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Abstract. This paper introduces and analyzes a class of directionally reinforced
random walks. The work is motivated by an elementary model for time and space
correlations in ocean surface wave fields. We develop some basic properties of these
walks. For instance, we investigate recurrence properties and give conditions under

which the limiting continuous versions of the walks are Gaussian diffusion processes.
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1. Introduction. This paper introduces a class of directionally reinforced random
walks. The motivation for our work was to develop and analyze an elementary
model which simulates some of the time and space correlations observed in ocean
surface wave fields. In particular, as discussed by West (1986), the direction of
motion of a field tends to be reinforced so that at any time a field is more likely
to continue moving in its current direction than it is to change direction. We give
an elementary mathematical model of this reinforcement and develop some basic
properties of the resulting stochastic processes.

Directionaly reinforced random walks in Z¢ are defined in the next section. In
section 3, we investigate the recurrence properties of these walks. For instance, it
is shown that a walk in Z is recurrent if and only if it changes direction, at some
time, with probability one. An interesting example is given for which a walk in Z is
recurrent, yet changes direction only a finite number of times within any bounded
spatial interval. Thus, eventually the walk visits 0 only during fantastically long
runs in a particular direction. Under moment conditions on the time until the walk
changes direction, we show that the walk is recurrent when d = 2 and is transient
for d > 3. The analysis is facilitated by defining a related stopping time process
which is a random walk with ¢.i.d. increments and then applying classic results.

In section 4, we consider the limiting continuous time version of a directionally
reinforced walk. Conditions on the reinforcement are presented under which the
limiting version is a Gaussian diffusion process. We calculate the diffusion coefficient
for a specific example. The greater the directional reinforcement in this example
the larger the diffusion coefficient. On the other hand, an example shows that the
limiting process is not, in general, necessarily Brownian motion. In the last section,
we interpret some of the above results in terms of wave fields and raise some further
questions.

Note that the random walks considered here have a different type of reinforce-
ment than that considered in other works on reinforced random walks such as
Davis (1990), Pemantle (1988), and Mauldin and Williams (1991). There, broadly
speaking, the path crossed by the walk is reinforced in some permanent way. Here
the reinforcement is on the current direction that the walk is moving. Once the
walk changes direction, the previous reinforcement is forgotten and the new direc-
tion of motion is reinforced. This lack of memory approximates the relaxation of

reinforcement in a previous direction of motion.

2. Directionally Reinforced Walks in Z<. For k > 1, let 0 < g(k) < 1. The
g(k)'s will characterize the directional reinforcement of the walks defined below.

Denote the set of unit vectors in the d-dimensional lattice by U. And let
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Ug,...,U2q_1 be an arbitrary enumeration of the 2d vectors in U. Now define
a sequence of U-valued random vectors, Xq, Xs, ..., such that, for each u; € U,
(2.1) PIXy =) =
. =Uij| = —.
! 2d

For any u; € U and for all n > 0 and k£ > 1,

(2.2)
PlXnyrv1 = wil Xngr = wiy oo, Xngr = u, X #ug, Xnot = gy, X1 = uy,

= P[Xpihr1 = Ui Xk = wi, -0, X1 = ug, Xy # 1wy
= g(k).

And, for u; # u;,

(2.3)
P[Xn+k+1 = Ul|Xn+k = UWUjy... ,Xn+1 = ui,Xn 75 Ui,Xn,1 = ujn717 e ,X1 = uj1]
= P[Xpqrs1 = w|Xpgr = s, - .., Xpg1 = 04, Xy # 4]
_1-9g(k)
2d -1 °

Define the directionally rein forced random walk S, in Z¢ by

n
Sy = ZXZ s
i=0

where Xo =0 = (0,...,0).

Condition (2.1) states that the first step of the walk is equally likely to be any
of the possible 2d directions. Condition (2.2) states that the probability of a step
in a given direction only depends on the number of steps which have been taken in
that direction since the last change in direction. So the reinforcement is transitory
in the sense that once a change in direction occurs, the previous reinforcement
is forgotten. Moreover, the reinforcement is symmetric with respect to direction.
Condition (2.3) indicates that when the walk changes direction it is equally likely
to move in each of the other 2d — 1 directions.

Remark 2.1. A directionally reinforced random walk provides an elementary model
for certain aspects of ocean surface wave fields in the following way. If a wave
field is moving in a given direction then it is more likely to continue moving in
that direction. The value g(k) can be interpreted as the probability that a field will
continue moving in its present direction given it has moved k units in that direction.
The lack of memory once a walk changes direction approximates the relaxation of

reinforcement in a previous direction of motion.
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Remark 2.2. An intuitive view of the walk can be given as follows. Let T be
a random variable with distribution P[T = k] = ¢g(1)---g(k — 1)(1 — g(k)) for
k = 1,2,.... The walk starts at the origin and chooses an initial direction at
random. It moves in this direction one unit per unit of time for a length of time
which has the same distribution as T'. It then changes direction. The new direction
of motion is chosen uniformly from the 2d — 1 other possibilities. The procedure is
repeated independently forever. This alternative viewpoint turns out to be a key
part of the analysis of the properties of the walk and will be made more precise in

the next section.

Remark 2.3. Note that with (2.1) the X, are identically distributed. To see this
first note an easy induction argument shows that, for any n, (ui,,...,u;, ) € U",

and permutation f of U,
(24) P[Xl = Ujyy .- ,Xn = Uin] = P[Xl = f(uil), N ,Xn = f(u,n)]
Hence, for any n > 1,

PX, =u] = Z PX, = u;, Xlzuj]
u; €U
Z P[Xn = Uy, X1 = Uz]
u; €U
= P[Xl = ’U,l]
_1
S 2d’
As indicated, g(k) denotes the probability that the next step of the walk is
taken in a certain direction given that exactly k steps have been taken in that

O

direction since the last change in direction. In the following sections, we investigate
the relationship between the g(k)'s and the properties of the walks. Our main
motivation was to study walks where the current direction of motion was indeed
reinforced - that is, where g(k) is nondecreasing in k. Note, however, that the
results given below do not depend on this.

3. Recurrence Properties of S,,. This section examines the recurrence proper-
ties of directionally reinforced walks.

The walk S,, is said to be recurrent if
P[S, =0 io]=1;

it is transient otherwise. The usual recurrence result that S, is recurrent if and
only if P[S, = z i.0.] = 1 for all (possible) z € Z% will hold here. Also, it will
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follow that S, is transient if and only if it is strongly transient. We say S, is
strongly transient if for all e, M > 0 there exists an N (M, ¢) such that

P[|Sp| > M foralln > N(M,e)] >1—ce.
To avoid some anomalous special cases assume
(3.1 0<g(k) <1,

for every k. This assumption ensures that each z € Z? is possible with respect to
Sn. A 2 € Z%is possible if there exists an n such that P[S,, = z] > 0.
One case in which it is clear that S, is strongly transient is when there is a

positive probability that the walk will not change direction — i.e., when

9(1)g(2)--->0.

In fact, as formally stated in Theorem 3.1, for d = 1 this is precisely when S, is
transient. To show this, we define a related stopping time process. This process

will be a random walk with symmetric increments.

Recurrence in Z. Until noted assume d = 1 and let
Tozmm{k: Xk:+]-,Xk+1:_1}

So ST, is the position of the walk S,, just before it changes direction to go to the
left after its first run of steps to the right. Let 771 be the time of the first change in
direction after Ty. And in general for i > 2, let T; be the time of the i** change in

direction after Tp. Specifically,

T, =min{k >To: Xp=-1,Xp41 =+1}
and, for i > 2,

T, =min{k >T;—1: Xp==x, Xp41 =—x}.

Assuming g(1)g(2)--- = 0, each T; is well defined and finite almost surely. So
without loss of generality assume they are defined and finite everywhere. The

differences T; — T;_1 are i.i.d. with distribution
PIT; = Tioy = k]l = g(1) -+~ g(k — 1)(1 — g(k)).

Now consider the stopping time process {St,, }n>0, where Sz, is the position
of the walk S,, just before it changes direction to go to the left after its (n + 1)
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run of steps to the right. Because the walk S,, takes unit steps, the increments
St,, — STZ(n—l) have the same distribution as (T2, — Ton—1) — (Ton—1 — T2(n71))-
Thus, these increments are nondegenerate, symmetric, identically distributed ran-
dom variables. Moreover, they are independent. Hence, it follows (see, for instance
Chung (Theorem 8.2.5, 1968)) that

—oo = liminf S, < limsup St,, = +o0.
n—r00 n—00

Therefore, we get the following.

Theorem 3.1. S, is recurrent if and only if g(1)g(2)--- = 0. Moreover, S, is
recurrent if and only if P[Sy, =z i.0]=1 for all z € Z.

It is tempting to conclude that the recurrence properties of S,, and St,, are the
same. However, as Example 3.2 shows, S,, may be recurrent while St,, is strongly
transient (by symmetry, the process {St,,,, }n>0 also is strongly transient). This
is interesting. In this case, S,, almost surely changes direction only a finite number
of times within any bounded spatial interval. And so, the walk eventually passes
through 0 only as part of extremely long runs in a particular direction.

Example 3.2. For each k > 1, suppose g(k) = k+1 Then ¢(1)g(2)---=0 and,
by Theorem 3.1, S,, is recurrent. However, St,, is strongly transient. To see this,
let F' be the common distribution function of the increments St,, — St,,_,, and

suppose that m > 0. Then

1— F(m—1) ip Ty) — (T} — Tpy) = n]

Thus, for any € > 0, there exists an M (¢) such that, for all m > M (e),

1 1
—(1-¢<1-Fm-1)< —.
TR0 <1-Fm-1)<
Now with this estimate on the tail of F' apply a discrete version of the argument
given by Chung and Fuchs (1951, Example (4.4)) to complete the demonstration.

O

Recurrence in higher dimensions. Now consider the recurrence properties

of S, for d > 2. Under moment conditions on the time until the walk changes
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directions, Theorems 3.3 and 3.4 show that the walk is recurrent when d = 2 and is
transient for d > 3. Note that the latter result holds when the expected time until
a direction change is finite. Heuristically, it might seem that the opposite should
be true. For instance, when the expected time is small, it would obstensibly seem
that the walk would be forced back to the origin. We conjecture that there is no
nontrivial reinforcement scheme which makes the walk recurrent in Z3.

To begin, we formalize the description of S, given in Remark 2.2. As in the

remark, let 7" be a random variable with distribution

PIT = K = (1)~ g(k — 1)(1 — g(k).

Define the following random variables.

{T};};>1 is a random walk on the positive integers generated by an i.i.d. sequence

with the same distribution as T'.
Iy is uniformly distributed on the set {0,...,2d — 1}, independent of the T},’s.

{I;}j>1 is arandom walk on the cyclic group {0, ...,2d—1} generated by an i.i.d.
sequence of random variables uniformly distributed on the finite set {1,...,2d — 1}

independent of Iy and the Tj’s. (So I; is chosen at random from the set {i €
{0,...,2d =1} : i #I;1}.)

We can construct the directionally reinforced random walk S,, — with the desired
conditional distributions specified by (2.1)—(2.3) — by first setting So = (0,...,0).
Then, for 1 < n < T4, let S, = nug,. And, for T +1 < n < Tjyq, set S, =
St; + (n — Tj)ur;. With this formulation, we give Theorems 3.3 and 3.4. The
proofs of the theorems use similar techniques, so they are given together.

Theorem 3.3. If E[T?] < co and d = 2, then S, is recurrent.
Theorem 3.4. If E[T] < oo and d > 3, then S, is transient.

Proof of Theorems 3.3 and 3.4. We prove the recurrence and transience under the
assumption that the direction of the first step of the walk S, is deterministic.
That is, we work with the conditional probabilities given Iy = iy for some ig €
{0,...,2d — 1}. From this case, the results will clearly hold for random Iy.

Let j; = 0 and, for m > 1, let j* be a random index given by
jo=min{j > s y: I =D}

Set 7, = Tj» . Then the process {S;,, }m>1 is a d-dimensional random walk. To see

this, first note that I;» = Iy =g a.s. and hence the random segment I , ... ,I]’-*erl
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has the same distribution as Io,...,I;-, independent of S;,...,S;, . Further,
{Tj= 5 — Tj= }j>1 is independent of S;,,...,S;, with the same distribution as
{Tj}j>1. And thus, P[S; ., — S, = 2|S7,...,S:,] = P[S;, = z2].

Now, by construction, Iy # ip and P[Ij41 = ioll; # o] = ﬁ. Thus, the
random index j{ — 1, being the waiting time for a success in an i.i.d. sequence of
trials with success probability 57, has a geometric distribution. Hence, E[ji] =
2d. The random time 7 is the sum of j; ¢.i.d copies with the same distribution
as T. Thus, by independence and Wald’s identity, we have E[r;] = 2dE[T] and
Var[n] = 2dVar[T] + Var[j{](E[T])?. In particular, under the hypotheses of
Theorem 3.4, E[r1] < oo; and, under those of Theorem 3.3, E[r{] < oo.

Since the process S,, takes unit steps, we have that the random walk S, has finite
second moments in the case of Theorem 3.3. Moreover, it has zero expectations.

To see this, notice that

E[Sr] = E[Tui, + Z a; E[Tu;,
i#io
where a; = E[#{j: 1<j<jf, I; =i}]. By symmetry, all a;, i # io, are equal.
Since they add up to E[j; — 1] = 2d — 1, they must all be equal to 1. Therefore,

2d—1

=E[T] Y u;=0.

And thus, by Chung and Fuchs (1951, Theorem 5), the random walk S, is recur-
rent for d = 2. Theorem 3.3 now clearly follows.

In the case d > 3, Chung and Fuchs (1951, Theorem 6) also gives that S,
is transient (even without the moment conditions). It remains to show that this
implies the transience of S,,. For this, note

> P[S, =0]= ZE[#{n: Tm <1 < g1, Sp = 0}]
n=0

= Z Z [#{n: 7m <n<Tmt1, Sn =0}S,, =—2|P[S;, = —2]

m=0 z¢74

=Y f@E#{n: 0<n<m, S, =2z},

z€Z4

where f(z) = > >°_, P[S;,, = —z] is uniformly bounded by 1+ >_  P[S,, =0].

m=0

But, by the hypothesis of Theorem 3.4,

Z E#{n: 0<n<m, S,=2z2}]=E[n]=2dE[T] < .
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Therefore, S, is transient. O

Note the above proof that the transience of S;, implies the transience of S,
when E[T] < oo also works in two dimensions. So, if d = 2 and E[T] < oo, then
Sy, is recurrent if and only if the random walk S, is recurrent. In particular,
for any € > 0, there are cases for which E[T? €] < oo but where S, is transient
(cf. Chung and Lindvall (1980)). Furthermore, a straightforward argument can be
given to show that whenever T is such that the associated d dimensional walk S,
is transient then the reinforced walk S, in dimension d + 1 is transient. Hence,
by Chung and Fuchs (1951, Theorem 6), Theorem 3.4 holds without the moment
condition for d > 4.

Finally, are there any cases analogous to Example 3.2 for d = 2 or 3 — that is,
where S), is recurrent while S, is transient? We conjecture that these cases can

not occur, but so far we have been unable to show this.

4. Continuous-time Directionally Reinforced Processes. Here we construct
continuous-time processes using one—dimensional discrete time directionally rein-
forced walks and present a case in which these processes turn out to be versions of
Brownian motion. The construction proceeds in a standard way using the partial
sums S,,. In this section assume d = 1.

Specifically, for ¢ € [0,1], set

_ Sy _ 24 X
NN
where |s| is the greatest integer less than or equal to s and o > 0. Let W ()
denote the weak limit (assuming it exists) of {W,,(t)},>1 in D[0, 1], the set of real-
valued functions on [0, 1] which have left hand limits and are continuous from the

(4.1) Wh(t)

right, given the Skorohod topology. W (t) represents our continuous version of a
directionally reinforced random walk. The natural question is: “what sort of process
is W (t)?” Proposition 4.1 shows that if E[T?] < oo, then W (t) is Brownian motion.
The effect of the reinforcement, in this case, is seen in the diffusion coefficient . For
instance, Example 4.2 indicates that strengthening the reinforcement increases the
rate of diffusion. In wave field models, a large diffusion coefficient corresponds to a
high sea state. Thus, the example indicates that strong directional reinforcement
is associated with high sea state.

Let T1,T», ... be the stopping times defined in section 3 (T; gives the time of the
ith direction change of S,) and recall that {St,, }n>0 is a standard random walk
with 7.i.d. increments. Proposition 4.1 is established using these notions and the

functional central limit theorem.
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Proposition 4.1. If E[T?] < oo, then the weak limit of {W,(t)}n>1, W(t), is a

version of standard Brownian motion with 0> = VE%T[]T]

Proof. Set 6°> = E[(St,, — Sty(,_,,)°] = E[S7,] = 2Var[T]. Since E[T?] < oo
and E[St,, — St,(,_,,] = 0, the functional central limit theorem (see, for instance,
Billingsley (1968, Theorem 16.1)) gives

STz

—2 = W(t),

N (t)
where “=" denotes weak convergence. Hence, a change in the time scale by a

constant factor yields

STLMJ
(4.2) ———=>W(@).
v
The functional central limit theorem applied to the sequence 17,75, ... implies

that, for each € > 0, there exists a A(¢) and N(¢) such that, for all n > N(e),

(4.3) P {m<ax|Ti—iE[T]| > M)V <.
Fix an € > 0 and a > 0. Then, by (4.3),
(4.4)
S; —Sr, St. — ST
tim P max PELI s | <o p | omax PR EELL o)L
n—o00 i<n 7 n—oo i<n o
- vavn imiovn VIV
<UimP | sup |[W(t)—-W(s)|>al|+e

= 610

[t—s|<d

= €.

The last inequality follows from the functional central limit theorem applied to

{STLntJ }
%\/ﬁ n>1

and the last equality by the properties of Brownian motion. Therefore, since € and

a were arbitrary, (4.2) and (4.4) imply

Stintl )
And so, a change in the time scale by a constant factor gives
Snt) Sint)
= = =W(t). O
P = = W

2E[T]
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In Example 4.2, we apply Proposition 4.1 to the case that the reinforcement only

looks back one step.

Example 4.2. Let 0 < p < 1 and suppose that g(k) = p for all £ > 1. In this
case, T is a geometric random variable with parameter (1 — p) = ¢. Therefore, by

Proposition 4.1, W(t) is a version of Brownian motion and the diffusion rate is

Thus, increasing the magnitude of the reinforcement (i.e., increasing p) increases
the rate of diffusion. O

What about other reinforcement sequences? In the case that g(1)g(2)--- > 0, if
the norming factor v/no in (4.1) is replaced by n, then W (t) is a random translation
process which moves to the right at unit rate with probability % and moves to the
left at unit rate with probability % On the other hand, it might seem reasonable to
conjecture that W(t) is a version of Brownian motion whenever the probability of
a change in direction is 1 (i.e., g(1)g(2) - -- = 0). This, however is not necessarily so
— as Example 4.3 shows. Basically, what happens is that 7' can be constructed so
that the limiting process would need to give positive probability to paths which are
linear over a common nontrivial time interval. It would be interesting to completely
characterize the types of limiting processes which could arise. For instance, is the
Cauchy process a potential limit (or, perhaps, a Cauchy process with the jumps

replaced by straight lines)? This is discussed further in the following section.

Example 4.3. Let F be the distribution function for the number of steps taken
between successive changes in direction of the discrete—time walk S,,. Let T, T5, ...

be an i.i.d. sequence with common distribution F'. Set

Cn =) T,
i=1
To = 0. Now redefine the processes W,,(t) somewhat more generally by

LntJ X,
Wa(t) = 2=t X
On
where {0, },>1 is a given norming sequence. For M > 1,
P[3n < M such that X,, = Xp,11 = -+ = Xpi ]

= P[3 k such that C, < M, Tyy1 > M|

= ZP[Ck <M, Tyy > M]
k=0

— (1- F) S PO, < M]
k=0
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Setting A(M) = (1 — F(M)) >~ P[Ck, < M], suppose

(4.5) lim A(M) > 0.

M—o0

(A(M) and its limiting value occur frequently in renewal theory. For instance, Feller
(1966, Chapter XIV) gives a class of distributions for which (4.5) is satisfied.) Then
there exists a constant K > 0 and either infinitely many M such that P[B},] > K
or infinitely many M such that P[B3%,] > K, where

(i—1)M

Bi,=|3| 1

iM
| <n< LTJ such that Xp = Xy = ... X, |
Without loss of generality assume the former. Hence, for infinitely many M,
Now, if 0, is o(n), then, for every r > 0,

1 1
lim sup P[[Wn(5) = Wa(5)] > 1] > K.

On the other hand, if ¢, is not o(n), then, for some r > 0,

limsup P[|[W,,(1)] <r] =1.

n—o0

Either case would contradict W, converging to Brownian motion. O

5. Remarks and Further Questions. Here we discuss an application of our
work and collect further questions.

As mentioned in the introduction, observation has indicated that wave fields
exhibit time and space correlations. A motivation for our work was to analyze an
elementary model of these correlations — specifically, directional reinforcement —
in order to understand their relationship to other properties of wave fields. For
instance, we determined conditions on the reinforcement parameters under which
the fields were recurrent. Also, recall Example 4.2, where the continuous time
directionally reinforced process was a diffusion process. The greater the directional
reinforcement in the example the larger the diffusion coefficient. The diffussion
coefficient can be associated with sea state. Thus, the example can be interpreted
to indicate that strong reinforcement corresponds to high sea state.

Currently there is a great deal of analysis on the strength required of artifi-
cial ocean structures (e.g., oil drilling platforms) to withstand surface wave forces.
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In particular, to obtain failure probabilities for different platform designs, struc-
tural response models incorporate stochastic surface wave field models. Typical
approaches (see, for instance, Longuet-Higgins (1952)) use uncorrelated Gaussian
processes to represent these wave fields. Standard techniques are applied to ob-
tain first passage times and other extremal statistics. These results are in turn
used by Moe and Crandall (1977), among others, to predict the probability of a
platform failure due to surface wave action. Our work represents an initial step in
understanding the modeling implications of accounting for wave field correlations.

Some further questions which would be interesting to pursue include the follow-
ing.

e What are necessary and sufficient conditions for the limiting continuous time

process, W (t), to be a version of Brownian motion?

e Under what conditions does the limiting process have stationary independent

increments?

o If T has a stable distribution of index a € (%,1) and o, = o(n), is the limiting
process the stable process of index « or is it some slowed down version of that

process.

e Suppose that the directionally reinforced random walk does not necessarily take
unit steps. Under what conditions is Sy, recurrent? Do the limiting processes still

necessarily have continuous sample paths, or are jumps observed?
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