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A Classification of Disintegrations of Measures

S. GRAF AND R. DANIEL MAULDIN

0. Introduction. Disintegration of measures is a very useful tool in ergodic
theory (see, for example, von Neumann [7]), in the theory of conditional
probabilities (see, for example, Parthasarathy [8]), and in descriptive set the-
ory (see, for example, Mauldin [5] and Graf-Mauldin [2]).

The origins of disintegation are uncertain but the first rigorous definitions
and results—to our knowledge—are due to von Neumann [7]. In the late
forties Rokhlin [10] and Maharam [3] independently introduced canonical
representations of disintegrations. Later Maharam [4] returned to the de-
scriptive set theoretic aspects of these representations. The purpose of our
paper is to offer a sharpening of her results. The improvements are that we
can use an “ordinate set” in the place of Maharam’s “almost ordinate set”
to represent the non-atomic part of a disintegration and that we get rid of
Maharam’s “garbage set”. As a main tool we use the classification for com-
pletely orthogonal transition kernels given by Mauldin-Preiss-v. Weizsicker
[6].

Our considerations still léave one major problem of Maharam [3] open
which can be reformulated as follows: Is every conditional measure distribu-
tion consisting of g-finite measures necessarily uniformly o-finite (see section
on “Preliminaries” for the definition of uniform o-finiteness of a conditional
measure distribution)?

1. Preliminaries. For a Hausdorff space X let % (X) denote the Borel o-
field on X. In the following X is always a Lusin space (i.e. a one-to-one
continuous image of a Polish space) and Y is a non-empty Suslin space (i.e.
a continuous image of a Polish space). For the basic facts about Suslin- and
Lusin-spaces we refer the reader to [9]. Moreover, p is a Z(X) — F(Y)-
measurable (i.e., a Borel measurable) map from X onto Y. A family (y)yey
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is called a conditional measure distribution with respect to p if the following
conditions hold: _
(i) Each g, is a (not necessarily o-finite) measure on % (X) with

ty(X\p~ () = 0.

(i) For every 4 € #(X) the map y — n,(A) is Borel measurable on Y.

A conditional measure distribution {(u,)yey is called finite (uniformly o-
finite) if 4,(X) < oo for all y € ¥ (if there is a sequence (A, )nen in & (X)
with | J,en 4n = X and p,(4n) < oo for all y € Y). It is called a transition
kernel with respect to p if u,(X)=1forallyeY.

If 4 is a o-finite measure on Z(X) and v is a o-finite measure on & (Y)
then a conditional measure distribution (4, ),ey with respect to p is called a
strict disintegration of u with respect to {(p,v) if

(1.1) vAeZ(X): [ w(4)dvi) = u(A).

Since we will only deal with strict disintegrations we will use “disintegration”
to mean “strict disintegration”. '
Maharam proved the following fundamental theorem.

THEOREM. A o-finite measure y on % (X) has a uniformly o-finite disinte-
gration with respect to (p,v) with v a-finite if and only if

(1.2) VB e B(Y): v(B)=0= u(p~'(B)) =0

i.e., the image measure yop~' of u with respect to p is absolutely continuous
with respect to v.

It is an open question whether, in the above situation, every disintegration
(4y)yey consisting of o-finite p,’s is already uniformly o-finite (see [3]). (The
answer is “yes” for locally finite u,’s!). We will return to this question at the
end of the paper.

In what follows Az stands for the restriction of one-dimensional Lebesgue-
measure to the Lebesgue-measurable subset B of R. For a point y in Y the
symbol &, denotes the Dirac measure concentrated at y.

2. The classification of atomless o-finite conditional measure distributions.

2.1 LeMMA. Let v be a a-finite atomless measure on the Borel field of a
Lusin space Y with v(Y) > 0. Let Y' = {t € Ry|t S v(Y)}. Then there exists
a Borel isomorphism ¢ from Y onto Y' withvog™! = Ay

ProoF. There exists a sequence (B,), of pairwise disjoint Borel sets in
Y with U, B, = Y and 0 < v(B,) < oo for every n. As is well-known, for
each n, there exist a Borel isomorphism ¢, of B, onto ]0,»(B,)] such that
vls, 0 95" = A s, Define §: Y —10,+ool by §(») = pa(¥) + 145y v(B)
if y e B,
- Then ¢ is Borel measurable and one-to-one with ¢(Y) =]0,v#(¥Y)] N R,
hence a Borel isomorphism from Y onto 0, (Y )] N R. It is easy to check v o
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G = Ao, (v)nr- Let @ be a Lebesgue measure preserving Borel isomorphism
of J0,(Y)INR onto ¥” = [0,»(Y)]NR,. Then ¢ = § o $ has the desired
properties.

2.2 THEOREM. Let (y),ey be an atomless transition kernel with respect to
p. Then Y is a Lusin space and there exists a Borel isomorphism y from X
onto ¥ x [0, 1] such that w(p~'(¥)) = {y} x 10, 1] and py o ¥ = &, ® Ajp,17 for
everyyey.

ProoF. Since Y # @ and each u, is atomless it follows that X is uncount-
able. Hence there exists a Borel isomorphism t© from X onto [0, 1]. Since ¥
is Suslin there exists an analytic subset Y’/ of [0, 1] and a Borel isomorphism
j from Y onto Y’. Define ¢: X — [0,1] x [0, 1] by o(x) = (J(p(x)), 7(x)).
Then ¢ is Borel measurable and one-to-one. Hence X' := ¢(X) is a Borel
subset of [0,1] x [0,1]. Let z: [0, 1] x [0, 1] — [0, 1] be the projection onto
the first coordinate. Using the proof of Theorem 2.2 in [S] one can show
that there is a Borel subset M of X' with =;(M) = m{X') and M, =
{x € [0, 1]|(y,x) € M} compact. By a result of Novikov (see, for instance,
Dellacherie [1], Sect. 2, Th. 19) it follows that z;(M) is a Borel subset of
[0, 1]. Since 7 {M) = 7 {X') = j(Y) it follows that Y is a Lusin space.

If Y is countable then one may apply Lemma 2.1 to each fiber p~!(y) and
each u, separately and thus obtain the conclusion of the theorem.

IfY is uncountable then there exists a Borel isomorphism ¢ from Y onto
[0,1]. Let B = {(p(x),x)|]x € X}. By our assumptions Theorem 2.3 of
[6] is applicable. Hence there exists a Borel isomorphism y? from B onto
[0, 1]x[0, 1] with ({y} xB)) = {p(»)} x[0, 1] and (&,®4,)o9 " = £y @A,
forall y e Y. Let w: X — B be defined by t//(x) = (p(x),x). Then y is a
Borel isomorphism from X onto B. Let y’ = 7 o {7 and let ! and y} be the
components of . Define y: X — Y x [0, 1] by w(x) = (¢~ oy (x) wi(x)).
Then y is a. Borel isomorphism with the required properties.

2.3 THEOREM. Let (u;)ycy be a finite atomless conditional measure distri-
bution with respect to p with py, # 0 foreveryy € Y. Fory e Y let

I, =[0, 0, (X)]

Let X! = ,ey{y} x I. Then Y is a Lusin space and there exists a Borel
isomorphism w from X onto X' such that

w@ ') = xhand oy =, @14,
foreveryyeY.

Proor. Let u, = (1/uy(X))ity. Then (4,)yey is a transition kernel with
respect to p. By Theorem 2.2 the space Y is Lusin and there exists a Borel
isomorphism ¥’ from X onto Y x [0, 1] such that ' (p~1(y)) == {¥} x [0, 1]
and p o y' 1 =g, ® Ay for every y € Y. Let v, y; be the components of
y'. Then y] = p. Define y: X — ¥ x R by y(x) = (p(X), Up(x)(X) - Y2 (x)).
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Then y is Borel measurable and one-to-one with y(X) = X ., Hence y is a
Borel isomorphism from X onto X’. Moreover,

wip~' ) =} x .
Obviously
pow =884
where ), is the image of A,y with respect 1o £ — uy(X) - ¢ multiplied by
#y{(X). Thus A}, is the Lebesgue measure on [0, 1y (X, L€,

tyoy ™ =& @4,

2.4 Remark. In the terminology of Maharam [3] the set X' is called an
ordinate set (or the ordinate set of the Borel-measurable function y ~ p,(X)).

2.5 COROLLARY. Let (tiy),cy be a finite atomless conditional measure dis-
tribution with u, # 0 for everyy € Y. Let X" = Uyer (¥} x 10, (X)) Then
there exists a Borel isomorphism y from X onto X" such that

w(p” () = (¥} x10, py(X)]
and
By o ¥ =& ® Ajou,(x))
foreveryyeY.

Proor. This corollary follows immediately from Theorem 2.3 if one ob-
serves that there is a Lebesgue measure preserving Borel isomorphism of [0, 1]
onto 10, 1].

2.6 LeMMA. Let (ity)yey be a uniformly o-finite conditional measure dis-
tribution with respect to p with p, # 0 for every y € Y. Then there exists a
(finite or infinite) sequence (A, ), of pairwise disjoint Borel sets in X such that

@y, A =X

(ii) p(4n) € Z(Y).

(iii) Yy € p(4a): 0 < py(Ay) < co.

PROOF. Let (B,)nen be a sequence in Z(X) with p,(B,) < o for all n
and all y € Y and |, B, = X. Without loss of generality we may assume
that the B,’s are pairwise disjoint. Let Yy, := {y € Y: 0 < u,(B,)}. Then ¥y
is a Borel set in Y and, by our assumption on {4,)y, 1), Ya =Y. Set o =
and define B!, := B, N p~!(¥,) and

N :=X\{B.
n

Define

n-—1

Ay = |V p I\ U N o' ()| U B,

=1
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Let I = {n € N|Y, # @}. Then (A,)ses is a finite or infinite sequence of
pairwise disjoint Borel subsets of X. It is easy to check X = {J,, 4, and
pl{dy) =Y, € Z(Y). For y € Y,, we have:
py(An) 2 py(By) = py(By, 0p™ () = ty(Bx N~ (1))
= Juy(Bn) >0
and u,(Ap) < py(N) + #y(By).

Since 1, (N) < 3, ty(NNBp) = 32, ty(Bw\B,) = 0 we obtain py(4,) <
o,

2.7 THEOREM. Let (11,),cy be a uniformly a-finite atomless measure dis-
tribution with respect to p with p, # 0 foreveryy e Y. Fory € Y let '

- { [0, +oof,  #y(X) =00
P00, (X)) < oo
Let X' := Uyey{y} x I,. Then Y is a Lusin space and there exists a Borel

isomorphism w from X onto X' such that w(p~'(y)) = {y} x I, and uy o
w!=¢,®4, foreveryy €Y.

PrOOF. Let (A,), be chosen as in the conclusion of Lemma 2.6. By The-
orem 2.3 p(A4,) is a Lusin space. Hence Y = |J, p(4,) is a Lusin space. Let
Ay = Upepian 10 ¥ 10, 4y (45)]. By Cor. 2.5 there exists a Borel isomorphism
w, from A4, onto 4, such that

wap 71 (YY) N Ap) = {¥} x 10, fiy(45)]
and
Hyla, © W' = & ® Ao (4,1

for every v € p(4,).

Let t//,gl), y/,gz) be the components of ,. Then y/,(,” = plg,. Define y: X —

Y xR by
n—1
7(x) = (P(x), Y (x) + 3 (A7)
[=1

if x € 4,. Then 7 is Borel measurable and one-to-one. It is easy to check

F(p~ () = {r} x (10, uy(X)1 N R)

and, therefore, 7(X) = X" 1= |,y {¥} % (10, #,(X)]INR). Hence ¥ is a Borel
isomorphism from X onto X”. We have g, 0~ = £,®Aj0,4,(x)jnr. T0 prove
this it is enough to show that

n—1i n
Byia,© (Aa) " =&y ® 4| Dy (A), Y py( )
i=1 i=1

for every y € Y. But this is obviously true.
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Now let ¢, be a Lebesgue measure preserving Borel isomorphism of ]0, 1]
onto [0, 1] and let ¢, be a Lebesgue measure preserving Borel isomorphism
of J0, +oo[ onto [0, +oof. Define §: X" — X' by

F.1) = (¥, 92(0)), Hy(X) =00
’ (y,ﬂy(X)Gﬂl(;;{%ﬁf))a sy (X)) < oo0.
Then y = i o i has the required properties.

2.8 Remark. In the situation of Theorem 2.7 the space Y is either at most
countable or Borel isomorphic to [0, 1].

3. The classification of arbitrary uniformly c-finite conditional measure
distributions.

3.1 LemMA. Let (4y)yey be a conditional measure distribution with respect
to p. Let X, denote the set of atoms of (y hyey. L€,

X,={xeXi3yeY: u{{x})>0}.
Then X, is a Borel set.

ProoF. Without loss of generality we may assume that X is a Polish space.
Since g, is concentrated on p~!(y) we obviously have

Xy={x¢€ Xl.up(x)({x}) > 0}
Let .% be a countable base for the topology of X. Then
X, =J X"
neN
with
z(ln) T {x GX‘VU €L xe U@ﬂp{x)(U) = -—}1:;}

o ﬂ (X\U)U{JCEX!,UP(X)(U) > %}

vey
Thus X\ and hence X, is 2 Borel set.
3.2 TueoreM. Let (uy)ycy be a uniformly o-finite conditional measure

distribution with respect to p. For everyy € Y let n, € NU{oo} be the number
of atoms of u, and

<, ny =0
Z,=3% {-1,....,—m}, 0<n, <o
{~1,-2,...}, ny=oo
Let X; = {x € X|3y € Y: uy({x}) > 0} and p3* the atomless part of u,, Le.
Uyt = Kyl Let
B { [0, 32 (X)), sy(X\Xa) <00
Y [0, +ool, 1y (X\X2) = oo.
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Let Yy = {y € Y|u,(X\X,) = 0}.

Then Y\Yy is a Lusin space and there exists a Borel subset X' of Y x R
and a Borel isomorphism w from X onto X' such that the following conditions
hold: ‘

DYyeY:yp'v) ={¥}x{teR|y, )X}

() VyeY:yp ')nX,) ={y} x Z,.

(iii) ¥y € Y\Yo: p(p~' 0)\Xa) = (7} x I and 5% o y~" = &, ® .

(iv) Vy € Yo: w(p~'(¥)\Xu) € {y} x [0, 400 and

&y ® %[0,+w[(w(p‘l(y))\Xa) = 0.

Proor, By Lemma 3.1 the set X, is in & (X). This implies ¥y € & (Y) and
therefore, (X\X;) Np~ ! (Y\Yy) € &(X). Since X is a Lusin space the same
is true for Xy, := (X\X,) Np~ 1 (Y\Yp). Since p{X,q) = Y\ it follows from
Theorem 2.7 applied with X, in the place of X, Y'\Y, in the place of Y, p|x,,
in the place of p, and uj° in the place of u, that Y\¥p is a Lusin space and
that there exists a Borel isomorphism v, from X, onto X, = Uyey\yo {y}IxI,
with

w(p~ (¥) N Xna) = {¥} x I,
and
p o w ' =¢,®%, foreveryyel.

By a theorem of Lusin (see, for instance, {1]} there are Borel sets D, C Y
and Borel measurable maps f,: D, — X, with f,(y) € p~!(y) for every
¥y € YU, en JulDn) = Xg and fu(Dy) N fiu(Dm) = @ if n # m. Define
¥2: Xo — ¥ x {~n|n € N} by y2(x) = (p(x),~n) if x € fu(Dy)-

Then ¥, is Borel measurable and one-to-one with

va(Xa) = Xo = | {0} x Z,,
yeY
hence a Borel isomorphism from X, onto X;. It follows from the definition
of y, that yu(p~ ()N X,) = {¥} x Z, foreveryy € Y.

Consider X7, := p~'(Yp) N (X\X,). Then X7, is a Borel set in X. Hence
there exists a Borel isomorphism j: XJ, — C from X2, onto a Borel subset
of the classical Cantor set C C [0, 1]. Define y3: X2, — ¥ x R by y;3(x) =
(p(x),j(x)). Then s is a Borel isomorphism of X2 onto a Borel subset B
of ¥ x R. For y € ¥ we get

w3(p™ (\Xe) € {¥} x [0, +oof

and &y ® A ool (W3 (P (¥)\Xa) = 0, since w3 (p~ ! (¥)\ X)) C {¥} % C. Define

Wi X = Y XRBY ¥jonxonp-1(n ) = Y1 ¥\ x)ne-1 (%) = ¥3» ¥ix, = ¥2, and
X' := y(X). Then w and X' have the required properties.

4, The classification of uniformly o-finite disintegrations.
4.1 Definition. Let X' be a Lusin space, Y’ a Suslin space, p/: X' — Y’
Borel measurable and onto. Let x4’ and ' be o-finite measures on & (X')
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and ZB(Y’) respectively. Let (u,),cy’ be a disintegration of x4’ w.r.t. (p',v).
Let # and v be o-finite measures on F(X) and (Y respectively and let
(1ty)yey be a disintegration of x4 w.r.t. (p,v). Then (X,Y,p,(4,)),v) and a
(X', Y, p', (1)), v') are called isometric if there exist Borel isomorphisms ¢
from Y onto Y’ and v from X onto X’ such that

(i) pop=p'oy.

(i) vop =

(iii) gy oy~ = 44},

4.2 Remark. In the situation of Def. 4.1 it follows that go y1 = 4.

4.3 Definition. A model disintegration consists of a Borel set X' C R?,
an analytic set Y’ C R, the canonical projection p’ from X’ onto the first
coordinate, a conditional measure distribution (u;),ey: With respect to p/,
and a measure ¥’ on F(Y’) such that the following conditions hold:

1) p'(X) =Y.

(ii) Y'N]— oo, 3] equals ] — oo, 3] or [—a, —3] for some a > 3 or is empty.

(iii}) ¥'n]— 3, —2] is an analytic Lebesgue nullset.

(iv) Y'N]—2,0[ is contained in {~1+ —L;|n € N}.

(v} Y’ N[0, +oof equals [0, +oof or [0, D] for some b > 0 or is a Borel set
of Lebesgue measure 0.

(vi) The atomless part of v’ is one-dimensional Lebesgue measure re-
stricted to Y.

(vii) The set of atoms of v’ equals Y/ N]— 2,0l

(viii) For y € Y' with y > —1 the set X N[0, +oof is a non-trivial closed
interval containing O (possibly a half-line).

(ix) For y € Y’ with y < —1 the set X N[0, +oo[ is a Borel set of Lebesgue
measure 0.

(x) For y € Y’ the set X, N] — o0, 0[ is contained in {—n|n € N}.

(xi) For each y € Y’ the atomless part of uj, equals one-dimensional
Lebesgue measure restricted to p'~!(y).

(xii) The set of atoms of g, equals p’~1{(y) N ({y}x] — o0, 0f).

4.4 Remark. Define ' = [, dv'(y). Then the set of atoms of u’ equals
X' N]-2,0[x]~o0, 0[, the atomless part Of &y oo, 05xRUJO,+oo[ x ]—oo,0p) CAVALS
one-dim. Lebesgue measure restricted to X’ N (] — 00,0] x RUJ0, +oofx] ~
00,0f) and fy:ry_g 4oofx(0,s00f €QUals two-dim. Lebesgue measure restricted
to X' N (] — 0, +oo[x[0, +ocf).

4.5 THEOREM. Let u be a o-finite measure on % (X) and let v be a o-finite
measure on B (Y). Let (u,)ycy be a uniformly o-finite disintegration of u
with respect to (p,v). Let X, = {x € X{Fy € Y: up,({x}) > 0}, Yy = {y €
Y: p(X\X,) = 0}, Y, = {y € Y|v({y}) > O}. Let u;® be the atomless part of
uy and v™ the atomless part of v. Let I, and Z, be defined as in Theorem
3.2. Let m;: R? — R be the projection onto the first component. Then there
exist Borel isomorphisms ¢ from Y onto an analytic subset Y' of R and y
from X onto a Borel subset X' of R? with the following properties:
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EXAMPLE OF A MODEL DISINTEGRATION

(i) moy =gop.

(i) vy € Y: w(p~'(»)) = 27 H{p(») N X",

(iii) @(Y\(Yo U Y3)) is a Borel-measurable Lebesgue nullset in [0,1] if
v(Y\(YoUY,)) =0 and

p(Y\(YoUYo)) ={t € R|0 < < w(Y\(Yo U Ya))} fv(Y\(Y, U Xp)) > 0.

Moreover, v o (p1y—(vyurn) ™ = Ap(r\(riuv)):-

(iv) @(Yo\Y,) consists of an analytic Lebesgue nullset in | — 3,-2] and,
v(Yo\Ys) > 0, of [-3 — v(Yo\Ya), =31 N R Moreover, v o (piyzy,) " =
v o (giyr.) "' = Aprava)

Vye(FonY)={-1-1/(n+1)jneNand 1 <n <card(YyNY,)}.

Vi) p(Y \Yp) = {1+ 1/(n+1)jneNand 1 <n < card(¥,\Yy)}.

(vii) Vy € Y: w(p~ () N Xa) = {9 (¥)} x Z,.

(viii) Vy € Y\Yo: w (07 (O\Xa) = {@ )} x I, and i o w1 = g,y ® Ay,

(ix) vy € Yo: w(p~ ' (y)\X,) € {o(»)} x [0, +oo[ and

8q)(y) & j-{(),»{w:)o[(‘//(15"_l(y)\lyfa)) =0.
(%) B0 gy © y~! = A%, where % denotes two-dimensional Lebesgue
measure, ,uﬁf_l ¥.) © w1 is one-dimensional Lebesgue measure on
X’ N ([_1:0] X R+)a
w maps the set of atoms of u onto X' N{([-2,0]x ] — oo, 0[).
(xi) v" o =1 = Ays.. @ maps the set of atoms of v onto Y' N}~ 2,0].

Proor. That X,, Y, and Y, are Borel sets in X and Y resp. either follows
from Lemma 3.1 or is easy to verify. Since Y, is at most countable and since
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Y\Y; is a Lusin space by Theorem 3.2, it follows that Y\(Yy U Y,) is a Lusin
space. If v(Y\(Yp U Y,)) = 0 let ¢; be a Borel isomorphism of Y\(Yp U ¥;)
onto a Borel subset of {0, 1] with Lebesgue measure zero. If

v(Y\(YoUYe)) > 0,

then Lemma 2.1 implies that there is a Borel isomorphism ¢; from Y\(Yp U
Y,) onto {t € RIO < ¢ < v(¥\(YpUY,))} with

YIy\(YouY,) © Q?l = ALeRIOSISH(P\(YoUTa))} -

Since v 1s o-finite on a Suslin space there exists a sequence (K,) of compact
subsets of Yp\Y, with v({(Yo\Y,)\UK,) = 0. § = |JK, is a Lusin space.
Without loss of generality we take S = & if v(Yo\Y;) = 0. If v(1p\Y,) >
0 then, by Lemma 2.1, there exists a Borel-isomorphism gagl) from .S onto
[—*3 - V(YQ\Ya), —3] NR with Miy\Y, © ((ﬂgl))_i = l{mj,my(y\ya)’m:;]nlt. Moreover
there exists a Borel-isomorphism gogz) from (Y5\Y,)\S onto an analytic subset
of ] — 3,—2] of Lebesgue measure 0. Let ¢35 be a bijection from Yyn Y, to
{-1—-1/n+1ne N1 <n<card(Yon Y,)}. Let ps be a dbijection from
Y \Yoto {~1+1/n+1lneN,1 <n <card(Y,\Yp)}. Define ¢: ¥ — R by

PIY\(YoU Yo) = 01,05 = 05 if S # &, 9| xnvans = o,
iy, = 93 Pr v, = P4.

Then ¢ is Borel measurable and one-to-one. Let 7: X — ¥ X R be the Borel

isomorphism in the conclusion of Theorem 3.2, Let i, {7, be the components

of . Then 4, = p. Define y: X — R? by w(x) = (p(p(x)), ¥2(x)). Set

X' = y(X). Then ¢, v and X’ obviously satisfy conditions (i) through (xii).
Theorem 4.5 can be rephrased as follows:

4.6 TueoreM. Let u be a a-finite on B (X). Every uniformly a-finite dis-
integration of u w.r.t. p and a o-finite measure v is isometric to a model
disintegration.

Appendix. On the uniform o-finiteness of disintegrations consisting of -
finite measures.

Here we deal with the problem whether a conditional measure distribu-
tion consisting of o-finite measures is necessarily uniformly o-finite. The
first counterexample shows that, if we drop the condition that the o-finite
measures of the conditional measure distribution live on different fibers of
a measurable map, then the conditional measure distribution is, in general,
not uniformly o-finite.

5.1 THEOREM. Let X = Y = R. Fory € R let p,: Z(R) — [0, +oc] be
defined by
#y(4) = card[(4 — ) N Q},

where Q denotes the set of rational numbers.
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Then each uy is a o-finite measure but there does not exist a sequence
(An)nen of Lebesgue measurable subsets of R with the following properties

(1) Upen4n =R

(ii) For each y € R and each n € N, u,(4,) < oo.

ProOF. First we will show that, for every Lebesgue mesurable 4 ¢ R, the
map y — u,{A) is Lebesgue measurable. To this end let I be a finite subset
of Q. Now, for an arbitrary subset 4 of R:

{yeR{(4~-y)nQ =1}
={yeRly+ICAdandy+ (Q\I) c R\4}
=N -aln [ (R\4) -1

gel reQh\g

This implies, that for every o € R, and every Lebesgue measurable 4 C R,
the set

eRupd)<a}= |J (eRA-»)nQ=1} e Z{R)

IcQ
card I<a

1s Lebesgue measurable.

Therefore the map y — u,(A4) is Lebesgue measurable.

Now assume that there exists a sequence (A4,) of Lebesgue measurable sets
satisfying conditions (i) and (ii). We will show that this assumption leads to
a contradiction. From (ii) it follows that, for every y € R, the set (4,-y) N Q
has only finitely many elements. Let (I;)ren be an enumeration of the finite
and nonempty subsets of Q and set

Buye = {y €R|(4r —y)NQ = I }.

Our previous calculations show that each B, is Lebesgue measurable and
these sets cover R. Hence there are kg, ng € N with A(Bp,k,) > 0, where 4
denotes one-dimensional Lebesgue measures. Fix r € I,. For every y € B, x,
we have r € A, — y, hence 7 + B,z C Ay, Since A(r + Bk} > 0 we know
by Steinhaus’ theorem, that there exists an ¢ > 0 with

(—&,8) Cr+ By, — (r+ Byi,)
C Apy — Bpoi, — 1.
Thus
(—&,8)NQ C (An, — Brory = 1) NQ = [(An, ~ Byote,) N QI — 7

= [ ky — .
But the right hand side of this inclusion is a finite set while the left hand side
is infinite, a contradiction.

The following theorem shows that a conditional measure distribution

(4y)yey with respect to a measurable map p: X — Y consisting of g-finite
measures 4, i1s uniformly o-finite in a very weak sense.
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5.2 THEOREM. Let X,Y and p be as in the preliminaries. Let (fiy)yey be
a conditional measure distribution with respect to p such that each y, is o-
finite. Then there exists a sequence {An)reN of subsets of X with the following
properties:

(i) X =Upen 4n-

(ii) For each n € N and each y € Y the set Ay, Is Uy-measurable with
- py(Ay) < 0.

ProOF. Due to the o-finiteness of y,, for each y € Y, there exists a se-
quence (A))qen of Borel subsets of X with {,en A = p~'(y) and uy(4)) <
0. Define 4, = U,cy 4% Since u, is concentrated on p~1(y) we have
u;(An\p—‘(y)) = 0 and, therefore, 4,\p~'(y) is p,~-measurable. (Here uy is
the outer measure corresponding to z,.) On the other hand 4, N p i) = 4}
is a Borel set in X. Thus 4, is u,-measurable and p,(4n) = #y (Ay) < co.

5.3 Open problems. In the preceding theorem, can the sets (A, )nen be
chosen to be Borel subsets of X, i.e., is (¢, )yey uniformly o-finite? A slightly
weaker problem is whether the sets (4,) can be chosen to be universally
measurable or to be in the a-field generated by the Suslin subsets of X.

The first of the above questions was asked by Maharam [4].
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