A Classification of Disintegrations of Measures

S. GRAF AND R. DANIEL MAULDIN

0. Introduction. Disintegration of measures is a very useful tool in ergodic theory (see, for example, von Neumann [7]), in the theory of conditional probabilities (see, for example, Parthasarathy [8]), and in descriptive set theory (see, for example, Mauldin [5] and Graf-Mauldin [2]).

The origins of disintegation are uncertain but the first rigorous definitions and results—to our knowledge—are due to von Neumann [7]. In the late forties Rokhlin [10] and Maharam [3] independently introduced canonical representations of disintegrations. Later Maharam [4] returned to the descriptive set theoretic aspects of these representations. The purpose of our paper is to offer a sharpening of her results. The improvements are that we can use an "ordinate set" in the place of Maharam's "almost ordinate set" to represent the non-atomic part of a disintegration and that we get rid of Maharam's "garbage set". As a main tool we use the classification for completely orthogonal transition kernels given by Mauldin-Preiss-v. Weizsäcker [6].

Our considerations still leave one major problem of Maharam [3] open which can be reformulated as follows: Is every conditional measure distribution consisting of σ -finite measures necessarily uniformly σ -finite (see section on "Preliminaries" for the definition of uniform σ -finiteness of a conditional measure distribution)?

1. Preliminaries. For a Hausdorff space X let $\mathcal{B}(X)$ denote the Borel σ -field on X. In the following X is always a Lusin space (i.e. a one-to-one continuous image of a Polish space) and Y is a non-empty Suslin space (i.e. a continuous image of a Polish space). For the basic facts about Suslin- and Lusin-spaces we refer the reader to [9]. Moreover, p is a $\mathcal{B}(X) - \mathcal{B}(Y)$ -measurable (i.e., a Borel measurable) map from X onto Y. A family $(\mu_Y)_{Y \in Y}$

¹⁹⁸⁰ Mathematics Subject Classification. Primary 28A50; Secondary 60A10. This paper is in final form and no version of it will be submitted for publication elsewhere.

Supported in part by National Science Foundation Grant DMS 85-05923.

is called a *conditional measure distribution* with respect to p if the following conditions hold:

(i) Each μ_{ν} is a (not necessarily σ -finite) measure on $\mathcal{B}(X)$ with

$$\mu_{\nu}(X\backslash p^{-1}(y))=0.$$

(ii) For every $A \in \mathcal{B}(X)$ the map $y \to \mu_y(A)$ is Borel measurable on Y.

A conditional measure distribution $(\mu_y)_{y\in Y}$ is called finite (uniformly σ -finite) if $\mu_y(X) < \infty$ for all $y \in Y$ (if there is a sequence $(A_n)_{n\in\mathbb{N}}$ in $\mathscr{B}(X)$ with $\bigcup_{n\in\mathbb{N}} A_n = X$ and $\mu_y(A_n) < \infty$ for all $y \in Y$). It is called a transition kernel with respect to p if $\mu_y(X) = 1$ for all $y \in Y$.

If μ is a σ -finite measure on $\mathscr{B}(X)$ and ν is a σ -finite measure on $\mathscr{B}(Y)$ then a conditional measure distribution $(\mu_y)_{y\in Y}$ with respect to p is called a strict disintegration of μ with respect to (p, ν) if

(1.1)
$$\forall A \in \mathscr{B}(X) \colon \int \mu_{y}(A) \, d\nu(y) = \mu(A).$$

Since we will only deal with strict disintegrations we will use "disintegration" to mean "strict disintegration".

Maharam proved the following fundamental theorem.

THEOREM. A σ -finite measure μ on $\mathcal{B}(X)$ has a uniformly σ -finite disintegration with respect to (p, ν) with ν σ -finite if and only if

$$(1.2) \forall B \in \mathcal{B}(Y) \colon \nu(B) = 0 \Rightarrow \mu(p^{-1}(B)) = 0$$

i.e., the image measure $\mu \circ p^{-1}$ of μ with respect to p is absolutely continuous with respect to ν .

It is an open question whether, in the above situation, every disintegration $(\mu_y)_{y\in Y}$ consisting of σ -finite μ_y 's is already uniformly σ -finite (see [3]). (The answer is "yes" for locally finite μ_y 's!). We will return to this question at the end of the paper.

In what follows λ_B stands for the restriction of one-dimensional Lebesgue-measure to the Lebesgue-measurable subset B of R. For a point y in Y the symbol ε_{ν} denotes the Dirac measure concentrated at y.

2. The classification of atomless σ -finite conditional measure distributions.

2.1 Lemma. Let ν be a σ -finite atomless measure on the Borel field of a Lusin space Y with $\nu(Y) > 0$. Let $Y' = \{t \in \mathbf{R}_+ | t \le \nu(Y)\}$. Then there exists a Borel isomorphism φ from Y onto Y' with $\nu \circ \varphi^{-1} = \lambda_{Y'}$.

PROOF. There exists a sequence $(B_n)_n$ of pairwise disjoint Borel sets in Y with $\bigcup_n B_n = Y$ and $0 < \nu(B_n) < \infty$ for every n. As is well-known, for each n, there exist a Borel isomorphism φ_n of B_n onto $]0, \nu(B_n)]$ such that $\nu|_{B_n} \circ \varphi_n^{-1} = \lambda_{]0,\nu(B_n)]}$. Define $\tilde{\varphi} \colon Y \to]0, +\infty[$ by $\tilde{\varphi}(y) = \varphi_n(y) + \sum_{i=1}^{n-1} \nu(B_i)$ if $y \in B_n$.

Then φ is Borel measurable and one-to-one with $\tilde{\varphi}(Y) =]0, \nu(Y)] \cap \mathbb{R}$, hence a Borel isomorphism from Y onto $]0, \nu(Y)] \cap \mathbb{R}$. It is easy to check $\nu \circ$

 $\tilde{\varphi}^{-1} = \lambda_{]0,\nu(Y)] \cap \mathbb{R}$. Let $\tilde{\varphi}$ be a Lebesgue measure preserving Borel isomorphism of $]0,\nu(Y)] \cap \mathbb{R}$ onto $Y' = [0,\nu(Y)] \cap \mathbb{R}_+$. Then $\varphi = \tilde{\varphi} \circ \tilde{\varphi}$ has the desired properties.

2.2 THEOREM. Let $(\mu_y)_{y\in Y}$ be an atomless transition kernel with respect to p. Then Y is a Lusin space and there exists a Borel isomorphism ψ from X onto $Y \times [0,1]$ such that $\psi(p^{-1}(y)) = \{y\} \times [0,1]$ and $\mu_y \circ \psi = \varepsilon_y \otimes \lambda_{[0,1]}$ for every $y \in Y$.

PROOF. Since $Y \neq \emptyset$ and each μ_y is atomless it follows that X is uncountable. Hence there exists a Borel isomorphism τ from X onto [0,1]. Since Y is Suslin there exists an analytic subset Y' of [0,1] and a Borel isomorphism j from Y onto Y'. Define $\varphi \colon X \to [0,1] \times [0,1]$ by $\varphi(x) = (j(p(x)), \tau(x))$. Then φ is Borel measurable and one-to-one. Hence $X' := \varphi(X)$ is a Borel subset of $[0,1] \times [0,1]$. Let $\pi \colon [0,1] \times [0,1] \to [0,1]$ be the projection onto the first coordinate. Using the proof of Theorem 2.2 in [5] one can show that there is a Borel subset M of X' with $\pi_1(M) = \pi_1(X')$ and $M_y = \{x \in [0,1] | (y,x) \in M\}$ compact. By a result of Novikov (see, for instance, Dellacherie [1], Sect. 2, Th. 19) it follows that $\pi_1(M)$ is a Borel subset of [0,1]. Since $\pi_1(M) = \pi_1(X') = j(Y)$ it follows that Y is a Lusin space.

If Y is countable then one may apply Lemma 2.1 to each fiber $p^{-1}(y)$ and each μ_{y} separately and thus obtain the conclusion of the theorem.

If Y is uncountable then there exists a Borel isomorphism φ from Y onto [0,1]. Let $B=\{(p(x),x)|x\in X\}$. By our assumptions Theorem 2.3 of [6] is applicable. Hence there exists a Borel isomorphism $\tilde{\psi}$ from B onto $[0,1]\times[0,1]$ with $\tilde{\psi}(\{y\}\times B_y)=\{\varphi(y)\}\times[0,1]$ and $(\varepsilon_y\otimes\mu_y)\circ\tilde{\psi}^{-1}=\varepsilon_{\varphi(y)}\otimes\lambda_{[0,1]}$ for all $y\in Y$. Let $\tilde{\psi}\colon X\to B$ be defined by $\tilde{\psi}(x)=(p(x),x)$. Then $\tilde{\psi}$ is a Borel isomorphism from X onto B. Let $\psi'=\tilde{\psi}\circ\tilde{\psi}$ and let ψ'_1 and ψ'_2 be the components of ψ' . Define $\psi\colon X\to Y\times[0,1]$ by $\psi(x)=(\varphi^{-1}\circ\psi'_1(x),\psi'_2(x))$. Then ψ is a Borel isomorphism with the required properties.

2.3 THEOREM. Let $(\mu_y)_{y \in Y}$ be a finite atomless conditional measure distribution with respect to p with $\mu_y \neq 0$ for every $y \in Y$. For $y \in Y$ let

$$I_y := [0, \mu_y(X)].$$

Let $X' = \bigcup_{y \in Y} \{y\} \times I_y$. Then Y is a Lusin space and there exists a Borel isomorphism ψ from X onto X' such that

$$\psi(p^{-1}(y)) = \{y\} \times I_{\nu} \text{ and } \mu_{\nu} \circ \psi^{-1} = \varepsilon_{\nu} \otimes \lambda_{I_{\nu}}$$

for every $y \in Y$.

PROOF. Let $\mu'_y = (1/\mu_y(X))\mu_y$. Then $(\mu'_y)_{y \in Y}$ is a transition kernel with respect to p. By Theorem 2.2 the space Y is Lusin and there exists a Borel isomorphism ψ' from X onto $Y \times [0,1]$ such that $\psi'(p^{-1}(y)) = \{y\} \times [0,1]$ and $\mu'_y \circ \psi'^{-1} = \varepsilon_y \otimes \lambda_{[0,1]}$ for every $y \in Y$. Let ψ'_1, ψ'_2 be the components of ψ' . Then $\psi'_1 = p$. Define $\psi: X \to Y \times \mathbf{R}$ by $\psi(x) = (p(x), \mu_{p(x)}(X) \cdot \psi_2(x))$.

Then ψ is Borel measurable and one-to-one with $\psi(X) = X'$. Hence ψ is a Borel isomorphism from X onto X'. Moreover,

$$\psi(p^{-1}(y)) = \{y\} \times I_y.$$

Obviously

$$\mu_y \circ \psi^{-1} = \varepsilon_y \otimes \lambda_y'$$

where λ'_y is the image of $\lambda_{[0,1]}$ with respect to $t \to \mu_y(X) \cdot t$ multiplied by $\mu_y(X)$. Thus λ'_y is the Lebesgue measure on $[0, \mu_y(X)[$, i.e.,

$$\mu_{\nu} \circ \psi^{-1} = \varepsilon_{\nu} \otimes \lambda_{I_{\nu}}.$$

- 2.4 Remark. In the terminology of Maharam [3] the set X' is called an ordinate set (or the ordinate set of the Borel-measurable function $y \to \mu_y(X)$).
- 2.5 COROLLARY. Let $(\mu_y)_{y\in Y}$ be a finite atomless conditional measure distribution with $\mu_y \neq 0$ for every $y \in Y$. Let $X'' = \bigcup_{y\in Y} \{y\} \times]0, \mu_y(X)]$. Then there exists a Borel isomorphism ψ from X onto X'' such that

$$\psi(p^{-1}(y)) = \{y\} \times]0, \mu_y(X)]$$

and

$$\mu_y \circ \psi = \varepsilon_y \otimes \lambda_{]0,\mu_y(X)]}$$

for every $y \in Y$.

PROOF. This corollary follows immediately from Theorem 2.3 if one observes that there is a Lebesgue measure preserving Borel isomorphism of [0, 1] onto [0, 1].

- 2.6 Lemma. Let $(\mu_y)_{y\in Y}$ be a uniformly σ -finite conditional measure distribution with respect to p with $\mu_y \neq 0$ for every $y \in Y$. Then there exists a (finite or infinite) sequence $(A_n)_n$ of pairwise disjoint Borel sets in X such that
 - (i) $\bigcup_n A_n = X$.
 - (ii) $p(A_n) \in \mathcal{B}(Y)$.
 - (iii) $\forall y \in p(A_n) : 0 < \mu_y(A_n) < \infty$.

PROOF. Let $(B_n)_{n\in\mathbb{N}}$ be a sequence in $\mathscr{B}(X)$ with $\mu_y(B_n)<\infty$ for all n and all $y\in Y$ and $\bigcup_n B_n=X$. Without loss of generality we may assume that the B_n 's are pairwise disjoint. Let $Y_n:=\{y\in Y\colon 0<\mu_y(B_n)\}$. Then Y_n is a Borel set in Y and, by our assumption on $(\mu_y)_y,\bigcup_n Y_n=Y$. Set $Y_0=\varnothing$ and define $B_n':=B_n\cap p^{-1}(Y_n)$ and

$$N:=X\backslash\bigcup_n B'_n.$$

Define

$$A_n = \left[(N \cap p^{-1}(Y_n)) \setminus \bigcup_{i=1}^{n-1} N \cap p^{-1}(Y_i) \right] \cup B'_n.$$

Let $I = \{n \in \mathbb{N} | Y_n \neq \emptyset\}$. Then $(A_n)_{n \in I}$ is a finite or infinite sequence of pairwise disjoint Borel subsets of X. It is easy to check $X = \bigcup_{n \in I} A_n$ and $p(A_n) = Y_n \in \mathcal{B}(Y)$. For $y \in Y_n$ we have:

$$\mu_{y}(A_{n}) \ge \mu_{y}(B'_{n}) = \mu_{y}(B'_{n} \cap p^{-1}(y)) = \mu_{y}(B_{n} \cap p^{-1}(y))$$
$$= \mu_{y}(B_{n}) > 0$$

and $\mu_{\nu}(A_n) \leq \mu_{\nu}(N) + \mu_{\nu}(B_n)$.

Since $\mu_y(N) \leq \sum_m \mu_y(N \cap B_m) = \sum_m \mu_y(B_m \setminus B'_m) = 0$ we obtain $\mu_y(A_n) < \infty$.

2.7 Theorem. Let $(\mu_y)_{y\in Y}$ be a uniformly σ -finite atomless measure distribution with respect to p with $\mu_y \neq 0$ for every $y \in Y$. For $y \in Y$ let

$$I_{y} = \begin{cases} [0, +\infty[, & \mu_{y}(X) = \infty \\ [0, \mu_{y}(X)], & \mu_{y}(X) < \infty. \end{cases}$$

Let $X' := \bigcup_{y \in Y} \{y\} \times I_y$. Then Y is a Lusin space and there exists a Borel isomorphism ψ from X onto X' such that $\psi(p^{-1}(y)) = \{y\} \times I_y$ and $\mu_y \circ \psi^{-1} = \varepsilon_v \otimes \lambda_{I_y}$ for every $y \in Y$.

PROOF. Let $(A_n)_n$ be chosen as in the conclusion of Lemma 2.6. By Theorem 2.3 $p(A_n)$ is a Lusin space. Hence $Y = \bigcup_n p(A_n)$ is a Lusin space. Let $A'_n = \bigcup_{y \in p(A_n)} \{y\} \times [0, \mu_y(A_n)]$. By Cor. 2.5 there exists a Borel isomorphism ψ_n from A_n onto A'_n such that

$$\psi_n(p^{-1}(y) \cap A_n) = \{y\} \times]0, \mu_y(A_n)]$$

and

$$\mu_{y|A_n} \circ \psi_n^{-1} = \varepsilon_y \otimes \lambda_{]0,\mu_y(A_n)]}$$

for every $y \in p(A_n)$.

Let $\psi_n^{(1)}$, $\psi_n^{(2)}$ be the components of ψ_n . Then $\psi_n^{(1)} = p|_{A_n}$. Define $\tilde{\psi}: X \to Y \times \mathbf{R}$ by

$$\tilde{\psi}(x) = (p(x), \psi_n^{(2)}(x) + \sum_{i=1}^{n-1} \mu_y(A_i))$$

if $x \in A_n$. Then $\tilde{\psi}$ is Borel measurable and one-to-one. It is easy to check

$$\tilde{\psi}(p^{-1}(y)) = \{y\} \times (]0, \mu_{\nu}(X)] \cap \mathbf{R})$$

and, therefore, $\tilde{\psi}(X) = X'' := \bigcup_{y \in Y} \{y\} \times (]0, \mu_y(X)] \cap \mathbf{R}$. Hence $\tilde{\psi}$ is a Borel isomorphism from X onto X''. We have $\mu_y \circ \tilde{\psi}^{-1} = \varepsilon_y \otimes \lambda_{]0,\mu_y(X)] \cap \mathbf{R}$. To prove this it is enough to show that

$$\mu_{y|A_n} \circ (\tilde{\psi}_{|A_n})^{-1} = \varepsilon_y \otimes \lambda \left[\sum_{i=1}^{n-1} \mu_y(A_i), \sum_{i=1}^n \mu_y(A_i) \right]$$

for every $y \in Y$. But this is obviously true.

Now let φ_1 be a Lebesgue measure preserving Borel isomorphism of]0,1] onto [0,1] and let φ_2 be a Lebesgue measure preserving Borel isomorphism of $]0,+\infty[$ onto $[0,+\infty[$. Define $\tilde{\psi}\colon X''\to X'$ by

$$\tilde{\psi}(y,t) = \begin{cases} (y, \varphi_2(t)), & \mu_y(X) = \infty \\ (y, \mu_y(X)\varphi_1(\frac{1}{\mu_y(X)}t)), & \mu_y(X) < \infty. \end{cases}$$

Then $\psi = \tilde{\psi} \circ \tilde{\psi}$ has the required properties.

- 2.8 Remark. In the situation of Theorem 2.7 the space Y is either at most countable or Borel isomorphic to [0, 1].
- 3. The classification of arbitrary uniformly σ -finite conditional measure distributions.
- 3.1 Lemma. Let $(\mu_y)_{y \in Y}$ be a conditional measure distribution with respect to p. Let X_a denote the set of atoms of $(\mu_y)_{y \in Y}$, i.e.,

$$X_a = \{x \in X | \exists y \in Y : \mu_y(\{x\}) > 0\}.$$

Then X_a is a Borel set.

PROOF. Without loss of generality we may assume that X is a Polish space. Since μ_{ν} is concentrated on $p^{-1}(y)$ we obviously have

$$X_a = \{x \in X | \mu_{p(x)}(\{x\}) > 0\}$$

Let \mathcal{L} be a countable base for the topology of X. Then

$$X_a = \bigcup_{n \in \mathbf{N}} X_a^{(n)}$$

with

$$X_a^{(n)} := \left\{ x \in X | \forall U \in \mathcal{L} : x \in U \Rightarrow \mu_{p(x)}(U) \ge \frac{1}{n} \right\}$$
$$= \bigcap_{U \in \mathcal{L}} (X \setminus U) \cup \left\{ x \in X | \mu_{p(x)}(U) \ge \frac{1}{n} \right\}.$$

Thus $X_a^{(n)}$ and hence X_a is a Borel set.

3.2 THEOREM. Let $(\mu_y)_{y\in Y}$ be a uniformly σ -finite conditional measure distribution with respect to p. For every $y\in Y$ let $n_y\in \mathbb{N}\cup\{\infty\}$ be the number of atoms of μ_y and

$$Z_{y} = \begin{cases} \varnothing, & n_{y} = 0 \\ \{-1, \dots, -n_{y}\}, & 0 < n_{y} < \infty \\ \{-1, -2, \dots\}, & n_{y} = \infty. \end{cases}$$

Let $X_a = \{x \in X | \exists y \in Y : \mu_y(\{x\}) > 0\}$ and μ_y^{na} the atomless part of μ_y , i.e. $\mu_y^{na} = \mu_y|_{X \setminus X_a}$. Let

$$I_{y} = \begin{cases} [0, \mu_{y}^{na}(X)], & \mu_{y}(X \backslash X_{a}) < \infty \\ [0, +\infty[, & \mu_{y}(X \backslash X_{a}) = \infty. \end{cases}$$

Let $Y_0 = \{ y \in Y | \mu_y(X \backslash X_a) = 0 \}.$

Then $Y \setminus Y_0$ is a Lusin space and there exists a Borel subset X' of $Y \times \mathbf{R}$ and a Borel isomorphism ψ from X onto X' such that the following conditions hold:

- (i) $\forall y \in Y : \psi(p^{-1}(y)) = \{y\} \times \{t \in \mathbf{R} | (y, t) \in X'\}.$
- (ii) $\forall y \in Y : \psi(p^{-1}(y) \cap X_a) = \{y\} \times Z_v$.
- (iii) $\forall y \in Y \setminus Y_0$: $\psi(p^{-1}(y) \setminus X_a) = \{y\} \times I_y \text{ and } \mu_v^{na} \circ \psi^{-1} = \varepsilon_y \otimes \lambda_{I_y}$.
- (iv) $\forall y \in Y_0$: $\psi(p^{-1}(y) \setminus X_a) \subset \{y\} \times [0, +\infty[$ and

$$\varepsilon_y \otimes \lambda_{[0,+\infty[}(\psi(p^{-1}(y))\backslash X_a) = 0.$$

PROOF. By Lemma 3.1 the set X_a is in $\mathcal{B}(X)$. This implies $Y_0 \in \mathcal{B}(Y)$ and therefore, $(X \setminus X_a) \cap p^{-1}(Y \setminus Y_0) \in \mathcal{B}(X)$. Since X is a Lusin space the same is true for $X_{na} := (X \setminus X_a) \cap p^{-1}(Y \setminus Y_0)$. Since $p(X_{na}) = Y \setminus Y_0$ it follows from Theorem 2.7 applied with X_{na} in the place of X, $Y \setminus Y_0$ in the place of Y, $p_{\mid X_{na}}$ in the place of Y, and Y_0 is a Lusin space and that there exists a Borel isomorphism Y_0 from Y_0 onto $Y_0 = \bigcup_{y \in Y \setminus Y_0} \{y\} \times I_y$ with

$$\psi(p^{-1}(y)\cap X_{na})=\{y\}\times I_y$$

and

$$\mu_y^{na} \circ \psi_1^{-1} = \varepsilon_y \otimes \lambda_{I_y}$$
 for every $y \in Y$.

By a theorem of Lusin (see, for instance, [1]) there are Borel sets $D_n \subset Y$ and Borel measurable maps $f_n \colon D_n \to X_a$ with $f_n(y) \in p^{-1}(y)$ for every $y \in Y, \bigcup_{n \in \mathbb{N}} f_n(D_n) = X_a$ and $f_n(D_n) \cap f_m(D_m) = \emptyset$ if $n \neq m$. Define $\psi_2 \colon X_a \to Y \times \{-n | n \in \mathbb{N}\}$ by $\psi_2(x) = (p(x), -n)$ if $x \in f_n(D_n)$.

Then ψ_2 is Borel measurable and one-to-one with

$$\psi_2(X_a) = X_2 := \bigcup_{y \in Y} \{y\} \times Z_y,$$

hence a Borel isomorphism from X_a onto X_2 . It follows from the definition of ψ_2 that $\psi_2(p^{-1}(y) \cap X_a) = \{y\} \times Z_y$ for every $y \in Y$.

Consider $X_{na}^0 := p^{-1}(Y_0) \cap (X \setminus X_a)$. Then X_{na}^0 is a Borel set in X. Hence there exists a Borel isomorphism $j : X_{na}^0 \to C$ from X_{na}^0 onto a Borel subset of the classical Cantor set $C \subset [0, 1]$. Define $\psi_3 : X_{na}^0 \to Y \times \mathbf{R}$ by $\psi_3(x) = (p(x), j(x))$. Then ψ_3 is a Borel isomorphism of X_{na}^0 onto a Borel subset B of $Y \times \mathbf{R}$. For $y \in Y_0$ we get

$$\psi_3(p^{-1}(y)\backslash X_a)\subset \{y\}\times [0,+\infty[$$

and $\varepsilon_y \otimes \lambda_{[0,+\infty[}(\psi_3(p^{-1}(y)\backslash X_a)=0, \text{ since } \psi_3(p^{-1}(y)\backslash X_a))\subset \{y\}\times C$. Define $\psi\colon X\to Y\times \mathbf{R}$ by $\psi_{[(X\backslash X_a)\cap p^{-1}(Y\backslash Y_0)}=\psi_1, \psi_{[(X\backslash X_a)\cap p^{-1}(Y_0)}=\psi_3, \psi_{[X_a}=\psi_2, \text{ and } X':=\psi(X)$. Then ψ and X' have the required properties.

4. The classification of uniformly σ -finite disintegrations.

4.1 Definition. Let X' be a Lusin space, Y' a Suslin space, $p': X' \to Y'$ Borel measurable and onto. Let μ' and ν' be σ -finite measures on $\mathcal{B}(X')$ and $\mathscr{B}(Y')$ respectively. Let $(\mu'_y)_{y\in Y'}$ be a disintegration of μ' w.r.t. (p',ν') . Let μ and ν be σ -finite measures on $\mathscr{B}(X)$ and $\mathscr{B}(Y)$ respectively and let $(\mu_y)_{y\in Y}$ be a disintegration of μ w.r.t. (p,ν) . Then $(X,Y,p,(\mu_y),\nu)$ and a $(X',Y',p',(\mu'_y),\nu')$ are called *isometric* if there exist Borel isomorphisms φ from Y onto Y' and ψ from X onto X' such that

- (i) $\varphi \circ p = p' \circ \psi$.
- (ii) $\nu \circ \varphi^{-1} = \nu'$.
- (iii) $\mu_{\nu} \circ \psi^{-1} = \mu'_{\nu}$.
- 4.2 Remark. In the situation of Def. 4.1 it follows that $\mu \circ \psi^{-1} = \mu'$.
- 4.3 Definition. A model disintegration consists of a Borel set $X' \subset \mathbb{R}^2$, an analytic set $Y' \subset \mathbb{R}$, the canonical projection p' from X' onto the first coordinate, a conditional measure distribution $(\mu'_y)_{y \in Y'}$ with respect to p', and a measure ν' on $\mathcal{B}(Y')$ such that the following conditions hold:
 - (i) p'(X') = Y'.
 - (ii) $Y' \cap]-\infty, 3$ equals $]-\infty, 3$ or [-a, -3] for some a > 3 or is empty.
 - (iii) $Y' \cap]-3,-2]$ is an analytic Lebesgue nullset.
 - (iv) $Y' \cap]-2, 0[$ is contained in $\{-1 \pm \frac{1}{n+1} | n \in \mathbb{N}\}.$
- (v) $Y' \cap [0, +\infty[$ equals $[0, +\infty[$ or [0, b] for some b > 0 or is a Borel set of Lebesgue measure 0.
- (vi) The atomless part of ν' is one-dimensional Lebesgue measure restricted to Y'.
 - (vii) The set of atoms of ν' equals $Y' \cap]-2,0[$.
- (viii) For $y \in Y'$ with y > -1 the set $X'_y \cap [0, +\infty[$ is a non-trivial closed interval containing 0 (possibly a half-line).
- (ix) For $y \in Y'$ with y < -1 the set $X'_y \cap [0, +\infty[$ is a Borel set of Lebesgue measure 0.
 - (x) For $y \in Y'$ the set $X_y \cap]-\infty, 0[$ is contained in $\{-n|n \in \mathbb{N}\}.$
- (xi) For each $y \in Y'$ the atomless part of μ'_y equals one-dimensional Lebesgue measure restricted to $p'^{-1}(y)$.
 - (xii) The set of atoms of μ_{ν} equals $p'^{-1}(y) \cap (\{y\} \times] \infty, 0[)$.
- 4.4 Remark. Define $\mu' = \int \mu_y' \, d\nu'(y)$. Then the set of atoms of μ' equals $X' \cap]-2$, $0[x]-\infty$, 0[, the atomless part of $\mu'_{[X'\cap(]-\infty,0]\times\mathbb{R}\cup]0,+\infty[\times]-\infty,0[)}$ equals one-dim. Lebesgue measure restricted to $X' \cap (]-\infty,0] \times \mathbb{R}\cup]0,+\infty[\times]-\infty$, 0[) and $\mu'_{[X'\cap]-0,+\infty[\times[0,+\infty[)]}$ equals two-dim. Lebesgue measure restricted to $X' \cap (]-0,+\infty[\times[0,+\infty[)]$.
- 4.5 Theorem. Let μ be a σ -finite measure on $\mathcal{B}(X)$ and let ν be a σ -finite measure on $\mathcal{B}(Y)$. Let $(\mu_y)_{y\in Y}$ be a uniformly σ -finite disintegration of μ with respect to (p,ν) . Let $X_a=\{x\in X|\exists y\in Y:\mu_y(\{x\})>0\}, Y_0=\{y\in Y:\mu_y(X\setminus X_a)=0\}, Y_a=\{y\in Y|\nu(\{y\})>0\}$. Let μ_y^{na} be the atomless part of μ_y and ν^{na} the atomless part of ν . Let I_y and I_y be defined as in Theorem 3.2. Let $I_y:\mathbb{R}^2\to\mathbb{R}$ be the projection onto the first component. Then there exist Borel isomorphisms φ from I_y onto an analytic subset I_y of I_y and I_y from I_y onto a Borel subset I_y of I_y with the following properties:

Example of a model disintegration

(i) $\pi_1 \circ \psi = \varphi \circ p$.

(ii) $\forall y \in Y : \psi(p^{-1}(y)) = \pi_1^{-1}(\varphi(y)) \cap X'$.

(iii) $\varphi(Y\setminus (Y_0\cup Y_a))$ is a Borel-measurable Lebesgue nullset in [0,1] if $\nu(Y\setminus (Y_0\cup Y_a))=0$ and

$$\varphi(Y \setminus (Y_0 \cup Y_a)) = \{t \in \mathbb{R} | 0 \le t \le \nu(Y \setminus (Y_0 \cup Y_a))\} \text{ if } \nu(Y \setminus (Y_a \cup Y_0)) > 0.$$

Moreover, $\nu^{na} \circ (\varphi_{|Y-(Y_0 \cup Y_a)})^{-1} = \lambda_{\varphi(Y \setminus (Y_0 \cup Y_a))}$.

(iv) $\varphi(Y_0 \setminus Y_a)$ consists of an analytic Lebesgue nullset in]-3,-2[and, if $\nu(Y_0 \setminus Y_a) > 0$, of $[-3 - \nu(Y_0 \setminus Y_a), -3] \cap \mathbf{R}$. Moreover, $\nu \circ (\varphi_{|Y_0 \setminus Y_a})^{-1} = \nu^{na} \circ (\varphi_{|Y_0 \setminus Y_a})^{-1} = \lambda_{\varphi(Y_0 \setminus Y_a)}$.

 $(v) \varphi(Y_0 \cap Y_a) = \{-1 - 1/(n+1) | n \in \mathbb{N} \text{ and } 1 \le n \le \operatorname{card}(Y_0 \cap Y_a) \}.$

(vi) $\varphi(Y_a \setminus Y_0) = \{-1 + 1/(n+1) | n \in \mathbb{N} \text{ and } 1 \le n \le \operatorname{card}(Y_a \setminus Y_0)\}.$

(vii) $\forall y \in Y : \psi(p^{-1}(y) \cap X_a) = \{\varphi(y)\} \times Z_y$.

(viii) $\forall y \in Y \setminus Y_0$: $\psi(p^{-1}(y) \setminus X_a) = \{\varphi(y)\} \times I_y \text{ and } \mu_y^{na} \circ \psi^{-1} = \varepsilon_{\varphi(y)} \otimes \lambda_{I_y}$.

(ix) $\forall y \in Y_0$: $\psi(p^{-1}(y) \setminus X_a) \subset \{\varphi(y)\} \times [0, +\infty[$ and

$$\varepsilon_{\varphi(y)} \otimes \lambda_{[0,+\infty[}(\psi(p^{-1}(y)\backslash X_a)) = 0.$$

(x) $\mu_{|p^{-1}(Y\setminus Y_0)}^{na} \circ \psi^{-1} = \lambda_{|X}^2$, where λ^2 denotes two-dimensional Lebesgue measure, $\mu_{|p^{-1}(Y_a)}^{na} \circ \psi^{-1}$ is one-dimensional Lebesgue measure on

$$X'\cap([-1,0]\times\mathbf{R}_+),$$

 ψ maps the set of atoms of μ onto $X' \cap ([-2,0] \times] - \infty, 0[)$.

(xi)
$$\nu^{na} \circ \varphi^{-1} = \lambda_{|Y'}$$
. φ maps the set of atoms of ν onto $|Y'| = 2$, 0].

PROOF. That X_a , Y_a and Y_0 are Borel sets in X and Y resp. either follows from Lemma 3.1 or is easy to verify. Since Y_a is at most countable and since

 $Y \setminus Y_0$ is a Lusin space by Theorem 3.2, it follows that $Y \setminus (Y_0 \cup Y_a)$ is a Lusin space. If $\nu(Y \setminus (Y_0 \cup Y_a)) = 0$ let φ_1 be a Borel isomorphism of $Y \setminus (Y_0 \cup Y_a)$ onto a Borel subset of [0, 1] with Lebesgue measure zero. If

$$\nu(Y\backslash(Y_0\cup Y_a))>0,$$

then Lemma 2.1 implies that there is a Borel isomorphism φ_1 from $Y \setminus (Y_0 \cup Y_a)$ onto $\{t \in \mathbb{R} | 0 \le t \le \nu(Y \setminus (Y_0 \cup Y_a))\}$ with

$$\nu_{|Y\setminus (Y_0\cup Y_a)}\circ \varphi_1^{-1}=\lambda_{\{t\in \mathbb{R}|0\leq t\leq \nu(Y\setminus (Y_0\cup Y_a))\}}.$$

Since ν is σ -finite on a Suslin space there exists a sequence (K_n) of compact subsets of $Y_0 \backslash Y_a$ with $\nu((Y_0 \backslash Y_a) \backslash \bigcup K_n) = 0$. $S = \bigcup K_n$ is a Lusin space. Without loss of generality we take $S = \emptyset$ if $\nu(Y_0 \backslash Y_a) = 0$. If $\nu(Y_0 \backslash Y_a) > 0$ then, by Lemma 2.1, there exists a Borel-isomorphism $\varphi_2^{(1)}$ from S onto $[-3 - \nu(Y_0 \backslash Y_a), -3] \cap \mathbb{R}$ with $\nu_{|Y_0 \backslash Y_a|} \circ (\varphi_2^{(1)})^{-1} = \lambda_{[-3 - \nu(Y \backslash Y_a), -3] \cap \mathbb{R}}$. Moreover there exists a Borel-isomorphism $\varphi_2^{(2)}$ from $(Y_0 \backslash Y_a) \backslash S$ onto an analytic subset of [-3, -2] of Lebesgue measure 0. Let φ_3 be a bijection from $Y_0 \cap Y_a$ to $\{-1 - 1/n + 1 \mid n \in \mathbb{N}, 1 \le n \le \operatorname{card}(Y_0 \cap Y_a)\}$. Let φ_4 be a bijection from $Y_a \backslash Y_0$ to $\{-1 + 1/n + 1 \mid n \in \mathbb{N}, 1 \le n \le \operatorname{card}(Y_a \backslash Y_0)\}$. Define $\varphi: Y \to \mathbb{R}$ by

$$\varphi|Y\setminus (Y_0\cup Y_a)=\varphi_1, \varphi_{|S}=\varphi_2^{(1)} \text{ if } S\neq\varnothing, \varphi_{|(Y_0\setminus Y_a)\setminus S}=\varphi_2^{(2)},$$
$$\varphi_{|Y_0\cap Y_a}=\varphi_3, \varphi_{|Y_a\setminus Y_0}=\varphi_4.$$

Then φ is Borel measurable and one-to-one. Let $\tilde{\psi}: X \to Y \times \mathbf{R}$ be the Borel isomorphism in the conclusion of Theorem 3.2. Let $\tilde{\psi}_1, \tilde{\psi}_2$ be the components of $\tilde{\psi}$. Then $\tilde{\psi}_1 = p$. Define $\psi: X \to \mathbf{R}^2$ by $\psi(x) = (\varphi(p(x)), \tilde{\psi}_2(x))$. Set $X' = \psi(X)$. Then φ, ψ and X' obviously satisfy conditions (i) through (xii). Theorem 4.5 can be rephrased as follows:

4.6 Theorem. Let μ be a σ -finite on $\mathcal{B}(X)$. Every uniformly σ -finite disintegration of μ w.r.t. p and a σ -finite measure ν is isometric to a model disintegration.

Appendix. On the uniform σ -finiteness of disintegrations consisting of σ -finite measures.

Here we deal with the problem whether a conditional measure distribution consisting of σ -finite measures is necessarily uniformly σ -finite. The first counterexample shows that, if we drop the condition that the σ -finite measures of the conditional measure distribution live on different fibers of a measurable map, then the conditional measure distribution is, in general, not uniformly σ -finite.

5.1 THEOREM. Let $X = Y = \mathbf{R}$. For $y \in \mathbf{R}$ let $\mu_y \colon \mathscr{P}(\mathbf{R}) \to [0, +\infty]$ be defined by

$$\mu_{y}(A) = \operatorname{card}[(A - y) \cap \mathbf{Q}],$$

where **Q** denotes the set of rational numbers.

Then each μ_y is a σ -finite measure but there does not exist a sequence $(A_n)_{n\in\mathbb{N}}$ of Lebesgue measurable subsets of \mathbf{R} with the following properties

- (i) $\bigcup_{n\in\mathbb{N}} A_n = \mathbb{R}$.
- (ii) For each $y \in \mathbf{R}$ and each $n \in \mathbf{N}$, $\mu_y(A_n) < \infty$.

PROOF. First we will show that, for every Lebesgue mesurable $A \subset \mathbb{R}$, the map $y \to \mu_y(A)$ is Lebesgue measurable. To this end let I be a finite subset of \mathbb{Q} . Now, for an arbitrary subset A of \mathbb{R} :

$$\{y \in \mathbf{R} | (A - y) \cap \mathbf{Q} = I\}$$

$$= \{y \in \mathbf{R} | y + I \subset A \text{ and } y + (\mathbf{Q} \setminus I) \subset \mathbf{R} \setminus A\}$$

$$= \bigcap_{q \in I} [A - q] \cap \bigcap_{r \in \mathbf{Q} \setminus I} [(\mathbf{R} \setminus A) - r].$$

This implies, that for every $\alpha \in \mathbb{R}$, and every Lebesgue measurable $A \subset \mathbb{R}$, the set

$$\{y \in \mathbf{R} | \mu_y(A) < \alpha\} = \bigcup_{\substack{I \subset \mathbf{Q} \\ \operatorname{card} I < \alpha}} \{y \in \mathbf{R} | (A - y) \cap \mathbf{Q} = I\} \in \mathscr{B}(\mathbf{R})$$

is Lebesgue measurable.

Therefore the map $y \to \mu_y(A)$ is Lebesgue measurable.

Now assume that there exists a sequence (A_n) of Lebesgue measurable sets satisfying conditions (i) and (ii). We will show that this assumption leads to a contradiction. From (ii) it follows that, for every $y \in \mathbb{R}$, the set $(A_n - y) \cap \mathbb{Q}$ has only finitely many elements. Let $(I_k)_{k \in \mathbb{N}}$ be an enumeration of the finite and nonempty subsets of \mathbb{Q} and set

$$B_{nk} = \{ y \in \mathbf{R} | (A_n - y) \cap \mathbf{Q} = I_k \}.$$

Our previous calculations show that each B_{nk} is Lebesgue measurable and these sets cover **R**. Hence there are $k_0, n_0 \in \mathbb{N}$ with $\lambda(B_{n_0k_0}) > 0$, where λ denotes one-dimensional Lebesgue measures. Fix $r \in I_{k_0}$. For every $y \in B_{n_0k_0}$ we have $r \in A_{n_0} - y$, hence $r + B_{n_0k_0} \subset A_{n_0}$. Since $\lambda(r + B_{n_0k_0}) > 0$ we know by Steinhaus' theorem, that there exists an $\varepsilon > 0$ with

$$(-\varepsilon,\varepsilon)\subset r+B_{n_0k_0}-(r+B_{n_0k_0})$$

$$\subset A_{n_0}-B_{n_0k_0}-r.$$

Thus

$$(-\varepsilon,\varepsilon)\cap\mathbf{Q}\subset(A_{n_0}-B_{n_0k_0}-r)\cap\mathbf{Q}=[(A_{n_0}-B_{n_0k_0})\cap\mathbf{Q}]-r$$
$$=I_{k_0}-r.$$

But the right hand side of this inclusion is a finite set while the left hand side is infinite, a contradiction.

The following theorem shows that a conditional measure distribution $(\mu_y)_{y\in Y}$ with respect to a measurable map $p\colon X\to Y$ consisting of σ -finite measures μ_y is uniformly σ -finite in a very weak sense.

- 5.2 THEOREM. Let X, Y and p be as in the preliminaries. Let $(\mu_y)_{y \in Y}$ be a conditional measure distribution with respect to p such that each μ_y is σ -finite. Then there exists a sequence $(A_n)_{n \in \mathbb{N}}$ of subsets of X with the following properties:
 - (i) $X = \bigcup_{n \in \mathbb{N}} A_n$.
- (ii) For each $n \in \mathbb{N}$ and each $y \in Y$ the set A_n is μ_y -measurable with $\mu_y(A_n) < \infty$.

PROOF. Due to the σ -finiteness of μ_y , for each $y \in Y$, there exists a sequence $(A_n^y)_{n \in \mathbb{N}}$ of Borel subsets of X with $\bigcup_{n \in \mathbb{N}} A_n^y = p^{-1}(y)$ and $\mu_y(A_n^y) < \infty$. Define $A_n = \bigcup_{y \in Y} A_n^y$. Since μ_y is concentrated on $p^{-1}(y)$ we have $\mu_y^*(A_n \setminus p^{-1}(y)) = 0$ and, therefore, $A_n \setminus p^{-1}(y)$ is μ_y -measurable. (Here μ_y^* is the outer measure corresponding to μ_y .) On the other hand $A_n \cap p^{-1}(y) = A_n^y$ is a Borel set in X. Thus A_n is μ_y -measurable and $\mu_y(A_n) = \mu_y(A_n^y) < \infty$.

5.3 Open problems. In the preceding theorem, can the sets $(A_n)_{n\in\mathbb{N}}$ be chosen to be Borel subsets of X, i.e., is $(\mu_y)_{y\in Y}$ uniformly σ -finite? A slightly weaker problem is whether the sets (A_n) can be chosen to be universally measurable or to be in the σ -field generated by the Suslin subsets of X.

The first of the above questions was asked by Maharam [4].

REFERENCES

- [1] C. Dellacherie, Un cours sur les ensembles analytiques, In: Analytic sets, Academic Press 1980.
- [2] S. Graf and R. D. Mauldin, Measurable one-to-one selections and transition kernels, Amer. J. Math. 106 (1984), 407-425.
- [3] D. Maharam, Decompositions of measure algebras and spaces, Trans. Amer. Math. Soc. 69 (1950), 142-160.
- [4] D. Maharam, On the planar representation of a measurable subfield, Lect. Notes in Math. 1089 (1984), 47-57.
 - [5] R. D. Mauldin, Borel parametrizations, Trans. Amer. Math. Soc. 250 (1979), 223-234.
- [6] R. D. Mauldin, D. Preiss and H. v. Weizsäcker, Orthogonal transition kernels, Ann. Prob. 11 (1983), 970-988.
- [7] J. v. Neumann, Zur Operatorenmethode in der klassischen Mechanik, Ann. Math. 33 (1932), 587-642.
- [8] K. R. Parthasarathy, Probability measures on metric spaces, Academic Press, New York 1967.
- [9] L. Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures, Oxford University Press, London 1973.
- [10] V. A. Rokhlin, On the fundamental ideas in measure theory, Mat. Sbornik 25 (1949), 107-150, Amer. Math. Soc. Translations 71 (1952).

S. Graf Fakultät für Mathematik und Informatik Universität Passau Postfach 2540 D-8390 Passau Federal Republic of Germany R. D. Mauldin
Department of Mathematics
University of North Texas
P.O. Box 5116
Denton, TX 76203