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ABSTRACT. Consider a classical Polya urn process on a complete binary tree.
This process generates an exchangeable sequence of random variables Z, , with

values in [0,1]. It is shown that the empirical distribution #{i <n:Z < st/n
converges weakly and the distribution of this limit is the same as a standard
Dubins-Freedman random distribution. As an application, the variance of the
first moment of these Dubins-Freedman distributions is calculated.

1. INTRODUCTION

Consider the following urn or reinforced random process. Let {0, 1}* be the
set of all finite sequences of 0’s and 1’s: {0, 1}" = ;> 0{0 1}* . This includes
@, the empty sequence. For each (e, , ..., ¢,) in {0, 1}7, let U({e,, ..., ¢))
be an urn containing a ball labelled 0 and a ball labelled 1. Play Polya’s game to
generate a number Z, in the interval [0,1] and a new complete binary tree of
urns as follows. Draw a ball from the urn U(<) and replace that ball with two
identical balls. Let ¢, ., be the label of the drawn ball. From the urn $((e 1 )
draw a ball and return to this urn two identical balls. Let e, , be the label of
the second drawn ball. Go to urn ((e, ,, e, ,)). Continue this process. Thus,
we generate a number Z; in the unit interval with dyadic expansion

Z, :0~e1,1€1,261,3-”'

The second stage of this process generates a second number, Z,, in [0,1] as in
the first stage. However, Polya’s game is played on the new tree. This tree is the
same as the initial tree except for those urns labelled by the sequence of numbers
drawn. Continue the reinforced random draws. Let (Q, X, u) be a complete
probability space and {Z, 1°°  a sequence of random variables modelling this
process. Thus, Z = O.e Our first theorem is that this is an

n=1

n’lenvzen‘:‘... .
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exchangeable sequence of random variables. Thus, there is a unique probability
measure @ on M = Pr[0, 1], the space of probability measures on [0,1] such
that, for each Borel subset 4 of [0, 1]°,

(R) u({w: {Z, (@), € 4}) = /M v (A)dOW),

where v" is infinite product measure on [0, 1]” with each factor being v, see
Hewitt and Savage (1955) or Aldous (1985). We also think of Q as defined on
the space of distribution functions on [0, 1]. From this viewpoint, our second
theorem is that Q is actually P, one of the basic measures on distributions
first described by Dubins and Freedman (1967).

The probability measure P is generated by producing a distribution function,
h,on [0, 1] as follows. First, set 2(0) =0, and A(1) = 1. Choose A(1/2) ac-
cording to the uniform distribution on [0, 1]. Next, choose /(1/4) according
to the uniform distribution on [0, /#(1/2)] and, independently, choose 4(3/4)
from the uniform distribution on [A(1/2), 1]. Continue. The function 4 de-
fined on the dyadic rationals in [0, 1] extends to a strictly increasing and con-
tinuous map or distribution on [0, 1]. (We note that in the notation of Dubins
and Freedman, P is denoted by Pﬂ where u is the uniform distribution on
the line segment x =1/2, 0<y<1.)

We can now state a direct connection between the asymptotic behaviour
of the random variables Z, and P as follows. For any sequence of ex-
changeable random variables Z, , it is known that empirical distribution ¢, =
#{i < n: Z,(-) < s}/n converges almost surely and that the distribution of this
limit is the measure Q satisfying (R). (See Theorem 3.1 and Lemma 2.15 of
Aldous (1985) for example.) The distribution of this limit could be termed the
de Finetti measure or as Aldous calls it the “directing measure”. The point here
is that the distribution of this limit is P. The main tool used in verifying this
connection is the amalgamation operator developed by Graf et al. (1986). We
turn to the proofs.

2. RESULTS

That the sequence or process {Z, }i‘;‘ is exchangeable means the distribution
is invariant under finite permutations of the indices. In other words, for each
positive integer n, Borel set 4 c [0, 1]", and permutation z of {1, ..., n},

(E) w(Z,,...,Z,)€A) = ‘u((Zn—l(l), e Zn_1(n)) € A).
Theorem 1. The sequence {Zn}:‘;1 is exchangeable.
In order to prove this theorem let us make an observation. Fix »n and, for

each i < n,let A4; be a binary interval of the form

3

k
(1) A =[0.0; 18, 5 4, 08 (8 5ot +1/27],

where we use the dyadic expansion system. Observe that, to prove Theorem 1, it
suffices to prove (E) for 4 of the form 4 = []\_, A4,, where k in expression (1)
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varies over the positive integers. We do this by obtaining an equivalent formula
for (E) which is clearly invariant under permutation. First, some notation. For
each o € {0, 1} with m < k,let I = {i < n: (t; yseest; ) =0}, By
convention, I, = {1,..., n}. Also, set Sy o= Zlelq o mers L€ S, is the
number of 1’s so far drawn from the urn 4(c). For convenience, set 5, =5, .

Lemma 2. For each positive integer n and for each positive integer k, if A, is
of the form given in (1), for 1 <i < n, then

k—1 1
® wzedii=t =[] [I [oa-p">ea.

m=04e{0, 1}"

Proof. Let us first verify this formula in the case k = 1. Thus, each 4, is of
the form A4, = [0.z,, 0.¢, + 1/2], where ¢, = 0 or 1. Therefore,

plo: Z(w)ed;i=1,...,n})=u({w:e (w)=1}).

But, {91,1};2 , 1s a classical Polya urn scheme which is certainly exchangeable
(Blackwell and Kendall (1964)) and is a mixture of independent, identically
distributed Bernoulli choices with probability p of being 1, where p is uniform
on [0, 1]. Formally,

n
u(ehl =ti=1,...,n)= Hu(ek’I =tk{el_1 =1, € =1,_,)
k=1

n

[T +# <kt =1 /k+1
k=1

[T1+ G ork=1-5_)/(n+1)
k=1

1/(n+1)<s’1>

1
/ p(1—=p)" " rdp.
0

Thus, formula (F) is verified for k£ = 1 and all positive integers n. Assume (F)
holds for % and for all positive integers n. Now, for each i, 1 <i<n,let

k+1
Al = [O'll,lt1.2”'tl.k+l’ O'tl.ltl,2'”t1.k+1 + 1/2 I

_ k .
Set 4, =10.¢, ¢, 5 -2, ,, 02, 1, ,--1, , +1/27]). Notice

wzZ,ed;; 1<i<n)

:y(e,‘kH:l,‘kH;lgz’SnIZieZl;lgign)-u(Z,eH,;lgign).
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But,
(2)
/’L(et,k+l :tz k+l’ 1 <i <I’l|Z E Olz 190,277 ll,k’ O'tl,lll,Z ’ 1 k 1/2 ])
1
o 1 —
— H / p‘xn.a(l _p)lal Sn.a dp
06{0,1}" 0

Substituting this last product for the conditional probability and applying the
induction hypothesis shows that (F) holds for k£ + 1 and all positive integers
n. Thus, formula (F) and the lemma follow.

Since formula (F) is invariant under permutation of the indices. Theorem 1
follows. Let Q be the unique probability measure on M = Pr[0, 1] satisfying

(R) u({w: {Z, ()2, € 4}) = /M v (4)dQW).

Let P be the probability measure induced on M according to the process
described at the beginning. Actually, P is defined on the space of probability
distribution functions on [0, 1]. If 4 is such a distribution function, then #*
denotes the infinite product measure on [0, I]N. Our second goal is to show
that Q is P. To do this we construct a probability space (Q, X, i) and a
sequence of random variables {Z }>°, such that formula (F) holds.

Consider the process Z Z , Z 3> ... given by

(3) a(Z € 4) /h )dP(h).

Fix n and for each i < n,let A be of the form given by (1). We first obtain
a reduction formula on k. To this end, consider the product set 4 whose first
n factors are the sets 4, and whose other factors are [0, 1]. Substituting into
(3) and using the amalgamation formula of Graf er al. (1986), §3, we have

AMZ €A ;1<i<n) / h(z,€A,;1<i<n)dP(h)
=/0 //M M([hl’hZ]x)*(Zl €A4,; 1 <i<n)dP(h)dP(hy)di(x)
1 n
:/(; //M MH[hl sy (z,€ A4, 1 <i<n)dP(h)dP(h,)dA(x)
XM=

1
:/// [ xh (z, €24,
0 M><M[€10

x [J(1 = x)hy(z, € 24, — 1)) dP(h,)dP(h,) dA(x),

1€l
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where Iy ={i<n:t¢, =0} and I, ={i<n:¢ =1}. Thus,
(4) 1
B(Z, €41 SiSn)z/ xMol(p - ”'dx/ [] xh (2, € 24,)dP(h,)
0 1€l
/ [T =x)hy(z, €24, - 1)dP(h,).
1€l

Also, notice that ||| =5, , and |Ij|=n— = |I,| -
Now, for the case k = 1 , we have 24, = [0 1] if iel, and 24,-1=10, 1]
if i eI, . Thus,

|
BZ eA;1<i<n) =/ xholr =yl ax
0
and formula (F) holds for k =1 and for all n.
Now, suppose (F) holds for & and each

k+1
0[1 112 ’ [z k+1+1/2

[011112 ’ 1k+l’
IfieIO,then

2A1:[O'ZZ',ZZZ,B"'ti,k’0"1’,2[1,3 ’ 1 k 1/2 ]

and if i€ 1, then 24, — 1 = [0.t; 5t, 51, ., 0.t; ), 51, , +1/2°]. So,
applying the induction hypothesis,
(Z €A4,;1<i<n)

1
| l! Iy« | =5, o*
— XO dx / nOa pOﬂ n,Oadp
[/0 (1- 1

i=0 {0, 1}'

1
X [/ psn\l‘n(l _p)“l"ul_sn,l‘a dp:| .
0

Again, substituting s, 4, for |I,| and n—s, ,, for |[j|, we have formula (F). O
We have shown that
(5) u{w: 1Z (@) € 4} = [ B ()drh)
forall A of the form []'_, A, x[],.,[0, 1], where each 4, is of the form (1). It
follows that (6) holds for all Borel sets 4. Since Q is unique, we have proven
Theorem 3. Q=P.
In view of the mentioned known results, we can restate Theorem 3 as

Theorem 3a. For p-ae. w and vV s€[0, 1], lim,_ _#{i<n:Z(w)<s}/n
exists. Moreover, P is the distribution on

h,(s) = nl_iglo#{i <n:Z(w)<s}p/n.
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3. APPLICATION

As an application of the preceding results, we calculate the variance of the
first moment of a P-random distribution.

Theorem 4. The variance of the first moment of a P-random distribution is 1/40.

Proof. Since [01 xdh(x) =1- fol h(x)dx, we will calculate the variance of
fol h(x)dx . First, by Fubini’s theorem, we have

/Ol/z(x)dx} - /M/Olh(x)dxd}’(h)

- .Al /M h(x)dP(h)dx.

But, Graf e/ al showed that the expected P distribution is the identity: for
each x, [, h(x)dP(h) = x. (Dubins and Freedman had stated this fact in

their article, p. 186.) Thus, E[f; h(x)dx] = 1/2 = E[f, xdh(x). Next, we
calculate the second moment. By Fubini’s theorem,

(/; h(x)dx)zJ ~F <</01 h(x)dx) (jil h(y)dyﬂ

1 1
_ / / ETh(x)h(v)]dx dy.
0 JO

E

E

Since Q is P, we have from the representation (R),

1 2 S
(/ /z(x)dx)}:/ / wZ, <x,Z,<yjydxdy
0 0o Jo
1,1 X vy
:/ ///p(s,t)dtdsdxdy,
o Jo Jo Jo

where p(s, #) 1s the joint density of Z, and Z,. Again, by Fubini’s theorem,

(/Olh(X)dx)T = Jfol/()l/slfllp(s,t)dydxdzds

_ /1/1(1 —$)(1 = 0)p(s, 1) d1 ds.
0 0

r

E

E

Set the following notation: if g € {0, l}k ,let W(o)=[.0,.0+ I/Zk], where
.0 is the number with dyadic expansion o, i.e., .0 = Z,k:l s,/2". For each
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o,set J(og) = W(c"0) x W(cg"1). By the symmetry or exchangability of the
process,

1
E[(/O h(x)d”_zz 3 // (1= 5)(1 = )p(s, £} dtds.

k=0ge{0,1}* I

Figure 1 illustrates the domains of integration, J(o).
In order to calculate p on the square J(o), note the general formula which
follows from (F). If ¢ € {0, 1}* and «, B {0, 1}”, then

(7) wZ, eW(@x0xa), Z, € W(o*1xp))=(1/3) “aye)/a)"
_ 1/2 (1/3)k+1(1/4>m+1'

Thus, the density p on the square J(a) is 1/2(4/3)"+1 . This means

(8)
| 2
/ h(x)dx) }
0

. ox(0+1/270 haxl1/2
> (4/3) / / (1 =s)(1 - t)dtds

*1
0,1}

ST @3 (1= 92

oe{o, 1}

S a0 12 -1 - 17257

E

agc

~~

G*0+1/2k+1 ( /2] 0’*1+l/2/‘+l

M I L0

k:an{ l}A

1/42 SR e - R P - e - 12 -
k=0ge{0, 1}
(e ot

= (1/48) 3 (1/12)" Y (4i - 1)(4i - 3)
k=0 =1

8

2t 2!
= (1/48)S_(1/12)" [163° 7 —16) i +3-2"
k =1 =1

=0

8

= (1/48) 3 _(1/12)" 116 - 2° 2" + R+ /6 - 162" (2" + 1)/2+3-24

k=0

= (1/48) S (1/12)[(16/3) - 8* — (7/3) - 2" = 11/40.
k=0

8

Thus, the variance of the expected value of a P-random distributionis 1/40. O
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FIGURE 1.
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