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'SCALING HAUSDORFF MEASURES

-

R. DANIEL MAULDIN anp 5. C. WILLIAMS

In this note, we investigate those Hausdorfl measures which obey a simple
scaling law. Consider a continuous increasing function ¢ defined on R with
6(0) =0 and let %° be the corresponding Hausdorff measure. We say that %°
obeys an order « scaling law provided whenever K. <R"™ and ¢> 0, then

H(cK)=c"H (K, (1}
or, equivalently, 1f T is a similarity map of R™ with similarity ratio c:
HTK) = c*%°(K).

Clearly, it would be interesting to characterize the functions ¢ for which %°
obeys a scaling law. We verify that if 6 is of the form 6(t)=¢"L(r), where L
is slowly varying in the sense of Karamata [5], then (1) holds. Within a
particular class of functions 8, we shall prove the converse. Specifically, we
prove the following theoren.

THEOREM. Let 8 be a continuous increasing map of R™ into R™ with a(0) =0
such that @ is strictly concave down on a right neighborhood of 0. there is some
d >0 such that if 0sx<y<dand 0<1<i,

Alex+{(1—)y) > 0{x)+ (1 —1)6(y).

Let 0= =<1, The following three statements are equivalent:
(i) there is a slowly varying function L such that (1) = *L{1);
(it) if ¢ >0, then lim,.o 8(ct)/8(t) = c*;
and '
(iif) if K<R™ and ¢ 0, then X°(cK) = c*H°(K).

Note that since « =<1, the only important case in {iif) is m=1. A complete
general characterization even for R’ remains to be carried out. Since we are
interested in the behavior of 8 at 0, we take L to be “slowly varying™ to mean
that L{¢}> 0 for t>>0, L is continuous on the positive reals and for each A >0,

ii_rg L(ax)/L{x}=1.

Iet us note some general facts,

Tueorem 1. Suppose (1) holds. Then, for all c> 0,

i 6{ct)
B e(r)

=c" (2)
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Proof.  Let E be a set with 0< #’(E) < +co [4, p. 122] Suppose there is
some ¢> 0 such that
i é(ct)
im
(=0 9(1)

Wlth A>B>1. Then for t <g,, we have 6(ct)> Bc8(t). If ¢ < gy, then ¢
is an e-cover of E, if, and only if, ¢¥9 is a cs-cover of cE, Therefore,

= Ac”,

HE(cE) = Eréf {Z 6(c|Gi): 9is an e-cover of E}
k4

= Bc* igf{}: 6(|Gl}: %is an e-cover of E}
@

= B HI(E).
Thus, ¢"%°(E) = %#°(cE) = Bc"%°(E). Or, 1= B, a contradiction.
If the inequality in (2) is an equality, then much more is true.
Lemma 2. Suppose that for all ¢> 0

. 8(ct)
%n% 8{1)

= ¢ (3

Then, for all ¢ >0,
. im &{ct)
5 (1)

=, | (4)

Proof. Set t'=ct. Thus,

ey
'l;‘?.“%e(r'/c)"

ALY

=0 @1 =(1/e)".

Therefore, for ¢> 0,
' T 6{ct}
¢Lﬂg 6(1’)

m C",

and the lemma follows.
But the functions which satisfy (4) are simply characterized.

THEOREM 3. Express 6 as 6(t) = *L{1). The following two statements are
equivalent: ' :
(1) L{¢) is slowly varying: for all >,

lim L{er)/ L(1) = 1; (5)

(2) forall c>0,
I!Lrl(’jl B(ct)/ 8{r) = c*. {6)
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Next, we note that the slowly varying perturbations of ¢* do obey the
scaling law (1).

TueoREM 4. Suppose L{1) is slowly varying and 6(¢) = L), FKaeR™
and ¢ >0, then

F°(cK )= c*3°(K). (1)

Proof.  According to Theorem 3, for & sufficiently small and ¢ < g, we have
0(ct) <c"0(1)+ M(&)6(1),

where M{e)~>0as £ > 0. If ¢ be an (¢/c)-cover of K, then ¢¥ is an e-cover
of ¢K and :

2 6lcdiam G)sc” § 6(diam G)+M(e) ¥ o(diam G).
Gew®

Ged Ge¥

Thus, .
Here(cK)< " HUAK )+ M(e)HAK). (7}

Létting £ go to zero in (7), we have
#°(cK )= c"9°(K).

Equation (1) follows from this last inequality.
The main goal of the remainder of this note is to prove a partial converse
to Theorem 4.

TueorEM 5. Let 8 be a continuous increasing map of R into R* with
6(0) =0 such that 6 is strictly concave down on a right neighborhood of 0: there
is some d >0 such that if 0=sx<y<dand 0<r<1,

8{tx+(1-1)y)> 10(x) +(1— 1) 8(y).

Let 0= o =<1. The following four statements are equivalent.
(1) There is a slowly varying function L such thai

6{t) = t*L(x).
(i) If ¢>0, then
iin& 6{ct)/ 8{r)=c*.
(iii) If K<R™ and ¢> 0, then
‘ H(cK)=cH°(K).
(iv) If K<R' and ¢> 0, then
#°(eK)= c“HP(K).

Proof. Theorem 3 demonstrates the equivalence of statement (i) to state-
ment (ii) and Theorem 4 shows statement (ii) implies statement (iii).

Assurrie statement (iv) holds. Note that the strict concavity of ¢ on
the interval (0, d] implies 8{(¢)/¢ is decreasing on (0, d]. If lim,.q 0(2)/1 is
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finite, then statement two holds with @ =1 and we have linear scaling:
cHO(EY= 3°(cE). Therefore, we assume from this point on that

1in(')a G(1)/ 1 = +co.

In other words, we are assuming § corresponds to a smaller generalized
dimension than linear Hausdorff measure [4, p. 78]. At this point we inter-
rupt the proof of Theorem 5 to verify the foliowing properties of §. These
properties are needed in order to construct a special Cantor set K such that
0 < %*( K} <co. Qur construction harks back to a construction given in Haus-
dorfi’s original paper {3] and several related constructions by Rogers [4],
Dvoretzsky 1] and Fekete. However, our constructed set requires some
additional scaling properties.

Lemma 6. Let {2,137, be a decréasing sequence converging to 0. Let
(£} decrease to O with Yo &, < 4. Then there is a subsequence {x,} w0 of
{z,} 70 and a sequence of positive integers {m,} .=, such that

6(x, )/ 8(xpss) =4, n=0,1,2,..., (8)
[Xp/ Xae1]7 4, n=0,1,2,..., (9)
1<2mq X,/ X0ss], n=0,12,..., (10)

1=, < 0(x,1}/ 6{x.} =< 1. (11)

Proof.  Set xo= 2,. Since 6{x,)/ 0{z}-> +00 as z~ 0, [xo/ 2] > +0 as 20,
and (8(z)/ 2}/ (8{x0)/ X} = +00 as z-> 0, there is some dg such that if 0<<z < d,,
then

0(xo}/ 6{z) =4,
8(z2)/ 6{xo) < g0/ 2=min (85/2, 1 — £0/2) <%,
[xof 2} 24,
and
(802} 2}/ (6(x0)/ x0) > 3.
Set x, =z, , where z, <d,. Now, we define m,. Since,
8(x,)/ 0{x0) < £o/2 <3< 1~ &g
and
(8(x;)/ B{xo))(x0f x1) = (8(x,)/ 8(x0))[ X0/ %11+ {8(x1)/ (x0) )Xo/ X; — [ X0/ X:]),
we have
(0(x;)/ 6(xo))xof %1 (8(x,)/ 6 (x0))(xof x1) ~ 6(x,)/ 8(x0) > 2.
Let 1y be the integer such that
m, 0(x,)/ 0(xg) = 1 <(m, +1)8(x,)/ 6(x,).
Certainly, the inequalities of (10) and the second inequality of {11} hold.
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Finally, if m,8(x,}/8(x,) were not to exceed 1—gq, then
go=1—m0(x,}/8(x0) < 8(x,}/ 6(x,) < g0/ 2.
This contradiction affirms that the first mequallty of (11) hoids

The process can clearly be continued.

Construction. We turn now to the construction of a special Cantor set K
based on the sequences {m,} and {x,} of Lemma 6. Let

Q=111{1,....m}
Fe1

and
o p
= - Mk
Pp=0 izi
Let ‘
{Jo: o e 0%}
be the Cantor scheme defined by setting
Jo={0, x.],

and the recursion: If J,=[a(c), b{c)] has been defined with lol=n and
M| = x,., then let {J, .} 1" 27t be subintervals of J;, each of length x,.,, such
that J,\U J,+; consists of m,,,—1 pairwise dts_;omt intervals, each of length

8n1 ™ (X, _mn+1xn+l)/(mn+lw1) n=0,1,. (12)

It follows from condition (10) that En P Xy > i, B=1,2,3,. ... Assume
these intervals are labelled so that J,«, is to the left of S if lsi<f=mm,.,.

Let
K»—wﬂ[ U Jg]
" O’?Q’“
fot=n -

and let p be the probability measure defined on K by setting, for each o with
lo|=1,

lo
k(K os)= 1 (1/m).

Set Py=0{x,) and for n=1,

Pn =(ﬁ mi) a(xn}-

faz]
NOte P:M"l/P == iy g(xn-é-t)/e(x ) By (10) n1 = P Let
Ay = 1- N+I/Pn =1- LI G(xn+])/9(xn)-
Then X::: la,] <eo. Thus, S=Y log{l~a,) exists and

hmP = lim H {i-a,)=B=¢°

H“’OO
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Thus,

n

0< lim (H m,-) #(x,) = B <o,

il

Claim 1. %°(K)< B. This can be seen from the estimates obtained from
the covers of K by {J,:lo|=n} ‘

HUK)= 1%(f{ mi) 6(x,}~ B.

fe=l

Claim 2. For all o, v Q¥ if a{o) < b(7)}, then
8(b() —ala)) = Bu(lalo), b{7}]). (13)

We will prove this claim by induction. But, first let us check it for some
special cases. For example, if r =0, then

9(b{7) — alo}} = 6(x)-
Since [}, m#(x,) = P, = B, we have
0(x,) = 8(b(o) ~ala)) = Bulla(o), b(o}]).

This is inequality (13) for this case. Another special case arises when one of
o and 7T is an immediate successor of the other. Without loss of generality,
assume |ol=n and 7=0%i Then

b(r)=ale)= ixpp+ (I~ 1) Znus-

We have
b{7)—a(o) = Ax, + (1= A)Xpur,
where
A= (i = 1 guer + Xuar)/ (X = Xuss)- (14)
Thus,

0(b(r)—al(o)y> Ab(x,)+ (1~ 1}6(xXper)
= A6(x,) + (1= A}/ My Ty (2 01)

£(1/ﬁ m,.) [A ﬁl my0(e,) (1= 1) e TL mja(x,m)]
j= j=t

j=t

B(I/fi mj) B()t“f“(l“‘)t)/mnﬂ)

= (1 ”ﬁi mj) B{m, A+ (1 —-1)).
But, "~
Mpeih +(1—=A) = A, — 1)+ 1. - (15)
Since

xn_xn-H=(mn+z”’l)(xn+1+gn+l), (16)
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we have, from (14), (15) and (16) l
My +{1—~A)=1L
Therefore,
a1

6(b(r)—alo))=Bi [ 1] m;= Bu({a(e), b(7)]},

which again is inequality (13).
Now, let us continue with the induction argument. Suppose that for all
k, A with |«], |A]=n and a(x)<b(A):

8(b(x)—a(x})= Bu(la(c), b(A)])

and {o], |7]= n+1. We will prove inequality (13} for o and =. Note that we
can and do assume that |o|, |7| = n, since, if one of them has length less than
n, it can be extended by 1's to a sequence of length n without changing the
endpoint coded by the sequence.

Case 1. |o}=n,i7i=n-+1. We can assume that J,,, lies to the right of J,
and i=r(n+1)<m,..,. Let 7 be the sequence of length n such that J; is the
interval on level n immediately to the left of J,,. There is a gap between J;
and J,, of size at least g,.

Thus,

b(r)~alo)=Aw+{1-A)b(7r|n)~alc))
= (T —a{o)+ g, Fix e H (=1} g0, {17}

where w=b{7)—ale) and W ={a{o), b(F)].
By the concavity of 6,

8(b(r) —a(a)) = A6(w)+(1—-2)6(b{r{n)—a(c))
= ABu(W)+(1-1)Bu(lalo), b(=|m)])
= By W)+ {1 —A)u([a(o), b(z|n)])).

In order to prove inequality (13), it suffices to show

AW+ (1= Dislato), el mp= 1+ (T 1/m). 19)

Or, simplifying,

(1-2) [n (1/m,~)]x<1~»\)m[a<q), b(r|m}) - p({a(), BEH]
=L (1/m).
j=E
In other words, it suffices to show

(A=A)= i/ Mory. (19)
Or, ’

(mn+l - i)/mr=+l = A
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Solving {17) for A and estimating, we have
A= (b(r|n)=5(r))/(b{7in) — b(F)) = (Mpey = DN Xpsr ¥ 8asr )/ (X0 + ga)-
Thus, for inequality (13) or, equivalently, inequality (19) to hold, if suffices that
Xyt 8 Z My Xney ¥ Zrer) ™ Xn F Loy -

But, again, according to (10}, g, > g.., and inequality (13) holds.

Case 2. |o|=n-+1,|r|=n+1. Assume J,, lies to the left of J,,.

If a{o)=alo|n) or b{r)=b(r|n), then (13) follows from the preced-
ing cases. So, assume 1<<o(n+1} and v(n+1)<m,,,. First, suppose
o(n+1)>r{n+1). Let o be the element of (* of length n such that J(o')
is the first interval on level n to the right of 7{ojn) and let 7' be the sequence
of length n such that 7'{rn=1|n and 7'(n+ 1) =r{n+1)+m., ~o(nt+1).
Then

w(la(e), b(r)]) = ulla(a), b(='}])
and
8(b(r}— a(o}) = 6(b(x') ~ a(a")).
By the preceding case,
9(b(7) = a(o)) = Bu({ala’), b(+)))
| = Bu([a(a), b(r)]). (13)

Finally, suppose o{n+ 1)< r{n-+1). As before, identify in order the intervals
on level n+1 inside J,, beginning with J, with the intervals on level n+1
inside J, beginning with the one immediately to the right of J,. The intervals
in J,, to the right of J, will be all matched and some intervals in J, will
remain. However, our new interval has the same u measure and the length
of the interval has remained unchanged. Moreover, the end points of the new
interval are of the form considered in the first case. This completes the argument
for Claim 2.

Now, we return to the proof of Theorem 5. Fix ¢> (0 and let the sequence
{z.} decrease to zero with

6(cza) . 0(ct)

li = .
" 0, w61

Consider the set K just constructed. We have
_ . H(K)=B.
According to the assumed scaling property:
%°(cK) = c*B.

Using the scaled covers {¢J,: |o|= n}, we have

"
c*B=lhim 0{ex,) [T m,.
e OD i=1

i=
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So

o A(ex,}
= B .
oo G(XH)

a

[

Thus, for each ¢> 0,

G(ex,) i #{ct)

< lim .
R G(er) —o (1)

a

c

3

|

According to Lemma 2, this implies statement (ii}. The proof of Theorem 5
is completed.

Problem. It remains to characterize the higher dimensional functions such
that the corresponding Hausdorfi measure scales. Perhaps one could begin
by considering those functions 8 such that for some positive integer m 8(1)/ 1™
or ¢{t)"™ is concave down.

Problem. There are contintum many non-Hausdorff measures g in R™
which obey a scaling law: p{cK}=c*u(K}. For example, let u(E)=0if E
is meager, and let w(E) = 00, otherwise. For each x, with 0 < x =1, the measure
xp+ (1 —x) 3> scales correctly and is not a Hausdorff measure. Another group
of measures which obey a scaling law are the packing measures [6]. However,
although it seems true, we have not been able to prove that % or more
generally, #° in R™ is not a Hausdorff measure. Haase [2] has some partial
results for general complete separable metric spaces provided one can change
the metric to topologically equivalent metrics. This much is true: &% # ¥,
provided there is 2 number y such that if dimy (E) <1, then #°(E) =0, and
if dim,, (E)> v, then ¥°(E)=.
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