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INFINITE ITERATED FUNCTION
SYSTEMS: THEORY AND APPLICATIONS

R. DANIEL MAULDIN

ABSTRACT. In this paper we exposit the theory of infinite iterated function
systems consisting of conformal maps. We indicate some of the new phenomena
which appear in these systems in contrast to the known behaviour of the limit
sets of finite iterated function systems consisting of similarity maps. We also
indicate the methods by which the Hausdorff, packing and Minkowski or box
counting dimension and measures can be studied. We give several examples
involving sets of continued fractions.

Over the past 25 years, the fundamental properties of the limit set gen-
erated by a finite iterated function system consisting of similarity maps have
been determined. Certainly, Mandelbrot’s books and papers has stimulated and
directed tremendous interest in this subject. Perhaps Hutchinson’s 1981 paper,
[Hu], may be considered a starting point for the formal development of the
theory although there are several other earlier papers including the seminal
1946 paper of P.A.P. Moran [Mo]. The purpose of this paper is to exposit a
generalization of these finite systems, conformal iterated function systems. The
two main theoretical aspects of this generalization are that the system may
consist of infinitely many maps and that the maps need not be similarity maps
but only conformal. We will indicate both the variety of new phenomena that
arise in this setting and the main techniques used to analyze various natural
geometric measures and dimensions defined on the limit sets of such systems.
Finally, we will also give several examples, including various sets of complex
and real standard continued fractions which can be readily dealt with within
this framework. The examination and theorétical development of limit sets
associated with infinite systems is a fairly recent development . Finite confor-
mal systems have been studied in several contexts by several authors including
Patterson [Pat], Sullivan [Sul,Su2], Bedford [Be] and Urbanski and his collab-
orators where conformal measure is used as a tool to study the geometry of
various objects arising in dynamics(see the references in [MU}). Infinite sys-
tems of similarity maps, (;, with reduction ratios r;, were studied by Mauldin
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and Williams in [MW)]. We showed in this 1986 paper that there is a self simi-
lar measure, m, satisfying m = S oo, r¥m o @] ", provided 3 .o, 7 = 1. This
was proven even in the random case. Infinite systems of similarity maps were
mentioned in several contexts at this conference and are the subject of several
recent papers, Riedi [Ri], Riedi and Mandelbrot [RiM], M. Moran [M], Staiger
[St], Staiger-Fernau [St-F] and the book of Fernau [F]. The deeper properties
of infinite systems of conformal maps are developed in the paper of Mauldin
and Urbanski [MU]. Most of the results and problems raised here arise from
this paper.

First, let me review some basic features concerning the iteration of a finite
set of similarity maps and the limit set of such a system, a self-similar fractal.

1. SELF-SIMILAR FRACTALS

Let X be a compact regular subset of R% : @ # X = cl(Int(X)). Let
S = {p;}ier be a finite set of contracting similarity maps of R4, For each i,
let 7; be the contraction ratio of ;. By a beautiful application of Banach’s
contraction mapping theorem, Hutchinson [Hu] showed that there is a unique
compact set .J ¢ R? such that

7=Uw). (11)

The set J is the self-similar set or lmit set generated by the system S. Of
course, J has a single element if the cardinality of I is 1. To avoid trivialities
we shall always assume card(]) > 1.

There is one simple function from which the basic geometric measure
theories properties of the limit set can be determined provided the system
satisfies the open set condition. Let

T
() = rf, for £>0. (1.2)
: i1
Then 9 is a strictly decreasing continuous map, ¥(0) = card(l) and %(t) — 0,
as t — oo. The similarity dimension of J is defined to be « where

Ploy = e =1, (1.3)
i==]
and it is easily seen that
0 < HY(J) < diam(X)“. (1.4)

By another application of Banach’s contraction mapping theorem, one can show
that there is a unique associated natural invariant probability measure m such
that m is supported on J : m(J) = 1 and such that m satisfies:

n
mer?mOgﬂfl, (1.5)
d=1
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or equivalently, for f € C(J),

Lfdmx/J?;Tffowidm. (1.6)

The probability measure m is the self-similar probability measure induced by
the system S. In general, the similarity dimension and the measure m may not
be related in any reasonable manmer to the Hausdorff dimension and measure
in the dimension of J. This is because there may be some severe overlaps or
redundancies in the system S. However, there is a simple natural condition to
impose on S from which detailed analysis of the limit set and measure may be
derived. This is the open set condition {(OSC): there is a nonempty bounded
open set U such that for each 7 € I,

o (U)Y C U and @;(U)Ng;(U)=0,if i#37. (1.7)

If we let X = cl(U), then X is a nonempty compact regular subset of R?, for
each 7, ¢; (Int(X)) C Int(X) and @, (Int(X)) Ne; (Int(X)) =0, if 4 # j. For this
reason, we could take our original open set U to be the interior of X.

Let me collect the main facts concerning these systems in the following
theorem.

Theorem 1.1. Let 8 = {p;}icr be @ finite system of similarity maps of R4
satisfying the open set condition. Then

dimpy (J) = dimp(J) = dimpg(J) = dimg(J) = h. (1.8)
Moreover, there is some C > 0 such that for allz € J and 0 <1 < diam(J),
ol < ﬂ(%%ﬁp_ <, (1.9)

and there are constants cy,cq > 0 such that

e HELJ =m = cI%L J. (1.10)

Thus, for a finite 4.f.5. consisting of similarity maps and satisfying the
open set condition, the various notions of dimension all agree and the self-
similar probability measure determined by the system is up to a multiplicative
constant the same as the Hausdorff or packing measure restricted to the limit
set.

The self-similar probability measure m also has several other important
properties, worked out in the papers of Bandt and Graf [BG] and Schief [Sch],

(i (X) Ny (X)) = 0,3 4,5 € Li #7 (1.11)
and for Borel subsets, A4, of X
mlps(A)) = rém(A). (1.12)
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2. MEASURES AND DIMENSIONS

Let me recall the main geometric measure theoretic properties I am dis-
cussing here.

Let ¢ > 0. The ¢t-dimensional outer Hausdorff measure of A is given by
HY(A) = lin}) H(A)

where

HYA) = inf{z (diam A;)")},

and the infinum is taken over all covers {4, : ¢ > 1} whose diameters are < e.
The t-dimensional prepacking premeasure I1**(A) is given by:

II*(A) = m IT*(4),

where

117 (4) = sup{ > (2r:)"}

and the supremum is taken over all e-packings of A4, i.e. families {B(z;, ri)}o2y
of pairwise disjoint open balls centered at points x; of A with radii r; <e.

The t-dimensional outer packing measure is

0'(A) = inf {}: H*t(Az-)} ,
We have the fundamental inequality:
H'Y(A) <IT*(A).
The Hausdorff dimension of A is defined by:
dimg(A) = HD(A) := inf{t : Hi(A) = 0} = sup{f : H;(A) = o0},
and the packing dimension of A is given by

dimp({A4) = PD(A) := inf{t : I[,(A) = 0} = sup{t : [I;(4) = oo}

Remark. Let me mention here something about the awkwardness of the
definition of packing measure and dimension. In a very real sense there is no
way to simplify the two stages, prepacking and then packing, involved in the
definition. I mean this in the following sense. Although it is possible to give a
one stage defintion of packing measure, there will always be some higher order
quantification involved. In fact, although Hausdorff dimension regarded as a
function on the space of compact subsets of X is Borel measurable, Mattila and
I, in [MaM], have shown that the packing dimension is not Borel measurable.
The packing dimension function is measurable with respect to the o-algebra
generated by the analytic sets.
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We shall also mention the upper and lower box counting or Minkowski dimen-
sions:

. B . log N(A€)

dimp(A4) = BD(4) = h?ifélf —loge

a“gaB(A) —_ "Ewﬁ(A) = limsup w
es0 —loge

where N (4, ¢) is the minimal # of balls with radius < € needed to cover A.

The following two inequalities concerning these dimensions are the only in-
equalities which hold in general:

dimy(A) < dimp(A) < %B(A)

dimgr (A) < dimp(4)

My terminology follows fairly closely that given by Falconer [Fal,Fa2] and
Mattila [Mat]. However, I use II in connection with packing measure rather
than P because P is used in this paper to denote the pressure function.

Remark. S.J. Taylor [Tay] has made a tentative working definition of a fractal.
A set J is a fractal(in the sense of Taylor) provided dimg (J) = dimp(J). There
is really no exact definition of a fractal, but for technical purposes, this is a
reasonable one. However, we shall see that the limit sets discussed here are
not always fractals in this sense. Indeed, one of the main points of our theory
is that there is a class of these systems, the regular systems, for which the
limit set possesses a natural invariant measure, the conformal measure. For
these systems, this measure has stronger stability properties than either the
Hausdorff or packing measure.

3. CONFORMAL ITERATED FUNCTION SYSTEMS: THE SETTING

Here is the generalization of the iteration of finitely many similarity maps.
Let X C RY be nonempty, compact and regular: X = cl(U), where U = Int(X).
By & conformal iterated function system (c.i.f.s.) with seed set X, we mean a
family of maps, S = {; }ier, where I is a countable set satisfying the following
6 properties:

(1) for each i € I (the index set I may be infinite), ; is an injective map
of X into X,

(2) the system S is uniformly contractive on X :

35 < 1 Jpula) — 05 ()] < slz -9,

where | - | is the distance function.
Before listing the other properties, let us fix some notation and make some
initial comments concerning the limit set of this system.
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Notation. For each finite word 7 = (71,... ,7%) € I" = U ,I", let

Pr = Py OPr, Q- OP .

We denote the length, k, of v by |r|. Note that if w € I*®, then
diam (@, (X)) £ s™(dlam(X)). (3.1)

Let # be the coding map from the symbol or coding space, Q@ = I, into X
such that

{r(w)} = 3 Pujn(X), (3.2)

Then 7 is a continuous map from the coding space onto J :== #(I°). We define
the limit set of the system S to be this set .J. The set J is “self reflexive” in
that it satisfies:

T=J [)eunX)=Jwi(J). (3.3)

wel*e n=1 el

Remarks. First, unlike the iteration of finitely many contraction maps, the
set J need not be compact and there are several possible sets W satisfying
W = Uere;(W). In fact, there may be no compact set W satisfying this
invariance property. However, it is natural to take for J the image of the coding
space, since this definition agrees with the finite case and the set J is the largest
set satisfying (3.3). Second, if the alphabet I is infinite, the set J could be very
complicated in the descriptive set theoretic sense. Indeed, the middle expression
for J in (3.3) shows that J is the kernel of a Suslin scheme, or equivalently, J
is the continuous image of I, where we give I the discrete topology. This is
the very definition of an analytic set. So, without some additional assumptions
J could be very complicated.

Question 3.1. Assuming only conditions (1) and (2), is it possible to obtain
an analytic non-Borel set as a limit set?

We assume, in addition, that S is a conformal system:
(3) The open set condition (OSC) is satisfied: if U = Int(X), then

(4) There is a connected open set V' in R? with V' O X such that each
; extends to a C'T¢ diffeomorphism on V and is conformal on V' : @;(z) is a
similarity map for each z ¢ V and i € I.

Condition (4) automatically holds if the maps ¢; are similarities. However,
at present we need this condition in the general conformal case. Next, we need
some geometric regularity of the seed set X.
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(5) Cone condition: Ja, 1 > 0 such that for every z € 80X, there is an open
cone with vertex z, direction vector u,, central angle o and altitude [ such that

Con{z,ug, o, 1) C Int(X).

Let us remark the geometric condition (5) can be relaxed as indicated in
[MU] to the neighborhood boundedness property given in [GMW].

Under these 5 assumptions, the limit set J cannot be too complicated at
least in the descriptive set theoretic sense.

Theorem 3.1. For each n, the family {p,{(X) 1w € I"™} is pointwise finile in
the sense that for each x, there are only finitely many w of length n such that
T € p,{X). Moreover, the union and intersection can be exchanged in (8.8).

Thus,
J = m U Pu (X}, (34)

n=lwel™
and the limit set J is always an Fys set.

In {MU], we give an example of a system S such that J is not a G set.

Our final assumption is the :
(6) Bounded Distortion Property (BDP): There is a K > 1 such
that

lo- ()] < Klp.(2)}, (3.5)

for v € I* and z,y € V, where lo_ ()| means the norm of the linear transfor-
mation ¢ (y).

The bounded distortion property is a strong condition in that not only must
(3.5) hold for z and y in X, but in some open set V including X. Of course,
if the initial family consists of similarities, then there is no distortion and one
can take K = 1. Also, in the general case, it is not sufficient to simply have a
constant K which works for all words of length one. Rather, a constant which
works for all finite words is required. Several sufficient conditions are given in
[MU] in order that (3.5) be satisfied including some involving only the initial
family of maps. For example,

Theorem 3.2. Suppose there are constants I > 1 and a > 0 such that

llpz ()] = les @Il < Ll 17y = l,
where the norm | - || is the uniform norm of \@.(x)1| taken over X. Then the
bounded distortion property holds.

Again, notice that a subsystem of a c.i.f.s. is a c.i.f.s. Next is a simple
initial result concerning the dimension of the limit set.

Theorem 3.3. dimp(J) = dimp(J) = dimp(cl(J)).
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Proof. It suffices to show dimp(J) > dimp{J). Fix t < dimp(J) and let
{Y.} be a countable cover of J. Since I*® is a complete metric space, there
is some ¢ and some w € I* such that 7= }(¥,) D {w} x I*®. Thus, ¢,(J) C
m{{w} x I°°) C ¥,. Since II**(J} = oo and ¢, is bi-Lipschitz, P*(Y,) = co.
Thus, Y, T*(Y,,) = co. Consequently, II*(J) = co. Q.E.D.

Note. Unlike finite systems, it can happen that dimp(J) > dimg(J) >
dimpy (J).S0, J need not be a fractal in the sense of Taylor. Several examples
of this are given in [MU]

Before continuing with the development of this theory, let me illustrate
this theory with an example, a system generating a set of complex continued
fractions which includes the usual standard continued fraction development of
the irrational numbers in the unit interval.

4. EXAMPLE: COMPLEX AND STANDARD CONTINUED FRACTIONS

Let X = B(1/2,1/2) be the closed ball with center 1/2 and radius 1/2 in
R?, the complex plane. Let I = {m+in: (m,n) € NxZ}, I is the set of lattice
points with positive first coordinate. For each b &€ I, let ¢, be the conformal
map given by:
1
b+ z

Let V = B(1/2,3/4). For each b, ¢ : V — V and the ¢} s map the disk X onto
a collection of nonoverlapping subdisks. There are several figures indicating how
this system behaves in [GM] and [MU]. The bounded distortion property can
be verified in several different ways, for example, by using the Koebe distortion
theorem itself. Or, as is shown in {MU], one can apply the theory of continued
fractions to represent (., from which one can show that we can take K = 4.
Thus, z belongs to the limit set J if and only if

wp(z) =

b +

1;
by +

by A oo

where each b; € I. Now, actually the system {p }rer is not a conformal system.,
It satisfies all six conditions except condition (1). The system is not uniformly
contractive because goll (0) = 1. However, if we consider the new system {¢p, o
Oy, }by,ba)elx T, then this new adjusted system satisfies all six conditions and
has the same limit set. This sort of adiustment is a common occurrence in
infinite systems.

Let J be the limit set, J is a set of complex standard continued fractions,
and let h = dimy(J). Gardner and Mauldin showed 1 < h < 2 [GM]. We
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will indicate how this follows from the theory presented here. In fact, we will
indicate why 0 = H"(J) and 0 < TI*(J) < oo.

Since a subsystem of a c.i.fs. is again a c.if.s., we can apply the theory to
various sets of standard continued fractions. We will give two examples later,
the set of all continued fractions having only even integers in their expansion
and the set of all continued fractions having only powers of 2 in their expansion.
These two systems have very different measure theoretic properties.

5. MAJOR FEATURES OF INFINITE
CONFORMAL ITERATED FUNCTION SYSTEMS

(1) The lLimit set J need not be compact.

(2) The system may be regular: J supports a unique “t-conformal” probability
measure.

(3) There is a natural pressure function P associated to the system. The system
is regular if and only if there is some(and therefore unique) ¢ such that P(t) = 0.
(4) For any system, dimg (J) = inf{t : P(t) < 0}. If the system is regular, then
0 < HY(J) < o0 and 0 < II*(J) < o0,

(5) If the system consists of finitely many maps, then the system is regular and
m o= ey HP L J = eIt L J.

(6) There is a natural “asymptotic boundary” associated with the system. For
regular systems, the exact inequalities in (4) depend on the “pointwise scaling”
behaviour on the t-conformal measure mon this boundary.

(7) For regular systems, there is a natural ergodic measure m* ~ m. The
Radon-Nikodym drm* /dm is the unique(up to scalar multiples) fixed point of a
Frobenius-Perron operator and is the unique normalized solution of an associ-
ated functional equation.

(8) There are some natural approximating forms for estimating the dimension
of the limit set J.

6. THE PRESSURE FUNCTION

In the case of a finite 7.f.s. consisting of similarity maps, the dimension
of the limit set can be determined by an analysis of the auxiliary function
W(t) given in (1.2). We simply determine the value a such that P(a) = 1. The
situation is somewhat more delicate in a c.4.f.s., since the system is infinite
and we do not have similarity maps. However, there are some related auxiliary
functions which play a corresponding role for a c.4.f.s. These functions yield a
natural topological pressure function. Instead of deriving this pressure function
from the dynamical viewpoint, let us show how it and the other functions
naturally arise geometrically. The natural idea is to estimate the H? measure
of J by using the covers of J consisting of the sets on level n generated by the
system S. So, consider

Su(t) = D diam(pu(X))"

fwj=mn
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By our assumptions, we find there is a constant D > 1 such that
D7, || < diam(p., (X)) < Dlle, I

Thus, ,
D™ 37 et < Sa(®) S DF Y I (6.1)

Jw|=mn Jet{==m2

Let us define a sequence of auxiliary functions:

at) =Y gyl

ol

Note that in case the maps ; are similarities with contraction ratio r;, this
sequence has a simple multiplicative structure:

Yo (t) = (i ()" = O _rH™

i

In case the maps are not similarities or the system is infinite, the situation
is a little more complicated. Notice that the system is infinite if and only if
¥1(0) = oo.

Let § = 85 = inf{t : ¢1(t) < co} > 0 and let F{S) be the set of finiteness of
1. So, F(S) is either [#,00) or (6, 00). Let us gather some basic properties of
these functions. '

Theorem 6.1.

(i) Each function ¢, (t) is nonincreasing.

(i6) nld) = 3, llpill® < K.

(14) 1, 1s strictly decreasing on [f,00), continuous and log convex on
F(S).
("’;'U) Kmt'lpn(t)wk(t) < "pn+k(t) < %(t)%(ﬁ)

Notes. Again, ¥1(f) may be finite or infinite. This dichotomy plays a central
role in determining whether J is “dimensionless” in the sense of Hausdorff or
not. Also, it can happen that ¢ = d.

Unlike the case of similarities, the functions 1, are not multiplicative,
part (iv) shows there is a submultiplicative structure present. Classical anal-
ysis of sequences with this property, naturally leads to an examination of the
topological pressure function:

. . 1 . . 1 ! %
P(t) = Jim ~logn(t) = lim -?,;logg: . - (6.2)
Ti=n

Of course, P(t) = inf{logyp,(t)/n : n € N}.
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Theorem 6.2.

(i) P(t) is nonincreasing on [0,00), strictly decreasing on [0,00), convex
and continuous on F(S).

(i) P(d) <0 and P(0) = co if and only if I is infinite.

To see that P(d) < 0, recall U = Int(X). By the bounded distortion
property

> 3 14, (U) = ] o, @)AL3(@) 2 KPS g, ILAD).
feol=n fwl=n
Thus, for all n,
S el =n(d) < K* (6.3)

fwimn
From this we get P(d) < 0 and also lim;diam{g; (X)) =

If 4 < tg, then 9,(te) = Yyujmn oLl llou 270 < sty (1), So, if
11 {t1) < o0, then
Plts) < (tp —t1)log s + P(ty). (6.4)

Thus, P is strictly decreasing on [0, 00). Also, it follows from the submultiplica-
tive property that

—tlog K -+ log 91 (t) < P(t) < log (). (6.5)
Set
= inf{t : P(t) < 0}. (6.6)
Then 0 < h < d.
Theorem 6.3. dimy(J) < h.

Proof. Suppose h < t. For some n, ¢,(t) < exp(nP(t)/2) = ¢ < 1. Then by
the submultiplicative property, for every k, g, (t) < ¢*. By (6.1), H*(J) = 0.

It is not necessarily so that P(R) = 0. However, h = dimg (J} and to show this
leads to the idea of a conformal measure.

7. REGULAR AND IRREGULAR SYSTEMS AND CONFORMAL MEASURES

Definition 7.1. The system S is regular means there is some { such that
P(t) = 0. (For example, if I is finite, then 0 < P(0) = log card(I) < oo and §
is regular.) Otherwise, the system S is irregular.

We note that if ¢1(6) < 1, then the system is irregular.
Definition 7.2. A measure m is t-conformal for the system S means
(7.1) m{J)=1,
(7.2) m{pi(A)) = [, lios|tdm, for all Borel sets A,
(7.3) m(p:(X) N; (X)) =0, if i # j.
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Remarks. One can think of a t-conformal measure as the measure which
obeys the fundamental theorem of calculus in dimension ¢. Also, it follows that
one can replace ¢ in (7.2) by any w € I* and in (7.3) ¢ and j can be replaced
by any two words w, 7 € [* such that v and w are incompatible.

Remark. If the system consists of finitely many similarity maps, then m is
the self-similar measure induced by the system. For an infinite system {¢;}icr,
consisting of similarity maps with reduction ratios 7;, it was shown in [MW)]
that there is as self-similar measure m satisfying m =3 . rimo (,oi“l provided
1 (t) = 1. This was even proven in the random setting there. This m is the
conformal measure in this case. Of course, if 9 is never equal to 1, there is no
conformal measure.

The general idea is to use a Frobenius-Perron operator as follows. Define
the positive operator L = L, : C(X) — C(X) by

z) =3 lei(@) flpi(e)) (7.4)

If the probability measure m is t-conformal, then m is a fixed point of L*.
One can use the Schauder fixed point theorem to show that some probability
measure, 1 is fixed by L*. The more difficult part is to then show this “semi-
conformal” measure, 7, is actually conformal.

Theorem 7.1. If P(t) = 0, then there is ezactly one probability measure m
which is fized by the dual operator L*. The measure m is t-conformal.

Notice that if m is t-conformal and U = Int(X), then

m@) > Y mp,O) = 3 ] (@) fdmz) > Kt Y e ltm(D).

Jur|=mn jw|=n jw|=n

On the other hand, m(X) = 1 can be expressed as

S mpa@) = X | lel@ldmie) < K 3 Jgl
Jw|=mn jw|=n jwl=n
Thus, for all n,
1< > ool = a () < K*. (7.5)
|ewh=m

Conversely, {7.5) implies P(£) = 0.

Application 7.1. Inequality (7.5) may be used to estimate the Hausdorff
dimension of J, the set of complex continued fractions from Section 4. In MU},
this inequality is used to show 1.2267 < dimpy(J) < 1.89
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The final conclusion here is that the pressure having a zero at ¢ and the
existence of a t-conformal measure are equivalent.

Theorem 7.2. There is a t-conformal measure <= P(t) = 0 <= S is
regular.

In particular, if I is finite, then P(0) = log(card(l)} > 0 and the pressure
function has a zero. In fact, finite conformal systems behave almost exactly as
finite systems of similarities:

Theorem 7.3. If I is finite, then there is a unique number t such thal
P(t) = 0. Indeed,

dimg (J) = dimp{J) m_@_IQB(J) E%BJrﬂt. (7.6)
Moreover, there is some C > 0 such that for all z € J and 0 < r < diam(J),

ot < @) ¢ (7.7)

7t

and there are constants cy,co > 0 such that

el HUL T =m = cII'L J. (7.8)

The inequalities (7.7) were proven by Bedford [Be| and by different means
in [MU]. 1t follows from (7.7) that the measures in (7.8) are equivalent. Also,
H'L J and TTtL J are fixed points of the operator L and (7.8) follows from the
unigqueness of m.

The existence of a conformal measure for finite systems allows us to characterize
the Hausdorff dimension of J.

Theorem 7.4. For any c.i.fs. S, hs = dimg(J) =inf{t = 0: P(t) <0} =
sup{dimg (Jr) : F is a finite subset of I}. If P(t) = 0, then t = dimy(J).

Proof. We have seen in Theorem 6.3 dimy(J)} < hs. For each F € Fin(I) =
{F : Fis a finite subset of I'}, consider the finite system {@; }iep, its limit set Jp
and pressure function Pr. Then dimg(J) > dimy(Jr) = hp and Pr(hp) = 0.
The net of functions {Pr(t) : F € Fin} increases up to P(t). Let n = limp hp.
Then for each F, Pp(n) < 0. Thus, P(n) < 0. Therefore, n = h and dimg(J) =
h. Q.E.D.

There is a simple test for determining when the Hausdorff dimension of a
regular limit set is less than the dimension of the ambient Fuclidean space. In
fact, there is one case in which the conformal measure is easy to determine. In
the next theorem, X is Lebesgue measure and X = User¢i(X).
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Theorem 7.5. If § is a reqular ci.f.s. and A(Int{X)\ X1) > 0, then h =
dimg (J) < d. Conversely, if A(X \ X3) = 0, then S is regular, MJ) = MX),
and AJMX) is the conformal measure.

Application 7.2. For J, the set of complex continued fractions, dimy (J) < 2.

Also, in [MU], we find a sufficient condition for the dimension of the
conformal measure to be A.

Theorem 7.6. If the system has finite entropy, equivalently, if
Yier ~hlog(lef )il < oo , then dimp (m) = h.

Question 7.1. If a t-conformal measure m exists, is it true that dimgy (m) =
t?

8. THE NATURAL ERGODIC MEASURE FOR
REGULAR SYSTEMS, FUNCTIONAL EQUATIONS

For regular systems, we have not yet indicated why the t-conformal mea-
sure is unique. The proof of this is based upon a unique equivalent ergodic
measure. There are at least two methods for deriving this measure. First, con-
sider the probability measure, p, defined on the coding space according to the
condition:

() = fx o fdm. | (8.1)

Since, for each n, 1 = [ldm = [L*(L)dm = 3, [x o, |tdm, u does
extend to a probability measure on I°°. Thus, u is the natural coding measure
on the coding space. This measure is fairly easy to analyze since there is no
overlap in the coding space — there are no serious geometric considerations.
One can now obtain a measure p* equivalent to y, invariant and ergodic with
respect to the shift ¢ on I'® as follows. Let LIM be a Banach limit on I*° and
define y* as follows,

p*([w]) = LIMp o eot(o ™" w])- (8.2)

It is shown in [MU] that this defines the required measure.
In fact,

Theorem 8.1. Suppose P(t) = 0. There is ¢ unigue ergodic measure u* on
I which is invariant under the shift o and which is equivalent to 1. Moreover,
K™t <dp*/du < K*.

This measure may be used to show that if P(f) = 0, then there is only one
probability measure m such that Li;(m) = m; there is only one semiconformal
measure. I note that in the proof of uniqueness of the fixed point of Ly, the
open set condition was not used.
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The measure p* gives rise to an “ergodic” measure on .J equivalent to m
in the following sense.
Let G = {z € J : 3 a unique point w € I°® such that 7n{w) = z}. By the
conformality of m, m(G) = 1. Define the transformation T on G by T(z) =
woz) = m(o(w)). Then T is a 1-1 transformation of almost all of J onto
almost all of J.

Theorem 8.2 Suppose P(t) = 0. Then pon~t =m. Also, if m* = p* o™ 1,
then m* s the unique invariant measure, ergodic with respect to T and with
m* ~m.

We can also obtain the measure m™ directly without using Banach limits.

Theorem 8.3.  For m-a.e. z, lm, .o, L™ (1){(z) = g(z) exists and g =
dm*/dm. In particular,
9(x) = Lo)(z) = > _ los(@)*glpi(=)), (8:3)

for m-a.e. x. Thus, g is a fized point of the operator L, where we consider L
extended to the space of bounded measumble functions. Indeed g 15 unique up
to scalar multiples.

In many cases, but not always, the operator I is almost periodic and the
function g is continuous. In fact, in many cases, ¢ is defined on a larger domain
and g is real analytic.

Also, (8.3) may be regarded as a functional equation. For some systems,
this equation may be simplified and analyzed. For example, in the case of
standard continued fractions: ¢,(z) = 1/(n -+ z), the conformal measure is
Lebesgue measure A, every point has a unique code and m* is Gauss’ measure:

1 1
B = 8.4
m(E) iog?[bgl«{-zcd)\’ (8.4)

and T is the standard geometric representation of the shift. Let me indicate how
we can find g. We have L(g) = g and we know from Theorem 7.5, h = 1 and
the conformal measure is Lebesgue measure on X = [0, 1]. Also, the domain of
g can be extended to (0,00). Thus,

1
Z m+n)29($+n)m (3;+1)29( )*?“9(56"%"1) (8.6)

rp= 1

for z > 0. Thus, g is a solution of the functional equation;

L
z+1)2%\z+1

g(z) —g(z+1) = )- (8.8)

The function g = ﬁ;, is a continuous solution of (8.8). Since we know that the
solution is unique up to a scalar multiple, we get ¢ = 1/log2.
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Let me give one more example. Consider the set, J, of all standard continued
fractions which have only even integers in their expansion. This is the limit set
of the system {w;(z) = 1/1+ 24}$2,. This system is regular, ¢ (1 /2) = oo and
Py (£) < oo for 1/2 < t. Let h = dimp(J). So, 1/2 < h < 1 and g is the solution
of the functional equation.

oe) - 9l +2) = rgmaloyy) (89)

What we know is that there is only one value of A such that the functional
equation (8.9) has a nontrivial continuous solution. This value of A is the di-
mension of J. The continuous solution at this value is real analytic. But, we
have no idea how to find h.

9. STRONG OPEN SET CONDITION, ASYMPTOTIC
BOUNDARY AND SCALING BEHAVIOUR

For finite systems, the conformal measure is, up to a constant, the Haus-
dorff or packing measure. For infinite systems, there is a bifurcation [MU]. The
Hausdorff measure may become zero and the packing measure infinite. How-
ever, there are some basic relationship which remain and some techniques for
determining how large or small the goemetric measures are.

Theorem 9.1. Ifm is t-conformal, then H® < m and dH"/dm is uniformly
bounded. In particular, H*(J) < co.

Theorem 9.2. If m is a t-conformal measure and either I is finite or J N
int(X) # 0, then m << IIt. Moreover, dm/dIl* is uniformly bounded away
from infinity. In particular, 0 < T*(J).

We have not been able to prove this theorem without assuming the strong open
set condition and we do not know whether the open set condition implies the
strong open set condition. This naturally leads to a series of questions.

Questions 9.1.  If the system satisfies the open set condilion, then does
it satisfy the strong open set condition, i.e., can we choose X such that J D3
int(X) # 07 In particular, if the system is finite, does the OSC imply the
508C? Also, if both the Hausdorff measure and packing measure are positive
and finite, then does OSC imply SOSC? Perhaps, if there is a t-conformal
measure, then the OSC implies the SOSC?

It turns out that whether the Hausdorff measure is positive or the packing
measure is finite depends on the scaling behaviour of the conformal measure
m. What T have in mind here are analogues of some theorems concerning the
pointwise scaling behaviour of a measure on a compact set and its implications
for the Hausdorff and packing measure. The following theorems (with perhaps
better inequalities) can be found in the books of Falconer and Mattila.
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Theorem 9.3. Let v be a measure on a compact K C R® with v(U) >0, for
U £ B and open relative to K.
(i) Ifforallz e ACK:

lim sup f/_(_?%ﬂl >, then H'(A) < Cc12mtu(A).
7o)

(ii) If forallz € AC K :

lim sup Z(—B%—’I—)l <C, then  HYA) > C127%y(A).
T30

Similarly,
(iii)} If for allz € AC K :

lim inf @%w <O, then  IIH{A) > C 27 (A).

and
(iv) If forallz € AC K :

>, then  ITF(A) < C7t27tw(A).

We want to apply results like these to the conformal measure m to obtain
estimates on the Hausdorff and packing measure of J. However, if the system
is infinite, J is not compact, and it turns out that we must prove some theorems
similar to those just stated but not at a fixed point z of J but rather as we let
z approach or actually belong to the “asymptotic boundary” of J.

Definition 9.1. The asymptotic boundary X (oo) of J is defined as the set
{z : every neighborhood of x meets infinitely many level one sets, p;(X)}.

Of course, X (co) = @ if and only if the system is finite. In the case of standard
continued fractions the only point of X (co) is 0. The following theorems are
proven in [MU].

Here are two theorems concerning the scaling behaviour of m as it relates fo
Hausdorff measure.

Theorem 9.4. Ifm is a t-conformal measure and Jz; € X (oo} and positive
numbers r; such that

hm sup w - ,
j—roo J

then HH(J) = 0.
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Application 9.1. For complex continued fractions: Hy(J) =0

Theorem 9.5. Let m be a t-conformal measure. Suppose 3L > 0,7 > 1 such
that for i € I and v > vdiam(p;(X)), Ty € @;(V) s.t. m(B(y,r)) < Lrt. Then
H{(J) > 0.

Next, we have two theorems corresponding theorems concerning packing mea-
sure.

Theorem 9.6. Let m be t-conformal. Suppose 3z; € J and r; > 0 s. t.
B(zj,rj) C X and
m(B(Zj,T"j))

Hminf
o0

= (),
then [1H{J) = oo.

Theorem 9.7. Let m be t-conformal. Suppose 3L > 0,77 > 1 such that if
ielandl >r > ydiem{pi(X)), y € @(V) s.t. m(Bly,r)) > Lrt. Then
(J) < co.

Application 9.2. For complez continued fractions

0 < IL(J) < o0.

10. ABSOLUTELY REGULAR, HEREDITARY
REGULAR AND IRREGULAR SYSTEMS

Definition 10.1. A4 cofinite subsystem of a c.i.f.5. {@i}tics 18 a system
{¢i}ier\r, where F is a finite subset of I. A system is hereditarily regular
means every cofinite subsystem is reqular. A system is absolutely regular means
every subsystem is reqular.

There is a very simple means of determining when a system is hereditarily
regular. -

Theorem 10.1. An infinite system S is hereditarily regular if and only if
P(0) = oo <= 9(f) = co. If S is hereditarily regular, then h > 6. Moreover.
if {i}ier is hereditarily regular, to € I, Ip = I\{io} and Jy is the limit set
generated by {v; }icr,, then dimy (Jo) < dimg(J).

Application 10.1. For complez continued fractions, 8 = 1 and () = oo.
Therefore, dimg (J) > 1.

Example 10.2. Consider the system {p;(z) = 1/(z + 2%) }ien. The limit set,
J, consists of all continued fractions which have.-only powers of 2 as partial
denominators. It is easy to check that this system is absolutely reqular, 6 = 0.
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Using scaling behaviour of Section 9, Urbariski and I show that 0 < H RJ) < o0
and 117(J) = co.

Example 10.3. Consider the system {p;(z) = 1/(x + 2i)}sen. The limit
set, J, consists of all continued fractions which have even integers as partial
denominators. It is easy to check that this system is hereditarily reqular. Again,
using the scaling theorems of Section 9, Urbariski and I show that H"(J) =0
and 0 < TI*{J) < oo.

Theorem 10.2. If a systern S is irregular, then either measure H9{J) or
[9(J) is either 0 or infinite for every gauge function g of the form th (1),
where L{(t) is slowly varying.

Theorem 10.2 is proven by showing that if such a measure were positive and
finite then because of the slowly varying property, the operator L would have a
fixed point and thus a conformal measure would exist. We do not know whether
an irregular limit set must be totally dimensionless in the sense of Hausdorf.

Question 10.1. Let J be the limit set generated by an irregular c.i.f.s. Is it
true that for every gauge function g either measure H9(J) or I9(J) is either
0 or infinite?
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