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Abstract, We investigate the behaviour of random homeomorphisms of the circle
induced by composing a random homeomorphism of the interval with a randomly
chosen rotation. These maps and their iterates are a.s. singular and for each rational
number r in [0, 1) it is shown that there is a positive probability of obtaining a map
with rotation number r. For a ‘canonical’ method of producing these maps, bounds
on the probability of obtaining a fixed point are obtained. We estimate this probabil-
ity via computer simulations in three different ways. Simulations are also carried
out for two periods. It remains unknown for this method whether a rational rotation
number is obtained a.s.

1. Introduction

In this paper, we investigate the behaviour of random homeomorphisms of the unit
circle. The idea is to produce a homeomorphism of the unit interval lift it to a
homeomorphism of the circle and compose it with a rotation of the circle also
chosen at random. Such a homeomorphism, F, of the circle may be expressed as
F(e™)y = 2" where g is a lift of F. We will take g to be a homeomorphism of
R onto R satisfying g(t+1)=g(f)+ 1, forall t and g(£) = f(#)+ ¢, for0=1t=1, where
f is a strictly increasing homeomorphism of [0, 1] chosen with respect to some
probability measure on the space of autohomeomorphisms of the unit interval and
¢ is chosen independently and uniformly with respect to Lebesgue measure. By and
large the behaviour of the circle homeomorphism is governed by the homeomorphism
of the unit interval employed. Thus, most of this paper is devoted to properties of
the interval homeomorphism which reflect to the circle map. For example, in
Theorem 10, from the a.s. singularity of the interval homeomorphism, we derive
the a.s. singularity of the iterates of the circle map F. Our main example of this
procedure is the ‘canonical’ methed, described in § 4, of producing a homeomorph-
ism of [0, 1]. This method was first given by Dubins and Freedman for randomly
generating distributions on [0, 1] [2]. It was studied from the viewpoint of a random
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homeomorphism of [0, 1] by Graf et al [3]. We will rely on several results from
these works. We present some partial results concerning the still open problem of
whether these circle homeomorphisms have, with probability one, a periodic point,
or, equivalently, whether with probability one these homeomorphisms have rational
rotation number. At least, we show that for each rational number in [0, 1] there is
a positive probability of obtaining a map with this rotation number. We also give
some bounds on the probability of obtaining a fixed point and some computer
studies of the probability of obtaining a fixed point or a point of period two. There
are some interesting issues here concerning these simulations which we discuss in
§ 9. Some related numerical problems have been discussed in [4] and [5].

2. Random homeomorphisms or distributions by scaling

Let {hy: d € D} be a family of independent Borel measurable random variables
indexed by dyadic rationals from (0, 1). The distribution of h, will be denoted by
7, and the system of Borel measures 7= {74: d € D} will be called a dyadic transition
kernel. The random non-decreasing function Y, :D~[0,1] is constructed induc-
tively by scaling: ‘

Y,(0)=0, Y.(1)=1

If Y,(d) is already defined for all d of the form d = i/2"" (0=i=2""") then, for
every odd i, 1=i=2"—1, we let

Y, (i/2") =(a~ 3)hi/2"(ﬂ)) +B,
where a = Y, ((i+1)/2"), B= Y, ((i—1)/2"), which have already been defined in
the previous steps. Clearly, each Y,, is strictly increasing on > provided for each
d, 74({0,1})=0.

In the sequel we will assume that almost every Y, can be extended to a homeo-
morphism of the unit interval. A condition sufficient for that is given in [1, cor. 5.1},
and we will quote it here in the current notation without a proof. This condition is
similar to the ‘uniformly centred’ condition given in [3, p. 256].

THeorEM L. If for every & > 0 there exists a 8 € (0, 1/2), such that 74((8,1—8)) >1—¢
for every d & D, then almost every Y,, can be extended to a homeomorphism Y, :[0,1]-

{o, 1].

The distribution on the space of all homeomorphisms of the unit interval generated
by the above scheme is determined by the transition kernel 7 and it will be denoted
by Q,. Itis not hard to see that Q, is a Borel measure when the space of homeomorph-
isms is endowed with uniform topology. Of course, this space of autohomeomorph-
isms of [0, 1] is precisely the space of probability measures on [0, 1] which are
topologically equivalent to Lebesgue measure.

3. Marginal distributions of Q,

The techniques used in this section are similar to those used in [3] and they are
based on the observation that for a given value z of Y,(1/2), the conditional
distribution of Y, (x)/z with x <1/2 is the same as that of ¥, (2x) in the scheme
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with the new kernel 7; = 7,4,,, and hence it is independent of z. For x >>1/2 we then
apply the reversed scheme Y, (x)=1—Y,(1—x).

THEOREM 2. If 7y, is non-atomic, so is the marginal distribution of Y, (x) for every
xe(0,1).

Proof. Note that Y, (1/2) has the distribution 7,,,. If 0<x <1/2 we have

P(Y, (x)=y)= J’ P(Y,(x)=y)| Yo (1/2) = 2) dry5(2)

e j P Y, (x)/ Y., (1/2)]1=y/z) dry(z),

since, as previously observed Y,(x)/Y,(1/2) is independent of Y,.{(1/2). The
integrand equals zero, except at at most countably many points, so if 7y, is
non-atomic, so is the distribution of Y,,(x). The proof for 1/2<x <1 now follows
by applying the above to the reversed scheme Y,. &

In Theorem 6.6 of [3] it was shown that for the canonical scheme, the marginals,
F,, are absolutely continuous provided d is a dyadic rational. The next theorem
extends this result to more general schemes and for all values of d.

THEOREM 3. If 7y /2, 7174 and 73,4 are non-atomic and the distribution function, F, (),
has a continuous and bounded derivative on (0, 1), then for each x€(0,1), F,, the
distribution of Y.,(x) has a continuous derivative on the open interval (0, 1) and
therefore, is absolutely continuous with respect to Lebesgue measure.

Proof. As in the proof of Theorem 2, for 0<<x <1/2, we have

F(y)=P(Y,(x)=y)= FI/Z(y)+J P([ Y, (x)/ Y,(1/2)]=y/2) dy/2(2)

== F1/2(y)+J sz(yfz)ﬁ/z(z) dz,

where f,, is the density of 7y,,, and E,, denotes the distribution function of Y, (2x)
in the scheme with the kernel 7, = 7,,,. Note that by Theorem 2 and our assumptiofs,
F,, is continuous. Thus, for 0<y <y+h=1,

[Fu(y+h)— F ()WY h={Fy2{y + )~ Fy2(y)]/ h

+h , E ((y+h)Y 2)f1y2(z) dz

—h™! ﬁz;:()’/*"a')ﬁ/z(ﬂ dz.

= [FI/Z(y +h)— Fi/z(J’)]/h

+h! , [Fo({y+ h)/ 2) — Fax(y/2)1f1/2(2) dz
| B/ fiale) de

vy

= A(h)+ B(h)—-C(h).
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If we let h >0, then both A(h) and C(h) converge to fi,2(y), and they cancel out.
The term B(h) can be transformed to

1 F, ((y+h)/2)
=i [ | fuale) dr e
y+h J Fyly/2)
1 (y+hy FZHO C, C
= h! J J. f1/2(Z) dz dt—(“'l——““z‘) maxf1/2>
Fply+h) Jy/FSHO hh

where C,=h-(1-Fo(y/(y+h)) and Cy=(h/(h+y))(Eoxly+h) = Fp(y)) (see
Figure 1).

Note. If F,.(z) fails to be invertible, we assign F5.(¢) to be the supremum of the
inverse image set F5.(¢). This can only happen for countably many #’s.

Fdy+h)
sz(}’}

FiGURE 1

Now, both C,/h and C,/h go to zero as h -0, hence we only need to consider
the double integral, which can be written as

Jﬂ 1 l:}"—;aé-l(t) j*y/F;;(r)+h/!?“;§{r)
X
h

fl/Z(Z) dZ} dt.

Fau(y+h) Fou(t) ¥/ F5i (1)
For every fixed t, the expression in square brackets converges to fr2(y/ E3H1)
(fundamental theorem of calculus), which is bounded, so the convergence holds

when integrated with respect to t. Thus, we finally obtain

1 1 y
»= [ f () | e M
=) e \Fim
Clearly, f, is continuous on (0, 1]. For 1>x> 1/2 we apply the reversed scheme
Y, and find that f, is continuous on [0, 1). 0

Remark 1. Some condition is needed for F.(0) to exist. For example, if each 74 = A,
Lebesgue measure on [0, 1], then F; (y) =y —ylogy.
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Remark 2. That some condition is needed on 1y, and 5,4 to insure Fj,4is continuous,
can be seen by considering the example where 7/, is Lebesgue measure on [0, 1]
and 7/, is pointmass at 1/2. In this case, F},, is 2 on (0, 1/2) and 0 on (1/2,1).

Remark 3. Using the same techniques as in the proof of Theorem 3, it can be shown
that F, is absolutely continuous with respect to Lebesgue measure assuming only
that 7,,, is non-atomic. However, in this case, F, may not exist at countably many
points.

THEOREM 4. Let n=1. If, for each 1=k=n+1 and 1=i=2"—1, the distribution
function of 7.« is differentiable at least (n-—k+1) times on (0, 1) with the last
derivative continuous and bounded, then for each x€(0,1), F, e C"N(0,1)). (By
convention, the Oth derivative of F is F.)

Proof. As before, we first consider 0<x <1/2, then for 1>x>1/2 the reversed
scheme will be employed. For n=1, Theorem 3 applies. Suppose then that n=2
and the hypotheses are satisfied. We start our calculations with the observation that,
since 7,5, 7174 and 75, satisfy the assumptions given in Theorem 2 for 7, ,4,71 2 and
7314, the existence of the densities f2.(y) is guaranteed. Thus,

f(y)= J. = fox (~) fija(2) dz.

This can be obtained, e.g., from formula (1) by substituting z=y/ F3M1). Further,

o[22 ]

Integrating by parts, we obtain

£ =i L1 [ (D) 1)

+yt J Fiy (;Jj) SfipA2)z dz. (2)

¥
Notice that by the first formula in the proof of Theorem 3

1
J’W1 J Fz;: ('JZ";) fl/z(z) dz;J’MI[Fx(}’)”Ft/z(Y)]-

¥
Since f,, is bounded, we can set

y2(2)z=af*(z) - b,
for some density function f* and constants a, b. Thus,

y! J F,, (f) fidD)zdz=ay ' [F¥(y)— Ft,(»)]1-by '[FE*(y)-»],

¥
where F* and F** are the marginat distribution functions in the schemes in which
71,2 is replaced by the distribution with density f* and by Lebesgue measure,
respectively. Applying the precedmg two integral formulas, formula (2) takes the
form

£ = 1200+ ¥y [ Fly) = Fry2(p) = Fox () fi2(1) + a(FE(y) — Fia(y))
—b(F¥*(y)-»)]. (3)
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Suppose that the theorem has been proved for n—1. It can be seen, by the
induction hypothesis, that each of the terms on the right-hand side of the formula
(3) is in C"7V((0, 1)), as desired. O

In the sequel we shall need the joint continuity of both F,(y) and f,(y) as functions
of two variables x, y. A sufficient condition for this follows.

THEOREM 5. Let ,,, be non-atomic. Then F,(y) is jointly continuous on (0,1) x[0, 1].
If, in addition, the distribution function of ©,,, has a bounded derivative and 7,4 and
T4/4 are non-atomic, then also f.(y) is jointly continuous on (0, 1) x(0, 1).

Proof. For x;, x,€(0,1), x; <x,, we have

Fxl(}’)“‘sz(J’)zp({w: Yw(x1)<ya Yw(x2)2y})a

with the set on the right decreasing as either x, increases or x, decreases. Let x,,
x, converge monotonically to a common limit x. We obtain

Fo(p) = Fu(y) = P{w: Y, (x~) =y, Yo(x+) =y} = P{Y,(x)=y}).

By continuity of almost every Y, the last equals zero. Thus, F.(y) is continuous
for x, and also, by Theorem 2, for y. But F,(y) is monotonic in each direction, and
so, it is jointly continuous. Now, if the other assumptions on 7y, 712 and 75,
hold, we can use the formula (1) for f,{y), every term of which is seen to be jointly
continuous. 1

4. Remarks on the canonical scheme

Let us consider the canonical example, when 7, = A, Lebesgue measure, for each
d € D (see [3], the ditribution P,). First of all observe that the scheme is symmetric,
i.e., the distribution of Y, is the same as that of Y. Also, if the value z of Y, (1/2)
is given, the conditional distribution of Y,(x)/z for x<1/2 is the same as the
marginal distribution of Y,(2x), hence we can write F,, = F,,. These properties
have been discussed in [3] as ‘time reversal invariance’ and ‘amalgamation invari-
ance’. Furthermore, we have f1,,(z) =0, so a =b =0, and formula (3) reduges to

L) =y [Fup(y) - Fox(9)] (x<1/2, y€(0,1)).

Also, by Theorem 4, we can see that F, is in C™((0, 1)) for each x € (0, 1).

Let de D. So, d=Y""] d;/2", with d,,,=1. We also set dy=0 and we denote by
W, the 0-1 word for d: W, =(dy, d,,...,d,). Also, we let d,=|d;~ d,_,| for each
i=1,2,...,n and we denote by W, the associated 0-1 word (d;, d,,..., d,).

THEOREM 6. Let d be a dyadic rational in (0, 1) and y,€(0,1). Then
it |
Jalyo) = L{fl} " jy&"z’ o L(iﬂ T dyn. .. dy, dy,, (4)
where (dy, d,,...,d,)=W,and y¥ =y, yV=1-y,
Proof. We see that for n =0 the right-hand side of (4) equals 1, so the formula holds

ford=1/2. Let d be given, W, =(d,, ..., d,) and suppose the theorem has aiready
been proved for all dyadic rationals whose words are shorter than W;. First, assume
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d <1/2, so that d,=d, =0, and hence d, = 0. By the amalgamation invariance, we
have

1 1

 Foa(re) ) dz=J Vi faa ) .

Yo

Jalyo) = J'

Yo
The desired formula now follows by noticing that W,,; = (d,, d,, ..., d,) and hence
W,y =(d, d,...,d,). Now suppose that d >1/2. Thus, d,=1 and d,=1. By the
time reversal invariance of the scheme, we have

Ja(yo) = fra—a)(1 — yo).
But, (1-d)<1/2 and W,.4.)=(0,1-dy,1-4d,,...,1-4d,). Thus, W,y_sH=
0,d,, ds,...,d,) and it differs from W, only at the first position. Since the integral
formula (4) has already been proved for f;.4)(¥o), we now produce one for f;(yo)
by substituting y, with 1—y,, which corresponds precisely to the change of the
index d,. O

CoROLLARY. By a straightforward integration we obtain

L) =(-Iny)" /(=11 and fio(y)=(In1-y)""/(n-1)L
For other dyadic rationals the explicit formula for f;(x) does not exist, since it involves
integrands of the form In (_1 -z} z, e.g.

1
Sas(y) = j —In(1—z)/zdz,

which is not a standard function.

Remark. Since, by Theorem 5, f,.(y) is jointly continuous, formula (4) can be extended
to all xe(0,1), if we agree to understand the corresponding infinite composition
of integrals as the limit of the appropriate multiple integrals.

5. Connections to Markov processes

Consider another way of producing random homeomorphisms. Namely, let {Z,},.,
be a stochastic process with trajectories continuously increasing from 0 to o0 almost
surely. A random homeomorphism of the unit interval is obtained from a trajectory
Z,(t) by switching to the exponential scale for both time and position: Y,(x)=
exp (—Z.,(—log, x)). If {Z,} is a Markov process (with independent increments),
this property now turns to independent quotients for Y(x), i.e., Y, (x:})/ Y, (x,) is
independent of Y, (x;), whenever x; > x,. Furthermore, if the Markov process is
uniform, then Y(x) also has uniform quotients, i.e. Y,(x,)/ Y, (x,) has the same
distribution as Y,(x,/x,). For example, the classical I'-process (with marginal
densities v,(z) = (I'(#)) 7! e""2'"") is easily seen (by the substitution x =2"", y=e™")
to correspond to the random homeomorphism with marginal densities

L) =[(=In y)7°&*"1]/T'(~log, x).

As we recognize, for x=2"" it is the same formula, as we have obtained for the
canonical scheme generated by the Lebesgue kernel. Morover, the canonical scheme

observed only at the points x =27" does have independent and uniform quotients,
so both examples generate the same joint distribution for {¥,--: n=0,1,...}.
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As a matter of fact, the entire distribution Q, generated by any dyadic transition
kernel can be obtained by an inductive construction in every step of which we
independently pick a trajectory of a certain discrete time Markov process (possibly
different in each step), rescale it by first switching to exponential scales and then
transforming linearty to make it ‘fit” in between two already constructed dots on
the graph of Y. Such constructions with the same uniform Markov process used
in each step correspond to uniform kernels. Random homeomorphisms generated
by dyadic kernels usually do not have independent quotients at points other than
27" thus they cannot be obtained from continuous time Markov processes, as
described in the beginning of this section.

6. The iterates of a random homeomorphism
Throughout this section we will study the iterates Y7, of the random homeomorphism
Y,, generated by a dyadic transition kernel .

TueEoreEM 7. Let n=1 and x€(0,1). If 74 is non-atomic for each d € D, then the
distribution of the nth iterate Y ,{(x) is non-atomic. .

Proof. For n =1, Theorem 2 applies. Suppose the statement holds for each iterate
of order less than some n>1. Consider the initial trajectory T=
{x, Y, (x), Y2(x),..., Y2 '(x)}. By the induction hypothesis, with probability one,
none of the elements of T equals x (except the first one) and hence T consists of
n distinct elements, and Y7 '(x) is not a dyadic rational. Thus, if we denote

Aue={o: T (i/25 (i+1)/25) ={Y. ()},
we have
P( U A;’k) e},
k=i, 0si<<2

Now, it suffices to show non-atomicity of the distribution of Y[ (x) conditioned
with respect to each A;;. So, fix some k and i. It follows from the construction of
Y., that the two random functions ¥

Yio=(Y,~a)/(B~a)
defined on [i/2*, (i+1)/2], where a = Y,,(i/2%), B = Y, ((i+1)/2*) and
Yo Y, restricted to [0, i/2%]u[(i+1)/25 1]
are independent. Notice thatuwhether € A, can be verified by only looking at
Yo" and because of this, Y. and Y3 remain independent with respect to the

conditional probability given A, . Also, notice that then the value z of Y™ (x), as
well as that of « and 8 also depend only on Y3 Thus, for each y€[0,1],

P(Yo(x)=y|Aix) = J. P(Y2(z)=(y—a)/(B~a)) dP(z o, B|Ax).

Next, since each 7, is non-étomic, so is 74, where d, is the midpoint of the interval
[i/2% (i+1)/2%], hence, by Theorem 2, the integrand equals zero for every triple
(z, a, B). O



Random circle homeomorphisms 449

CoROLLARY. With the assumptions of Theorem 7 satisfied, the point x is periodic for
Y., with probability zero.

The singularity of Y, has been studied in [3] for uniform kernels. In Theorem
5.20 there, a necessary and sufficient condition for Y7,(x) to equal zero almost surely
for each x [0, 1] is given. By the same argument as used in the proof Theorem
5.20, one can verify the following in the case of a general kernel =

Lemma 1. If there exists an a, b> 0 such that for every d € D

(i) jlnydfrd(y}<-ln2ma, In(1—-yp)drg{(y)<-In2—a,
and
(ii) J (Iny)* dry(y)<b, | (In (1—y))* dry(y)<b,

then, for every x [0, 1], Y. (x)=0 with probability one.

THEOREM 8. If, for each x € [0, 1], Y,{x) = 0 with probability one, then for every n =1
and x€[0,1]

(Y)Y (x)=0 almost surely.

Proof. Fix some n=1 and x € [0, 1] and assume the statement has been verified for
all iterates of order less than n. Let B, ={Y,: Y {x)=x}, for I=m<n, and let B,
be the complement to the sum of the B,’s. We will prove the assertion relatively
to each B,, and B,, consecutively. For m < n we have, by the chain rule

(Yo (x)=(Y5 ") (x)-(YZ)(x)
. with both the terms on the right almost surely equal to zero. Within B, we first

partition it into the subsets A;; and define Y® and Yo in the same manner as in
the proof of Theorem 7. Now apply

(Yo (x)=(Ya ) (x) Yi(2),

where z= Y™ (x). The first factor equals zero almost surely by the inductive
assumption. Thus, we only need to check that Y[ (z) exists (as a finite number)
with probability one. Again, within each A, the value of z depends only on Yo,
while the existence of Y/, at a given z is determined by Y™ and it exists with
probability one (in fact Y, (z) equals zero almost surely). The application of the
independence of Y7 and YJ™ completes the proof. [

Consider an arbitrary Borel probability measure p on [0,1]. The subset
{(x, Y,,): Y’ (x) =0} of the appropriate product space is (by the nature of its defining
condition) Borel measurable. Thus, by applying Fubini’s theorem, we easily obtain

i

CoroLLARY. With the a.;sumptions of Theorem 8 fulfilled every iterate Y, of almost

every random homeomorphism Y,, is singular with respect to a given Borel measure p
on [0, 1]
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7. Random rotation numbers

A random homeomorphism of the circle, Z,, is obtained from a random homeo-
morphism of the interval, Y,,, by identifying the endpoints of the interval and then
by shifting Y, about a randomly chosen number ¢, €[0, 1):

Z,(x)=(Y,(x)+c,) mod 1.

We will assume that Y,, is chosen with accordance to the distribution Q, generated
by a dyadic transition kernel =, as described in § 2, and ¢, is selected independently
of Y,,, with some distribution g on [0, 1).

It can easily be verified that all the theorems of § 6 hold, by the same proofs, if
Y, is replaced by Z,, for some fixed c¢. Thus, by integrating with respect to u, we
obtain the following statements.

TueorEM 9. Let n=1, xe(0,1). If 1, is non-atomic for each d € D, then for an
arbitrary distribution u of c,,, the nth iterate, Z,,(x), has a non-atomic distribution.
If n>1 and u does not have an atom at zero, the same also holds for x =0.

COROLLARY. With the assumptions of Theorem 9, for each x, x is almost surely not
a periodic point for Z,,.

TueoreM 10. If, for each x€[0, 11, Y. (x)=0 with probability one, then for every
n=1 and x [0, 1)

(Z5)(x)=0 almost surely.

The rotation number p(Z,) will be considered (see [6] for the definition of the
rotation number). In fact, we will view the rotation number modulo one, so by
saying, for example, that p(Z) is continuous and non-decreasing we admit the jump
from values close to one down to zero. We will need the following properties of
the rotation number:

(a) p(Z) is rational (p = m/n) if and only if Z has a periodic point with period
n.

(b) The map Z - p(Z) is continuous with respect to the uniform topology. ?
(c) For a fixed homeomorphism Z, the map pz(c)=p(Z-c) is a continuous,
non-decreasing transformation of [0, 1) onto [0, 1).

THEOREM 11. Suppose that u, the distribution of c,,, is non-atomic and with full support
on [0, 1), and that for each d from an infinite set )'< D of the dyadic rationals, 7,
is not a point mass, then the distribution of p(Z,) has an atom at each rational and
it has no irrational atoms.

For the proof of this theorem we will need several simple observations. Recall
that the random homeomorphism of the interval, Y,,, was obtained by scaling from
a family of independent variables h,. Every realization of Y, corresponds to a
realization h, (@) of these variables. It can be seen that Y, € supp Q, (the topological
support) if and only if hy(w)esupp 74 for each d € D. We can now prove the
following.
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LeMMA 2. For each rational m/ n, we can select a homeomorphism Y, of the interval
and c,€[0,1) such that Yoesupp Q., p(Yo+co)=m/n and (Y,+c,)" is not the
identity.
Proof. Choose an arbitrary Y, esupp Q.. By (¢) we can find ¢€[0, 1), so that
p(Y, +co)= m/n. If it happens that (Y, +¢)" is the identity, we have to change
Y,, slightly. Let x, be a cluster point of D'. We choose an x not on the (finite) orbit
of x,, and find an interval (i/2%, (i+1)/2*) disjoint from the orbit of x and containing
some d € D'. Now, from the scaling scheme it is seen that altering the value of hy
from h,(w) to hy(w)+e changes Y, to Y, only on the interval (i/2% (i+1)/2%),
and hence it does not affect the trajectory of x. So, (Y, +c)"x=x and, by (a)
p(Y.+¢)=m,/n But, by (b), p(Y,+c¢) is a continuous function of ¢ and since it
only assumes rational values, it must be constant. Thus, p(Y,+c¢)=p for each s
Finally, we can choose &0, so that hy(w)+ e still belongs to supp 7,. If, for
example £ >0, then (Y, +¢)"d > (Y, +¢)"d = d, hence (Y, +c)" is not the identity. .
0

Proof of Theorem 11. Let p=m/n, and let Y,+¢, be as in Lemma 2. We have
(Yot ¢o)"xe=Xo and (Yo+co)"x; # x, for some xo, x;€[0,1). For example, let
( Yo+ co)"x; < x;. Since both (Yy+co+£)"x, and (Yy+cot+e)"x, are continuous
increasing functions of &, for sufficiently small &, we have

(Yo+ ot e0) X9 xg, (Yotooteg)x <x.
Thus, (Yy+co+g0)" has a fix point and hence, by continuity, p(Y,+cy+ep) is
rational. But the same holds for every 0= & = g,, hence, by continuity, p(Y,+ co+
&) = p. Now for some open neighbourhood U of Y, and an open interval V around
Cot £q we have

(Y+e)' x> x5, (Y +e)x,<x

for each Y € U, c€ V. Again by continuity, we conclude that p(Y +c) = p for every
such Y and c Since Y,esupp Q. and u has full support, we conclude (Q, % u) X
(U x V)>0, hence p{Z,) has an atom at p. Now let p be irrational. For Y fixed
let cepii(p) (ie. p(Y+c)=p). Let x be a recurrent point for Y+crie. (Y+
¢)"{x) - x for some sequence m,. By choosing a subsequence, we can make this
convergence monotonic from one side. So, suppose for example that (Y +¢)™x 1 x.
Then also (Y+c¢)* 'x1(Y+c¢) 'x. If we increase the value of ¢, then also the
values of (Y + ¢)™ 'x will all increase, while that of (Y + ¢)"'x will decrease. Thus,
by the continuity of the above as functions of ¢, we can find a sequence ¢, { ¢ such
that

(YH+e) 'x=(Y+e) 'x
which implies that each p(Y +¢,) is rational. Since py(c) is non-decreasing, py(p)
is either a single point or an interval. We have just eliminated the interval, since

the above would fail for its interior point ¢ Finally, since u is non-atomic, we
conclude that

P(p(Y.+c,)=p|Y.=Y)=0.
Integrating with respect to Q, we complete the proof. O
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8. Estimation of the probability of a fixed point
Throughout this section, we consider the canonical scheme. Let 7 be the probability
that a circle homeomorphism has a fixed point: r= Prob (Z, has a fixed point).

THEOREM 12. The probability r of a fixed point for the canonical scheme is given by
r=E[max {Y,(x)—x: xe[0, 1]} +max {x ~ Y, {x): x€[0, 1]}

Moreover, if such a circle homeomorphism has a fixed point, then it has a finite even
number of fixed points which alternate between attracting and repelling, almost surely.

Proof. Temporarily fix Y,,. For each c in [0, 1], consider the circle homeomorphism
Z., which has lift f, determined by f.(x) = Y, (x)+¢, for x€ [0,1) and fi{(x+1)=
f.(x)+1, for all x. Z, has a fixed point if and only if there is some number x in
[0, 1] such that f.(x)=x or f.(x)=x+1. Thus, Z, has a fixed point if and only if
Ax[e=x~Y,(x) or c=x+1~-Y,{(x)]. Or, Z, has a fixed point if and only if
ce[0, max (x — Y, (x)}u[1-max (Y,(x)—x), 1]. Note that for a.e. w, these two
intervals are disjoint. Thus, for each w, the probability that Z. has a fixed point is
max { Y, (x)—x: x€[0, 1]} + max {x — Y, (x): x€[0, 1]}. The probability r of a fixed
point is now obtained by integration.

Finally, to see that it has a finite even number of fixed points which alternate
between attracting and repelling, recall that Dubins and Freedman proved that
Y, (x)+ ¢ is strictly singular, almost surely. Thus, Y, +¢ does not have a finite
positive derivative anywhere. The remainder of the proof is essentially a repetition
of Theorem 6.11 of [3]. O

To estimate r, note that

r= E[max {Y,(x)—x: x€[0, 1]}]+ E[max {x - Y, (x): xe[0, 11}
But, since the canonical scheme is invariant under ‘time reversal’ (see [3,
Theorem 4.30]), E[max {x - Y, (x): x€[0,1]}]= E[-min{Y,(x)—x:xe[0,1}}]=
E[-min{1—-Y,(1-x)—x: xe[0, 1] = E{max {Y,(1—x)—(1-x): xe[0, 11}]. Set
pl@)=p(Y(0))=max {Y,(x)—x: x€[0, 1]}. Thus, r=2p, where p= E[ p(w}].
THEOREM 13. 0.3527...<r<0.732...=+3~1. f

First, let us obtain the upper bound. By the amalgamation formula (see [3, §3]).

(*)  p= I max (Y, (x)—x) dP(w) = J._” py(@y, 3) dy dP(w,) dP(w,),

where p,(w;, wy) = p([Y(e,), Y(w,)],) and [Y(@,), Y(w,)], is the amalgamation
of Y(o,) and Y(w,) at (1/2, y) (see [3, p.272]). In general, [f gl, is obtained by
linearly scaling the homeomorphism f to a2 homeomorphism of the interval [0, 1/2]
to [0, y] and scaling g to a homeomorphism of [1/2, 1] onto {y, 1]. Formally,

yf(21), ifo=t=1/2
Lf gl,(1) E{ :
y+(1—y)g2t—-1), if1/2=1=1
Figure 2 illustrates our considerations in case 1/2=y=1. In this figure, y—

(1—p,)/2 is the y-intercept of the line with slope 1 passing through B and y+
po(1-y)—1/2 is the y-intercept of the line with slope 1 passing through A. (The
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B=(%, y+p(1—1))
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point A is determined as follows. Find the line with slope 1 which passes through
(x;, Y, (x1)), where Y,,(x;)—x, is maximized and then scale this line into the box
[0,1/2]%[0, y] using the same linear transformation as is used to scale Y, into
this box by amalgamation. This line is denoted by ¢, in Figure 2 and is parallel to
the line through (0, 0) and (1/2, y). The point A is the intersection of ¢; with the
horizontal line of height y. The point B is found in an analogous fashion.) Clearly,
py(w;, w;) is dominated by the maximum of these two intercepts. Thus,

1_
(a0 =max (y-252 4 a1 ) =3) =y -3emax (2, p1-p).

where p; = p(Y(w@,)) and p,=p(Y(w))). f
Similarly, if 0= y=1/2 (see Figure 3)

p(@;, w;)=max (P;ys %) .
Thus,

1 . 1/2
I P, @) dy=%+| max (%, (1 wy)) dy+I max (ply, %2) dy

] JI/2 O
[FE/2 P
i+ max (pzy, —:—Zl) dy+I
JG 1]
(/28,00 01/2) 1/2
= dy+L P2y dy

Jo 2 21/20)A(1/2)

(po/200001/2) (5 1/2
+ J (—) dy+ J piydy.
{

0 2 pa/2p0)(1/2)

1/2

f

max (p;y, %2") dy,

=1+
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So, if p, = p,, it follows that

1 2
j e, 0 dr=biipet B rip i
O 2

Similarly, if p.=p,,

1
j p,(wy, @) dy 5%’*‘%1—’1 +3D2.
0

In either case, since p, and p, are less than one,

. 1
J Py, @) dy<3(1+p,+po)+Emax (py, po) =§(1+p,+p2) 3 pr+pa—pipo)t
0

=3+ P+ p) — (P p2)/ 4

Now, integrating with respect to p, and p, and using the fact p, and p, are independent
and distributed as p,

<h+1p-

_ 7.
Thus, p=(vV3—1)/2 and r<v3-1=0.732....
Remark. This is obviously a rather crude upper bound. However, we have only been
able to improve our upper bound by a few thousandths.

Next, we obtain a lower bound. For each ¢[0, 1], let f(¢)= P({w: Y, — ¢ evalu-
ated at }, 3 and § does not guarantee a fixed point}). Using the invariance of the
canonical scheme under time reversal,

EX

/2

r-?zl—J-lf(c) dc=}~—2J f(c) de.

0
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[roa=[[[7 5 [ (S5 o]«

Figure 4 illustrates the considerations involved in these mtegrals For example, if
0=y=Y,(})=c+}, then Y, () is automatically less than c+%, and cannot indicate
a fixed point. But, for Y, (3) not to indicate a fixed pmnt Y, (3) must be <¢c+3.

The first mtegral comes from these observations. If c+1<y <¢+3}, then Y,,(3) must
be below ¢ +3% and Y, (3) must be below ¢+2 in order not to indicate a fixed point.

Since these events are independent given y, we obtain the second integral. Of course,
if y=c+3, a fixed point must exist.

Similar considerations based on Figure 5, yield,

i ‘ A e} 5 et} etd C’i‘%
j fle) dcmj [J dy+j 1dy+j w—-dy] dc.
i b [+ 1- -y c—% e+t ¥

Evaluating these integrals, we find r=0.3527. ..

9. Computer simulations

First we give three different methods of estimating the probability of a fixed point
for the canonical scheme. For each method, one first generates some number of
pairs, (h, ¢), where h is a homeomorphism of [0, 1] and ¢ is in [0, 1]. The first
method, denoted by Ave, uses Theorem 12: estimate the probability of a fixed point
by estimating E[1 A (max {h(x)—x: x€[0, 1]}+max {x — h(x): x€[0, 1]}]. In other
words, for each h, we estimate the probability that composition of k with a rotation
by amount ¢ has a fixed point. The second method, denoted by Cross, is to take
each pair; generate the lift f:R-R; then determine the proportion which crosses

C_;,_% _________________ /
C"I":‘z ________ 7
&
S
c+l e — e ]
&

)

1
Z

st

FIGURE 4
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the lines y = x or y=x+ 1. For the third method, denoted by Probe, we look at the
circle homeomorphism induced by the pair (h, ¢) and check how it behaves relative
to a large number of sectors on the circle. If we find two points of the circle a and
B such that the images of a and B both lie on the same arc determined by cutting
the circle at @ and B (and preserving order), then we have a fixed point.

Table 1 describes the results obtained from these methods using a Cray at generate
1000 circle homeomorphisms. The first column lists the depth in the dyadic tree to
which & is constructed. So, a depth level of 20 means the value of each homeomorph-
ism of the interval [0, 1] is determined for all dyadic rational i/2" where n=20.
Thus, 1,048,576 values were determined for each homeomorphism. The second
column indicates the expected value obtained. Notice that the entries in this column
stabilize rather quickly compared with the other methods. We guess that the probabil-
ity of a fixed point is around 0.43. ... This quick stabilization is as it should be,
since first column is estimating an expected value by measuring the contribution of

TABLE 1

Fixed point 2 period
Depth Ave Cross Probe Cross Probe
13 0.42871 0.396 0.469 0.120 0.163
14 0.43010 0.419 0.456 0.136 0.159
15 042736 ° 0.402 0.442 0.143 0.154
16 0.43075 0.434 0.440 0.122 0.135

20 0.43301 0.417 0.418 0.158 0.156




Random circle homeomorphisms 457

each homeomorphism whereas for the other two methods, we are in essence throwing
darts at each homeomorphism and getting either a 0 or 1. The third column indicates
how unstable probing is. Since these homeomorphisms are singular there is a lot
of stretching. This also introduces a lot of uncertainty in computing the second
iterate. The second and third methods seem to have settled down somewhat by
depth 14. The second part of Table 1 concerns the probability of a two period. It
is obtained by examining those homeomorphisms which did not have a fixed point.
To apply the crossing test to each such homeomorphism, we must construct the
second iterate of the lift and determine whether it crosses at least one of the lines
y=x, y=x+1or y=x+2. The probe test is applied as before.

Note. To obtain a good deal of independence between the generation of the values
of h, the number ¢ and the probe angles, the following method of generating
uniformly distributed numbers in [0, 1] is used—a modification of radical inverse
functions. Let p be a prime, p > 2. The value of the function p,: N->N at n is found
as follows. First, write n in base p. Second, reverse the digits in this expansion.
Third, modify these digits as follows. Write p'/* in base p— 1, then add one to these
digits (giving p-ary digits which vary from 1 to p—1). Now, digitwise multiply
together the number obtained in step two and the number just obtained. This
completes step three. For the fourth step, take the number with periodic expansion
012...p~1012... p—1; then add this number digitwise to the number obtained in
step three. The number in [0, 1] whose p-ary expansion is this last number is p,(n).
The third and fourth steps are put in because even though digit reversal is asymptoti-
cally uniform, it is not so good at the beginning. The last two steps smooth this
transient behaviour. There are several other reasons for using this scheme. One is
that the functions p, become uniformly distributed rather quickly at least at rate
log n/n. The functions p, are also asymptotically independent. So, for the nth pair
(h,, c,) generated ¢, = p;(n). Note that ¢, is not a dyadic rational. The probing
angles are generated using ps and p, and are also not dyadic rationals.

Table 2 shows the results of a study of 1000 homeomorphisms carried out on a
Compaq 386. About one hour of computer time was required to obtain the results
at depth 14. By comparison, it took about one and a half hours on the Cray to
generate the results on level 20.

TABLE 2
Fixed point 2 period

Depth Ave Cross Probe Cross Probe

g 0.43460 0.445 0.949 0.124 0.046
10 0.42336 0.401 0.814 0.147 0.152
11 0.42916 0.446 0.699 0.117 0.176
12 0.43164 0.432 0.554 0.132 - 0.184
13 0.43021 0.444 0.551 0.120 0.162

14 0.42029 0.423 0.459 0.143 0.169
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10. Problems

CoNyECTURE 1. For almost every Z,,, for each positive integer n, Z, is strictly singular
(Z7, does not have a finite positive derivative at any x).

Dubins and Freedman showed this conjecture is true for n=1.

ConNyecTure 2. For almost every Z,,, if Z,, has a periodic point, then Z, has a finite
even number of periodic points which alternate between attracting and repelling.

Note. If Conjecture 1 is true, then Conjecture 2 holds. The proof that this is so is
similar to that given in [3] for Theorem 6.11.

The main unanswered problem is

Question. Is it true that almost every Z, has a periodic point?

REFERENCES

[1] T. Downarowicz, R. D. Mauldin & M. G. Monticino. Exchangeable trees and random distributions.
Preprint.

{2] L. E. Dubins & D. A, Freedman. Random distsibution functions. In: Proceedings, Fifth Berkeley
Symp. on Math. Statistics and Probability. L. M. LeCam and J. Neyman, eds, pp. 183-214. University
of California Press, Berkeley/Los Angeles, 1967,

{3} 8. Graf, R. D. Mauldin & 8. C. Williams. Random homeomorphisms. Adv. Math. 68(1986}, 239-359.

{4} S. Graf, E. Novak & A. Papageorgiou. Bisection is not optimal on the average. Numer. Math.
55(1989), 481-491.

{5] E. Novak. Deterministic and Stochastic Error Bounds in Numerical Analysis. Springer Lecture Notes
in Mathematics 1349. Springer-Verlag, New York, 1989.

[6] J. Palis 3r & W. de Melo. Geometric Theory of Dynamical Systems. Springer-Verlag, New York, 1980.

gy



