0, 1\}$. Thus we will insist that $m_k > \deg(D_J) - \deg(D_I) - L(m_0, \ldots, m_{k-1})$ for each such I and J, giving a restriction $m_k \geq M'_k$, say, for $k \geq 0$. For $m = m_0$, this amounts to the restriction that $m \neq \deg(C_I) - \deg(B_I)$ for any $I \subset N$ with both C_I and B_I non-zero. We also insist that m > 1.

In order to insure that the dependence of $C(z)+z^mB(z)$ on each of m_1,\ldots,m_{n-1} is non-trivial, we must make some further restrictions on m. Notice that if $I \subset N$ and if both B_I and C_I are non-zero, there is at most one value of m for which $C_I + z^m B_I$ is identically zero. We omit this finite set of m from consideration, by taking $m \geq M_0'' \geq M_0'$, say. With this restriction on m and by (1) of Theorem 1, for each $j \in N$, there is a $J = J(j) \subset N$ with $j = \max J$ so that $C_J(z) + z^m B_J(z)$ is not identically zero. This insures the nontrivial dependence of $C(z) + z^m B(z)$ on m_j .

Now we are ready to consider the convergence of $\theta(m_1,\ldots,m_{n-1})$ to θ_m . We begin with n=1, so that $R_1(m_1)=Q+z^{m_1}C_{\{1\}}+z^m(A+z^{m_1}B_{\{1\}})$ has the root $1/\theta(m_1)$. We observe that $\lim_{m_1\to\infty}\theta(m_1)=\theta_m$. Since $\theta_m>1$, we have $\theta(m_1)>1$ for $m_1\geq M_1$, say, and then $\theta(m_1)\in S$ for $m_1\geq M_1'\geq M_1$. As discussed above, the existence of J(1) and the assumption $m\geq M_0''$ insures that the $\theta(m_1)$ for $m_1\geq M_1''$, say, are distinct.

Similarly, for each $m_1 \geq M_1''$, $R_2(m_1, m_2)$ has a root $1/\theta(m_1, m_2)$ for which

$$\lim_{m_2 \to \infty} \theta(m_1, m_2) = \theta(m_1),$$

and then

$$\lim_{m_1 \to \infty} \lim_{m_2 \to \infty} \theta(m_1, m_2) := \lim_{m_1 \to \infty} (\lim_{m_2 \to \infty} \theta(m_1, m_2)) = \theta_m.$$

Again, the terms of the sequence are distinct elements of S for $m_2 \geq M_2''$, say. By induction, we have the iterated limit

$$\lim_{m_1 \to \infty} \dots \lim_{m_{n-1} \to \infty} \theta(m_1, \dots, m_{n-1}) = \theta_m,$$

where at each stage we are dealing with a sequence of eventually distinct elements of S. This shows that $\theta_m \in S^{(n-1)}$, for all $m \geq M_0''$. \square

Remark. The sequence $\theta(m_1, \ldots, m_{n-1})$ is as considered in [GH], where it is asserted that $\theta(m_1, \ldots, m_{n-1}) \in S$ and that $\theta_m \in S^{(n-1)}$ without the requirement that m be sufficiently large. As our proof shows, there are three possible complications. The first is that $\theta(m_1, \ldots, m_{n-1}) = 1$ is possible. For example, this occurs for 1/(1-2z) with m=1. This is easily avoided by the requirement $m \geq M_0$.

A more serious complication is that $\theta(m_1, \ldots, m_{n-1})$ may depend trivially on some of the parameters and this means that θ_m may be in S but fail to be in $S^{(n-1)}$. For example, in [B], it is shown that $1/(1-2z-z^2) \in \mathcal{C}^{(3)}$, but $1-z-z^2=1-2z-z^2+z^1$ defines only an element of $S^{(1)}$ not $S^{(2)}$. Our proof shows that this occurs only for a finite set of m.

The other main complication is caused by the fact that $\theta(m_1, \ldots, m_{n-1}) > 1$ may be a Salem number rather than a Pisot number. The possibility that $\theta_m > 1$ may be a Salem number was first pointed out by Walter Parry. The example $A(z) = 1 - z^2$, $Q(z) = 1 - 2z - z^2 + z^4$, m = 1 given in [BP] is due to him. Theorem 1 of that paper shows that in fact every Salem number satisfies such an equation. Theorem 2 of that paper states that this is only possible for m = 1 but only the case $m + \deg(A) \neq \deg(Q)$ is proved there. Since the proof of the remaining case $m + \deg(A) = \deg(Q)$ has not yet appeared, we do not rely on it in the proof of Theorem 3, even though that would simplify the proof considerably: the conditions $m_k \geq M'_k$ required to insure $m + \deg(B) \neq \deg(C)$ could be replaced by the simple condition m > 1.

Corollary 4. If $\theta \in S^{(n)}$ for some $n \geq 1$, then θ is a two-sided limit of elements of $S^{(n-1)}$.

Proof. Let $A/Q \in \mathcal{C}^{(n)}$ with pole at $1/\theta$. Then also $-A/Q \in \mathcal{C}^{(n)}$. By Theorem 2, for all but a finite set of m, $Q_m^{\pm}(z) := Q(z) \pm z^m A(z)$ defines an element $\theta_m^{\pm} \in S^{(n-1)}$. Since $Q_m^{\pm}(1/\theta) = \pm \theta^{-m} A(1/\theta)$, the numbers θ_m^+ and θ_m^- lie on opposite sides of θ , and hence θ is a limit from both sides of elements of $S^{(n-1)}$. \square

Lemma 5. Let z be an isolated point of $S^{(n)}$ and a < z < b be such that $S^{(n)} \cap (a,b) = a$ z and $a, b \notin S$. Then the order type of $S \cap (a,b)$ is a_n .

Proof. Let $c_1, c_2, c_3, ...$ be an increasing sequence consisting of the elements of $S^{(n-1)}$ in (a, z) and let $d_1, d_2, d_3, ...$ be a decreasing sequence consisting of the elements of $S^{(n-1)}$ in (z, b). If n = 1, then clearly the order type of $S \cap (a, b)$ is a_1 . Suppose the lemma holds for n. Let $a = u_0 < c_1 < u_1 < ... < u_{k-1} < c_k < u_k < ...$ with each u_k not in S. Then by the induction hypothesis, the order type of $S \cap (u_{k-1}, u_k)$ is a_n for each k. Therefore, the order type of $S \cap (a, z)$ is $a_n \omega$. Putting this together with a similar argument for $S \cap (z, c)$, we have the order type of $S \cap (a, b)$ is a_{n+1} . \square

Let $x_n = \min S^{(n)}$. The sequence x_n is strictly increasing and it is known that x_0 is the real root of $x^3 - x - 1$, $x_1 = \frac{1+\sqrt{5}}{2}$ and $x_2 = 2$. In [Bo,p.7] there is an explicit conjecture as to the value of x_n for each n > 2.

Theorem 6. The order type of S is the ordered sum, $\sum_{n=1}^{\infty} a_n$.

Proof. For each n, choose y_n not in S with $x_n < y_n < x_{n+1}$. Set $D_1 = S \cap [x_0, y_1)$ and for each n > 1, $D_n = S \cap (y_{n-1}, y_n)$. Then the order type of S is the ordered sum of the order types of the sets D_n . By lemma 4, the order type of each D_n is a_n . \square

References

- [B] M.J. Bertin, Ensembles dérivés des Ensembles $\Sigma_{q,h}$ et de l'ensemble S des Pisot-nombres, Bull. Sci. Math.(2) **104** (1980), 3–17.
- [BD] M.J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, and J.P. Schreiber, *Pisot and Salem Numbers*, Birkhäuser Verlag, Basel, 1992.
- [Bo] D.W. Boyd, The distribution of the Pisot numbers in the real line, Séminaire de Théorie des Nombres, Paris 1983-84, Progr. Math. (C. Goldstein, ed.), Birkhäuser, Boston, 1985.

- [BP] D.W. Boyd and W. Parry, *Limit Points of the Salem Numbers*, Number Theory (R.A. Mollin, ed.), Walter de Gruyter, Berlin, New York, 1990.
- [DP] J. Dufresnoy and Ch. Pisot, Sur les elements d'accumulation d'un ensemble fermé d'entiers algébriques, Bull. Sci. Math. (2) **79** (1955), 54-64.
- [GH] M. Grandet-Hugot, Ensembles fermés d'entiers algébriques, Ann. Sci. École Norm. Sup.(3) 82 (1965), 1–35.
- [MR] J. van Mill and G.M. Reed, Open Problems in Topology, North Holland, Amsterdam, 1990.

Department of Mathematics University of British Columbia Vancouver, B.C. V6T 1Z2, Canada email address: boyd@math.ubc.ca Department of Mathematics University of North Texas Box 5116, Denton TX 76203 email address: mauldin@unt.edu