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ABSTRACT. Set a; = w+ 1 4+ w* and for each positive integer n, set ap+1 = anw +
1+ (apw)®. We show the order type of S, the set of Pisot-Vijayaraghavan numbers,
is the ordered sum, Y 7 ; an.

Let S be the set of Pisot (or Pisot-Vijayaraghavan) numbers. Thus, S is the
set of all algebraic integers 6 > 1 all of whose other conjugates lie inside the unit
circle. This remarkable closed countable set has many interesting topological and
analytic features. For example, the Cantor-Bendixson derived set order of S has
been known for some time. To see this, we recall that Dufresnoy and Pisot showed
that the minimal element of the nth derived set, S, is greater than n'/%. On
the other hand, the best result concerning upper bounds of minS(™) seems to be
one of Bertin [B]. She showed that k € S*=2) for k > 1. It follows from these
facts that the Cantor-Bendixson derived set order of S is w. In this note, we
make some observations which yield a characterization of one more facet of the
topological distribution of S, the order type of S. This question was raised by
Mauldin [MR,Problem 1071]. We make some notation: set a; = w+ 1+ w* and for
each positive integer n, set a,11 = a,w + 1 + (a,w)”. The order type of S is given
in the last theorem of this note:

Theorem 6. The order type of S is the ordered sum, Y - | ay.

In order to prove this theorem, we need the fact that each element of S is a
limit from both sides of elements of S("~1). We first present a proof of this fact in
some detail.

Given a Pisot number 6, let P(z) be its minimal polynomial, so P(z) is an
irreducible monic polynomial with integer coefficients having P(f) = 0 and such
that all other roots of P(z) lie in |z| < 1. All roots of P(z) are simple and 0 is its
unique root in the interval (1,00) so P(1) < 0. We will write (z) for the reciprocal
of P(z), i.e. Q(z) = 29¢9(P)P(1/z2), and hence Q(0) =1, Q(1) < 0 and Q(z) has a
unique root in |z| < 1, namely 1/6, with all other roots being in |z| > 1.

Let C denote the set of rational functions f(z) = A(z)/Q(z), where A and @) are
polynomials with integer coefficients, () is the reciprocal of a minimal polynomial
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of a Pisot number 0, A(0) # 0, A(1/60) # 0, and |A(2)| < |Q(2)| on |z| = 1. Thus
|f(2)] <1on |2 =1and f(z) has a unique pole in |z| < 1, this pole being a simple
pole at 1/60. Give C the topology of uniform convergence on compact subsets of the
sphere. Then subsets of C corresponding to bounded sets of 6 are compact. (See
Theorem 2.2.1 of [BD]). Corresponding to each Pisot number there are (usually
many) f in C. The mapping of C to S defined by f — 6 is continuous.

If @ € S™ then there is an f € C(™) with pole 1/6. The set C’ was characterized
by Dufresnoy and Pisot [DP] as the set of f € C for which |f(z)| < 1 for all but a
finite subset of |z| = 1. Thus the isolated points of C consist of those f for which
|f(2)] = 1 everywhere on |z| = 1. For these f, A(z) = +P(z). For n > 2, the
set C(™ was characterized by Grandet-Hugot [GH,p.20]. The following notation is
used: Given n > 1, let N = {1,2,...,n — 1}, and if (mq,...,m,_1) is a vector of
integers, let M(I) =, ; m;, for any subset I C N.

Theorem 1 (Grandet-Hugot). In order for A/Q € C™, it is necessary and
sufficient that there exist polynomials Br(z), C1(z) with integer coefficients, indexed
by the subsets of N with By = A, Cyp = @, having the following properties:
(1) For each j € N, there is a subset J C N with j = max.J such that at least one
of By or Cj is not identically zero.
(2) For all |z| = 1, the inequalities |Br(z)| < |Q(z)| and |Cr(z)| < |Q(2)| hold, with
equality for at most a finite set of z, (except for Cyp = Q).
(3) For each vector of positive integers (my, ..., mp_1), define B(z) = Y -y MO B (2)]
and C(z) =3 1oy 2M D Cr(2). Then the rational function B/C € C'.

The condition (3) of this theorem is stated somewhat differently in [GH| but can
be deduced from the proof given there. Note that it is quite possible for B and C'
in (3) to have a common factor.

We begin with a short discussion of the equation @, (z2) = Q(2) + z™A(2),
where A/Q) € C', following [BP]. In addition to the Pisot numbers, this requires
consideration of the Salem numbers which are those algebraic integers 8 > 1 all
of whose other conjugates lie in the closed unit disk |z| < 1 with at least one
conjugate on |z| = 1. Let 0 <t < 1. Then, by Rouché’s theorem, for all m > 0,
Q(z) +tz™A(z) has a unique root in the open unit disk. This root, z(t), is clearly
real and non-zero. Since it is a continuous function of ¢ and z(0) = 1/6 > 0 it
follows that 0 < z(t) < 1. Ast — 1, z(¢) tends to a root 0 < z(1) < 1 of Q@ (2)
which we denote 1/6,,. If 6, > 1 then 1/6,, is the unique root of @, (2) in |z| < 1.
Otherwise @, (1) = 0 and @,,,(2) has no roots in |z| < 1. The polynomial @Q,,(z)
may also have other roots on |z| = 1 at points where |Q(z)| = |A(2)|. These will
be roots of the polynomial Q(z) = 2"(Q(2)Q(1/z) — A(z)A(1/z)), where r > 0 is
chosen so that € is a polynomial with ©2(0) # 0. The roots on |z| = 1 are necessarily
simple except that if 6, = 1 then z = 1 may be a triple (but never a double) root.

The root inside the unit disk, if it occurs, is thus of the form 1/6,,, where 0,,
is either a Pisot or a Salem number. This follows from the fact that all of the
conjugates of 1/6,, lie in |z| > 1. The roots of @,,(z) on |z| = 1 are either roots of
unity or possibly conjugates of 1/60,, if 0,, is a Salem number.

It is not hard to see that 6,, > 1 for sufficiently large m. For @,,(0) = 1 and
since |[A(1)] < [Q(1)] = —Q(1) we have @Q,,(1) = A(1) + Q(1) < 0. Thus, if
A(1l) < —=Q(1) then @,,(1) < 0 and hence @,,(z) has a root in 0 < z < 1 for each
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m >0, i.e. 0, > 1 for any m in this case. On the other hand, if A(1) = —Q(1), so
Qm (1) = 0, then Q,,(z) will have a root in 0 < z < 1 if the derivative Q' (1) > 0,
and this holds as soon as m > (—Q'(1) — A’(1))/A(1).

It is easy to see that if 1/6 < 1 is the root in |z| < 1 of Q(z) then 6, — 6
as m — oo. Also, the numbers 6,, are eventually distinct since a common root
of Qm(z) and @, (z) would be a root of (2™ — 2™)A(z), and A(z) is non-zero in
a neighbourhood of 1/6 since A(1/6) # 0. Furthermore, 6,, must eventually be
a Pisot number and not a Salem number. For, if 6,, is a Salem number then its
conjugates on |z| = 1 are roots of the fixed polynomial © and hence 6, is also a
root of 2. This can only occur for a finite set of m. In the following proof, we will
need the following more precise result from [BP)].

Lemma 2. Suppose that A/Q € C', m > 1, m # deg(Q)— deg(A) and that 0,, > 1.
Then 0, is a Pisot number.

As a consequence of Theorem 1 and Lemma 2, we have the following result,
stated on p.24 of [GH], with the condition “for all sufficiently large m” omitted,
and with the remark that “it follows from the preceding proof”. We give more
details of the proof here.

Theorem 3. If A/Q € C™), forn > 1, and if Qm(z) = Q(2) + 2™A(2), for each
positive integer m, then, for all sufficiently large m, Qn,(z) has a root 1/0,, < 1
for which 0,, € S®=1,

Proof. By the above discussion, there is an M, such that m > M, implies that
0, € S. We must show that there is an M} > M, for which 6,, € S(n=1) if
m > M{/. Let m be fixed with m > M.

Given a vector of positive integers (mq,...,my,_1), let B(z) and C(z) be as in
(3) so that B/C € C'. As in the discussion preceeding Lemma 2, C'(z) + 2" B(z)
has at most one root in |z| < 1 and if this root exists, then it is real and positive.
If this root exists, we denote its reciprocal by #(mg,...,m,_1), otherwise we write
O(my,...,mp—1)=1. IfO(mq,...,mp_1) > 1 then it is a Pisot or a Salem number.
We will denote C(z) + 2™ B(z) = R, (m1,...,m,_1) whenever it is necessary to
indicate the dependence on n and mq,...,m,_1.

We are going to let m,_1,...,m1 tend to oo in the order just listed. We must
insure that we are dealing at each stage with a sequence of eventually distinct
elements of S.

In order to insure that the 6(myq,...,m,_1) are Pisot numbers and not Salem
numbers, it suffices by Lemma 2 to have m > 1 and m+deg(B) # deg(C). This lat-
ter condition will require restrictions on my, of the form my, > My (m,mq, ..., mg_1).J]

For uniformity, define my = m and let K denote the set {0,1,...,n — 1}. Also,
if I ¢ K write Dj = C; if 0 ¢ I and Dy = By if 0 € I = {0} UJ. Then
C+2"B =Y ik MDDy Tt will be enough to show that we can restrict
(mg, my,...,mp—1) so that all of the non-zero terms of this sum have distinct
degrees, that is, M (I) + deg(Dy) with D; # 0 should be distinct. For, in this case

deg(C) = gllca&c(M(I) + deg(Cr)) # m + deg(B) = 1}nca]3<(m0 + M (I)+ deg(Br)).

We now show how to insure that the M (I) + deg(Dy) are distinct. Given I #
J C K with Dy and Dj non-zero, let k be the largest element in the symmetric
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difference (I\J)U(J\I). Assume that k& € I without loss of generality. Then M (I)—

M(J) = my + L(myg,...,mg_1), where L is a linear combination of mq,. .., mg_1
with coefficients in {—1,0, 1}. Thus we will insist that my > deg(Dy) — deg(Dy) —
L(my,...,mp_1) for each such I and J, giving a restriction my > M, say, for

k > 0. For m = my, this amounts to the restriction that m # deg(Cr) — deg(B)
for any I C N with both C; and By non-zero. We also insist that m > 1.

In order to insure that the dependence of C(z)+2™ B(z) on each of my, ..., m,_1
is non-trivial, we must make some further restrictions on m. Notice that if I C N
and if both By and Cj are non-zero, there is at most one value of m for which
Cr1 + 2™ By is identically zero. We omit this finite set of m from consideration, by
taking m > M} > M|, say. With this restriction on m and by (1) of Theorem 1,
for each j € N, there is a J = J(j) C N with j = max.J so that Cj(z) + 2™ B(z)
is not identically zero. This insures the nontrivial dependence of C'(z)+ 2™ B(z) on
m;.

Now we are ready to consider the convergence of #(my,...,m,_1) to 0,,. We
begin with n = 1, so that Ri(m1) = Q + 2™ C1y + 2™ (A + 2™ Byqy) has the root
1/6(mq). We observe that lim,,, o0 8(m1) = 0,. Since 0,, > 1, we have (my) > 1
for my > My, say, and then 8(mq) € S for my; > M{ > M;. As discussed above, the
existence of J(1) and the assumption m > M{ insures that the 6(my) for m; > MY,
say, are distinct.

Similarly, for each my > M7, Ro(my, ms) has a root 1/0(my, msy) for which

m121£>n00 e(mh m2) = 9(m1)7

and then

lim lim #(mq,mz):= lim ( lim 6(mq,m2)) = b,,.
mi1—>00 Moy —>00 mi1—00 Mo—>00

Again, the terms of the sequence are distinct elements of S for my > MY/, say.
By induction, we have the iterated limit

lim ... lim O(my,...,mpy_1) = 0O,
mi1—00 Mp—1—>00

where at each stage we are dealing with a sequence of eventually distinct elements
of S. This shows that 6,, € S~V for all m > M}. O

Remark. The sequence 0(myq,...,m,_1) is as considered in [GH], where it is as-
serted that 6(mq,...,m,—1) € S and that 0, € S(n=1) without the requirement
that m be sufficiently large. As our proof shows, there are three possible complica-
tions. The first is that 6(mq,...,mp—1) = 1 is possible. For example, this occurs
for 1/(1 — 2z) with m = 1. This is easily avoided by the requirement m > Mj.

A more serious complication is that 6(mq,...,m,_1) may depend trivially on
some of the parameters and this means that #,, may be in S but fail to be in
S(=1_ For example, in [B], it is shown that 1/(1—2z—22) € C®) but 1 —z—2% =
1 — 22— 2% + 2" defines only an element of S(*) not S2). Our proof shows that this
occurs only for a finite set of m.
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The other main complication is caused by the fact that 6(mq,...,mp_1) > 1
may be a Salem number rather than a Pisot number. The possibility that 6, > 1
may be a Salem number was first pointed out by Walter Parry. The example
A(z) = 1-2%,Q(z) =1 —-22—22+2* m = 1 given in [BP] is due to him.
Theorem 1 of that paper shows that in fact every Salem number satisfies such an
equation. Theorem 2 of that paper states that this is only possible for m = 1
but only the case m + deg(A) # deg(Q) is proved there. Since the proof of the
remaining case m + deg(A) = deg(Q) has not yet appeared, we do not rely on it in
the proof of Theorem 3, even though that would simplify the proof considerably:
the conditions my, > M, required to insure m+deg(B) # deg(C) could be replaced
by the simple condition m > 1.

Corollary 4. If 0 € S™ for some n > 1, then 0 is a two-sided limit of elements
of S(=1).

Proof. Let A/Q € C™ with pole at 1/8. Then also —A/Q € C(™). By Theorem 2,
for all but a finite set of m, Q= (2) := Q(2)%2™ A(2) defines an element §= € S(—1),
Since Q (1/0) = £0~™A(1/0), the numbers 6 and 6. lie on opposite sides of 6,
and hence 6 is a limit from both sides of elements of S(»~1. [

Lemma 5. Let z be an isolated point of S™ and a < z < b be such that S™ N(a,b) =}
z and a,b ¢ S. Then the order type of S(\(a,b) is ay,.

Proof. Let cq,co,c3,... be an increasing sequence consisting of the elements of
S(n=1) ip (a,z) and let dq,ds,ds, ... be a decreasing sequence consisting of the ele-
ments of S("~1) in (z,b). If n = 1, then clearly the order type of S (\(a,b) is a;. Sup-
pose the lemma holds for n. Let a = ug < ¢1 < uqg < ... < up—1 < ¢ < up < ... with
each ug not in S. Then by the induction hypothesis, the order type of S ((ug—1, ug)
is a, for each k. Therefore, the order type of S()(a,z2) is a,w. Putting this to-
gether with a similar argument for S ((z, c¢), we have the order type of S()(a,b) is
ap41- ]

Let , = minS(). The sequence z,, is strictly increasing and it is known that
xg is the real root of 23 — 2 — 1, 21 = 1+T\/5 and o = 2. In [Bo,p.7] there is an
explicit conjecture as to the value of x,, for each n > 2.

Theorem 6. The order type of S is the ordered sum, Y > | an.

Proof. For each n, choose y,, not in S with z,, < y, < z,41. Set D1 = S(\[xo,y1)
and for each n > 1, D, = S(\(Yn-1,Yn). Then the order type of S is the ordered
sum of the order types of the sets D,,. By lemma 4, the order type of each D,, is
a,. U
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