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NONUNIFORMIZATION RESULTS
FOR THE PROJECTIVE HIERARCHY

STEVE JACKSON! AND R. DANIEL MAULDIN?

Abstract. Let X'and Y be uncountable Polish spaces. We show in ZF that there is a coanalytic subset P of
X X Y with countable sections which cannot be expressed as the union of countably many partial
coanalytic, oreven PCA = X}, graphs. If X = ¥ = w®, P may be taken to be I1}. Assuming stronger set
theoretic axioms, we identify the least pointclass such that any such coanalytic P can be expressed as the
union of countably many graphs in this pointclass. This last result is extended (under suitable hypotheses)
to all levels of the projective hierarchy.

Introduction. Let X and Y be uncountable Polish spaces. It is a well-known result
of Novikov and Kondo that any II} (i.., coanalytic) subset P of X x Y can be
uniformized by a IT] relation P’ = P. Thatis,Vx € X [Iye Y P(x,y) <> Jaunique y
P'(x, y)]. Although uniformization fails for £} (analytic) sets, Lusin (see [ Lu, p. 247])
and Novikov [No] did obtain the result that every analytic (Borel)set P = X x Y
with countable sections can be written as a countable union of analytic (Borel)
graphs,ie., P = U,, G, where G, € X} (4})is a graph (throughout this paper, “graph”
will denote a partial graph, ie., Vx 3 at most one y G,(x, y)). Similarly, assuming
43, determinacy, each P e X3,,, can be written as a countable union of X S
graphs. On the other hand, if P is IT}, then P can be expressed as the union of w,
Borel sets B,, « < ;. If, in addition, each section of P is countable, then each set
B, has countable sections and can therefore be expressed as the union of countably
many Aj graphs. Thus, each IT} set P with countable sections can be expressed
as the union of w, Borel graphs. A natural question then, raised by Mauldin, is
the following.

Question. Canevery I} set P = X x Y with countable sections be written as the
countable union of I} graphs, P = | J, G,?

We show, by working in ZF, that the answer is no in a strong way— our Theo-
rem 1. We are grateful to W. H. Woodin for pointing out to us that our original
result (which ruled out coverings by X} graphs) could be extended to include graphs
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in the o-algebra generated by the X} sets. In fact, assuming IT{-determinacy, we
identify in Theorem 3 the least pointclass such that any coanalytic set P with count-
able sections can be expressed as the union of countably many graphs each in this
pointclass. Moreover, in Theorem 3 we extend this result (under suitable hypoth-
eses) to all levels of the projective hierarchy. On the other hand, in Theorem 2
we show that the answer to the question is yes, provided each section of P is finite.
Finally, we make an observation concerning the pointclass where we pick up a
covering assuming V = L, and raise some questions.

§1. Results in ZF. We first recall that any two uncountable Polish spaces are A}
isomorphic. As the notions of 4!, X1, IT}, “countable”, etc., are closed under A4}
isomorphisms, we assume without loss of generality for the remainder of this paper
that X = Y = w®. Following the common abuse of language among logicians, we
refer to w® as the “reals”. We let #(X1) denote the g-algebra generated by the X} sets,
that is, the smallest pointclass containing the X1 sets and closed under countable
unions, intersections, and complements.

THEOREM 1 (ZF). There is a I} set G = w® x w® with each section G, = {y €
®®: G(x,y)} countably infinite, and such that G is not the union of countably many
B(X}) (partial) graphs.

PROOF. Let us fix two recursive bijections. One is a coding y — (y,)5- o of w® onto
(w®)®, and the other z — (z°, z!) a coding of w® onto w® x w®. We denote the
inverse of the second bijection by (u, v) = {u, v). These recursive bijections are used
rather than general Borel isomorphisms or homeomorphisms in order to simplify
the proofs.

For ease of notation, we consider the case where each of the graphs lies in the
pointclass X3 A I1L. Let U € w® x (w® x @®) be X} and universal for X! subsets
of w® x w®. We proceed to define a IT} set G « w® x w® witnessing Theorem 1.
Throughout, ZF, will denote a sufficiently large fragment of ZF so that the relevant
ZF theorems we require in our argument are provable in ZFy (in particular, IT}
and X! statements are absolute for transitive models of ZFy). Let also ¢ be a 2}
formula which defines U. For ease of notation, we let ¥(y,,,y,x) abbreviate
0(¥2,y,%x) A T10(yL, y,x). Here y% means (y,,)°, and similarly for y. Also, we call
an ordinal § good (with respect to y) if Ly(y) = ZFy + (V = L).

We first define G’ by: G'(y,w) « I8 < w,[Bis good & Vy < B (—(y is a good or-
dinal which is a limit of good ordinals) v 3y’ >y dmew Ixe L (y) (L(y)E
W (Y>35 %) A Ly(Y) E Y(Ym> 1, %)) A we Ly(p)]. Clearly G’ is Zj. Let Q'(y,w)
be the above 2} formula defining G'. We claim also that G, is countable for each y.
To see this, fix y € w®, and let * be the least ordinal <w, such that f* is a good
ordinal which is a limit of good ordinals, and L.(y) is a Z, elementary substructure
of L(y) (the set of ordinals having these properties contains a c.u.b. set). Notice
that, for any x € Lg.(y) and g > B*,

Lp(») E Y (Ym» 3, X) < Lg(y) E Y (Ym> ¥, X) © L(Y) E Y (Y, Y5 X).

We use here only that i is a Boolean combination of X3} and IT} formulas. It follows
that G}, = L;.(y), and hence is countable.



744 STEVE JACKSON AND R. DANIEL MAULDIN

Now let G = w® x w® be such that, for all y,
G'(y,w) & 3z G(y,{w, 2)) & 31z G(y,{W, 2)).

Let Q be a I} formula defining G. We may assume, in fact, that it is a theorem of
ZF, that

Vyvw('(y, w) © 3z Q(y,<{w, 2) 31z Q(y,{w, 2))).

Note that all sections of G are countable.
Suppose, towards a contradiction, that G could be written as the countable union
of graphs G,, each in the pointclass £} A IT}. Fix y,, for each m such that

VIVX(Gu(y, X) > Y (Vs Y5 X).

Let y be the real coding the y,,. Now let f* be the least ordinal such that (* is
good and a limit of good ordinals) A Vm Vx € Ly(y)(Lp(y) = VY (Vs ¥5 X) =
Vy > B* L(y) = 1Y(ym, ¥, X)). We easily have that, for any formula 6 which is a
Boolean combination of X3 and IT; formulas, and x € Lj.(y),

Lg(y) E 0(x) & L(y) = 0(x).

From the definition of G} it follows that ® N Ly(y) = G;.. Moreover, if w € Lp.(y)
then Lg(y) = Q(y,w). To see this, suppose w € Lgu(y). Then, for some good or-
dinal f < B*, w € Ly(y). By minimality of f* it follows that Vy < B[—(y is good
and a limit of good ordinals) v 3m Ix e L,(y) 3y’ > p(L,(y) E W (Y, ¥, X) A
L,(y) E ¥(Ym, y,x))]. From the definition of f* it then follows that we may re-
place “Iy’ > »” in the above by “3y’ >y, " < f*”. Hence f witnesses that Q'(y, w)
is satisfied in L« y).

However, using the last clause in the definition of f*, which guarantees Lj.(y)
is a X,-elementary substructure of L(y), it follows that f* is good, L.(y) = “{x:
3m Y(ym, y,X)} is countable”. So, let w, z € Lj(y) be such that Lg(y) = Q(y,{w,2))
and Lg(y) = Vm T Y(ym, ¥, {W,z)). From the definition of B* it follows that
L(y)EVm (Y, y,<{w,2)), and, by absoluteness, V= Vm —1Y(y,.,y,{w,2)).
Hence, Vm —1G,(y, {w,z)), which is a contradiction as V = Q(y, {w,z)) by abso-
luteness, and so {w, z) € G,. This completes the proof of Theorem 1.

For the sake of completeness, we note the following.

THEOREM 2. Let P = w® x w® be I} with each section finite. Then P = |, G,,
where each G, is a I} graph.

PROOF. Let ¢ be a II{ norm on P and let <,,, be the lexicographic linear order
on w®. For each x, define a well-order on P, by

y <xz - qo(x, y) < (P(x’z) \4 (p(x, y) = (p(xa Z) and y <lex Z.

(By convention, if P(x, y)and —1 P(y, z), then ¢(x, y) < ¢(x, z).) Foreach n € w, define
the partial graph G, by G,(x,y) < y is the nth element in the order <,. We show
by induction that the G,’s are I} sets. We have

GO(x,y) « P(xs .V) A VZ((p(xay) < (p(x,z)) A VZ((p(X, y) = (p(x’ Z) -y <Iexz)'
Thus, G, is IT1}. For n > 0, we have

Gn(xsy) « P(xsy) A 3ZO’--'azn—l € Ai(xuy)[GO(x’ZO) JANRRRIRAN Gn—l(xazn—l)
AVi(z; <, ¥) A VYww <,y — Ji(w = z))].
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G, is I} since the last conjunct can be written in a IT! manner (using Kleene’s
theorem on restricted quantification [Mo, Theorem 4D.3]).

§2. Further results. Assuming stronger set theoretic axioms, we now locate the
smallest pointclass I' such that every IT} set with countable sections can be written
as a union of countably many graphs, each in I'. In fact, we do this for all levels
I}, .. In order to do this, let © denote the game quantifier (see [Mo]), and ©”
its p-fold iterate. To be specific, if 4 = (w®)", then DA = (w®)" ! is defined by
DA(x,,...,%,—,) <> I wins the integer game G,, ., _, whereI plays y,,y,,... and
II plays y,,ys,... and I wins G,, . , e (Xy,...,X,_1,)) € A. Also, OF*'4 =
9974, A = (0®)", n = p + 2. An easy computation shows that, assuming the rele-
vant games are determined, 9w - k-IT} = 4, ,.

THEOREM 3. Assume | ),9*"w - k-I1} determinacy. There is a II},., set P
w® x w® with all sections countable and such that for each k € w, P cannot be
written as a countable union of graphs P = | ), G,, with each G, € 9*"*'w - k-II}.
However, every P € X}, , , with countable sections can be written as P = | J,, G,, with
each G, in | ),9*"*'w - k-I17.

Before beginning the proof, let us note that for n = 0, we need IT;-determinacy.
It is conjectured (see [KMS]) that, for n > 0, { J, 9*"w - k-IT} determinacy is equi-
valent to IT3, ., determinacy. For n = 0, this equivalence is a result of Martin and
Harrington. The proof of Theorem 4 uses heavily the following theorem of Martin
(see [Ma, Theorem 3.5]), as well as Martin’s technique for handling the iterated
game quantifier.

THEOREM (Martin). Assume | ), 9*" 2w - k-II{ determinacy. Let C,, = the larg-
est countable X}, set (which exists from II3,_,-determinacy, a weaker assumption).
Then the reals in C,, are precisely those x € w® which are in | },9*" ' - k-II] (as
subsets of w).

ProOF OF THEOREM 3. For the first part of the theorem, let P = w® x w® be
115, ., and such that, for all x € w®, P, = C,,,(x) = largest countable IT}, . ,(x)
set (which exists from IT},,, determinacy [Mo, 6E.9, p.344]). Suppose, for
some fixed k € w, that P = | ), G,, with each G,, a graph in 92"*'w - k-II{. Fix
x € w® such that each G,, is in ©2"* '@ « k-IT}(x). Then, since P, = | ),, Gu(x), P,
would consist entirely of © 2"* 1w - k-IT}(x) singletons, i.e., if y € P,, then {y} is in
92"+ 1) . k-IT}(x). Relativizing now to x everywhere, we would have that C,,,,
consists only of © 2"* 1 . k-IT} singletons. We will show now that this is not the
case. It is worthwhile to isolate this fact, which is of independent interest.

THEOREM 4. Assume | ), 9*"w - k-II{ determinacy. Let C,,., be the largest
countable I13, , | set. Then, for each fixed k € w, C,, ., does not consist entirely of
92+ lg . k-T1} singletons.

Note that from the theorem of Martin above, C,,., does consist entirely of
U,9*"*'w - p-II} singletons (as a ©2"*'w . p-IT{ real is aD>"*'w - (p + 1)-II}
singleton). Also, each x € C,,, , is recursive in some IT},, , singleton (I1,,,
92+l . k-IT}, for all k). See Theorem 11.4 of [KMS].

ReMARK. For n =0, we could prove Theorem 4 directly by considering the
model L. For n > 0, however, the straightforward attempt to generalize this by
considering L(C,, . ,) does not seem to work.

PrOOF OF THEOREM 4. Towards a contradiction, fix k € w such that C,,.,
consists entirely of 92"+ 1 . k-IT} singletons. For ease of notation, let n = 1. Write
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C, as Cy(x) < 3y P(x,y) « 3y P(x,y) with P € IT3. Since P = C;, P consists, by
assumption, of © 3w - k-IT} singletons. Now, there is a formula ¢ such that for all
93w - k-I1} singletons x,

InewVs(s = x > OyOzL[{s,y,2)] = @1, {5, 5,20, @1,..., D).

Here, w,,...,w, are the w,,...,w, of V. We refer the reader to [Ma]. Also, ¢ is
absolute for any transitive model containing <s,y,z), w,...,®, (¢ asserts that
player I has a winning strategy for a certain closed ordinal game mentioning
y,...,0 (see [Ma, Lemma 2.1])). Let 2 denote the set of Turing degrees, and u
the Martin measure on 92 (more precisely, filter on 2). So, if 4 = 2, then u(4) =
1 3de P Vd' >1dd € A. Here < denotes the Turing reducibility partial order.
We have enough determinacy (in fact, IT3, , ,-determinacy will suffice) so that the
sets of degrees we will consider will be measured by u. Let V* denote “for almost
all with respect to the filter u”.

Now, for degrees d, <;d; € 2 consider the model M, , = HODJ¥! = the
sets hereditarily ordinal definable in L[d,] using the degree d, as a parameter.
Thus, Vdod; M, = ZFC. Let F be defined on &2 x 9 by F(dy,d;) = My,,,. Also,
let # =[F],x, = the set represented by F in the ultrapower by the measure
ux pon P x 9. Assuming full determinacy, it follows that .# is well-defined and
a model of ZFC. IT}-determinacy, however, is enough to get the following: for
every formula ¢(x, w,,...,w,) with parameters a real x and cardinals w;,...,w; of
V, we have either

V*dV*d, L[d,] E ¢(x,wy,...,0,) or V*dV*d; L[d,] = ¢(x,0,...,0).

CLAM. A N 0® = C,. (More precisely, x € C, &> V*d V*d, x e M, ,4,.)

First, we have that /# n w® = C,. To see this, note that x € # — Y*d,V*d,
Jatg, %5 . .- 0 < @y (x is definable in L, [d,] from parameters dy, a;,..., ). By the
argument of Martin (see [Ma, Lemma 2.3]), this shows that # N »® is contained
in a countable X} set. (The above definition shows that the set is X}, and it is
countable as it can be well-ordered in a X} way, assuming IT} determinacy.) Thus,
M N 0® < Cy.

For the other direction, suppose x € C,. Then, from the theorem of Martin cited
above, 3n € w such that

Vp, gew (X(p) =4 9y92 L[<y,Z>] = (p(na <,V, Z>awla'“’wk))'

However, we then easily have

V*doV*d, Vp, q € w (x(p) = q & L[d,] = 30, <1d, Vy, <1dq 30,Vz,
(0(", <p9 q9 00 * yl’ 0'1 * zl>’ 601,. "’wk))’

where g, % y, is the result of the following strategy g, for I against the play of y, by
I1, and similarly for 6, % z,.This shows that V*d,V*d, x € M, ,,, hence x € .. This
completes the proof of the claim.

We now define a particular real X € /. For each d,, d, € 2, let A4, = {<{n,x):
new, x e HOD4 A »®, and 3w e HOD! ~ o such that if x' = {x, w), then
x' is the unique real in HOD4“Y such that L[d,] & 36, <1do Vy, <1d, 30, Vz,
o(n, {x', 0o % y1,0, %k z,>, 0,...,0)}. Clearly, 4,5, = My ,,. Let X;,, = least
real in M, ,, and not in A, ,,, which exists since 4,,,, is countable in M, ,,. Let
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X = [X404,]uxu- S0 X € C,. Hence, for some w € 0, <X, w) € C5, and, so, for some
fixed 71 € w, X' = (X, w) is the unique real such that

E)ysZ L[<)_C,,y,Z>] |= (p(ﬁ9 <x,5yaz>aw1"-~swk)-

We claim now that V*d,V*d, X € A,y4,, a contradiction.
First, let

Y(x',do,d;) <> L[d,] E 30y <1do Vy, <1do 30y V2,
oM, (X', a5 * Y1, 00 K Z,),0q,...,0).
We easily have that
[V*doV*d, L[d,] &= 30, <1do Vy, <rd, 30, Vzy (1, (X', 6 % yy, 01 K 24,
Wy, ..., )] & V¥ V¥, Y (X', dy, dy).
We must show that, for almost all d, and d,, X’ is the unique real s in HODZ!*!
satisfying V(s,d,,d,). If this fails, then for almost all dy, d, € 2 let ug,,, # Xdod,
be in HODX!! and such that (u},,do,d,) holds. Let u’ = [uj,4,],x,. Hence,
u' # x'. So,
9'y9z LKW, y,2)] = @0, {u', y,2), 0y, ..., @).
(Here, ©’ denotes the game quantifier for player I1.) Hence,
V*dV*d, L[d\] = 3to <1do Vyo <1do 374 V2o
0@, {t, To K Yo, Ty K Zg), Wy, ., W),

where 7, %y, is the result of following strategy 7, for Il against y,, and similarly for
7, % z,. Since we also have that

V*doV*d, L[d,] & 30y <1do Yy, <1do 30, Vz,
@(ﬁ, <ula (4} * Y1, 01 * Zl>a wl,---awk)a
this is a contradiction.
This completes the proof of Theorem 4.
We turn to the proof of the second part of Theorem 3. Suppose P € X 1,42 With

each section countable. By relativization, we assume without loss of generality that
Pis 2}, ,,. Thus, for each x € w®,

P, < Cppia(x) = U92n+1w « k-IT}.
K

For each fixed p, k € w, we then define
Gy i(x,y) < P(x,y) A “y is the pth©>"* e« k-IT)(x) real”
< P(x,y) A Vl’ ] € w[Y(l) = ] < Mk(p, iaja X)],

where M,c o X o X @ X ®® is in D" ' k-II] and is universal for the
2+ . k-JT! subsets of w x w x w®. Clearly each G, is a graph and is in
52"+ 1gy. (k + 1)-IT1. Also,

U(G,0x = P 0 <U92"“a> . m-H}(x)> =P,
p.k

m

and we are done.
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REMARK. For n =0, Theorem 3 (which has a stronger hypothesis) gives a
stronger result than Theorem 1, as #(2!) <D w - k-I1}.

We finish with an observation and some questions. First, a straightforward
observation.

THEOREM 5. If V = L, then any I} set with countable sections can be written as
a countable union of X} graphs.

PROOF. Let P = w® x w® € I1} with each section countable, and define

P'(s,w) < [Vn P(s,w,) A Vy(P(s,y) = 3m y = w,)].

Then P’ € IT} and hence can be uniformized by a X} set P’ < w® x w®. Define
G,, <€ w° x v® by

G,(s,y) « AW[P"(s,w) A y = w,,].

Then each G, € £},and P = { ), G,.

In view of the argument just given and a theorem of Levy [Le] which asserts the
consistency of the existence of a IT} set with no projective uniformization, it is
natural ask if it is consistent that there be a IT} set P = w® x w® with each section
countable which cannot be written as a countable union of projective graphs.

In fact, Woodin [ W] has informed us of the following theorem:

THEOREM (Woodin). The following two statements are equiconsistent:

(1) ZFC + 3 an inaccessible cardinal.

(2) ZFC + 3 I} P = w® x w® with countable sections such that P cannot be writ-
ten as a countable union of projective (or even definable) graphs.

One might also ask how far we can extend Theorem 1 in ZF.

Question. How much further can Theorem 1 be extended in ZF?
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