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INTRODUCTION

The circumstance of having a fractal K, together with a probability measure p
on the fractal, allows us to think about a "multi-fractal", where, for example, we
make use of that measure to specify a dimension,
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where pEB(X,e) denotes the p-measure (one can imagine the measure as specifying a
shade of gray between black and white) of a ball of radius ¢ centered at x, and
(%) is called the pointwise dimension of K relative to x. Now define the “sub-~
ctal",
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which is the set of points x from K relative to which the pointwise dimension
value o is taken. Iess restrictive possibilities than eg. (1) also exist, allowing
for possibly greater genemlity in construction of Ka for some cases. In general,

the collection of all these "sub-fractal® Ka’s, for ¢ = 0, may be thought of as a

"multi~-fractal." This notion first appeared in Ref. (1) for the context of modeling
fluid turbulence. The remarkable theoretical scenario that f(a), where

f(a) = dim K , _ (3)
is a smooth function of «, despite the decidedly non-smooth properties of the K and
K, was laid out in Ref. 2. Moreover, f(a) was argued to have a variety of specfal
properties: (1) it is everywhere concave dowrwards; (2) its peak value is dim K;
(3) f£(a) intersects the a—axis with infinite slope, at positive and finite values;
and (4) the line f(a) = o is tangent to f(a)} where f and o are equal, and this value
is the information dimension of K (or the dimension of the measure p). The f(o)
formalism has been used with success to model data in several contexts; f(a) curves
with one or more of the basic expected properties violated have been found; and the
scheme has received widespread application as a means of organizing fractal data.

We have the first rigorous proofs gf all the results described above for
generalized Cantor sets (Moran fractals”®, with the product measure p defined
below.) And, we have proofs of when the limit of eg. (1) exists, with answers to
some open, hitherto unanalyzed issues. In particular, is the collection of all
K equal to K? In other words, does the multi-fractal procedure get back the whole
ffactal? It assuredly does not; however, in the sense of p-Teasure, it does,

PUK) =p(K) . (4)

Finally, we have an exanple where the "fractal" K is the unit interval, but the
collection of the K is a Baire first category set (i.e. is topologically meager).



FOSSIBLE MULITIFRACTAL GENERALIZATION

The way the f(a) curve is constructed for Moran fractals in K% gan be stated a

httle more precisely than has been possible in the early literature For a set
,+++,t ) of contracting similarity ratios, let K be a Moran fractal constructed

wi%h thesg ratios from seed set J. (In the middle-thirds Cantor set, n = 2, ty = t,
=31/3 and J = [0 1] } It is important to note for the standard mlddle-thlrds
prototype not only are the ratios fixed but the similarity maps implementing the
construction are fixed. 'The latter need not be so for the general Moran case.

Now, fix a probability vector (pl, ves ,pn) and let p be the probability measure
naturally defined on K via redistribution. In otherwords, p(Ji) = Dy where J;,
i=1 to n, are the sets obtained from J by similarities with contraction ratios ty.
The J; comprise the first generation of the construction of K. The sets obtained in

successive generations of the construction are assigned probabilities which are
products of the py’s in the natural way (product measure)}. The starting point for

the f(a) construction is the auxiliary measure g , qe¢R, which is an infinite product
a.6(q) ENICINN,
measure but based on (pl 1 reeesPp Y )}, where
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FIGURE 1. Generalized multifractal curves for a Moran
construction.
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A slight generalization of this is usually referred to as the partition function
owing to parallels to statistical wechanics. The formula for f{e) depends on p, on
the fractal set, and on the function g(q) unigquely solving eq. (5). We have proved
the existence of a milti-fractal construction based on the generalized quantity
B(q,w) specified by the normalization of a slightly different probability vector

n ~
{(q,%)
and where w denctes the n-tuple (wl, e ,wn) . Note that Wy=.. .=wnm1 is the usual
case: i.e. B(q,1) = (q). 'The general properties of the f(a, W) curve that results
are no longer those laid out above for the f(a) curve. We have several results
about the generalized scheme. One of these is that the f(e, W) curve is stationary
under variation of w at Wy=. . .wnml. The f(o) curve is probably an absolute maximm,

a conjecture confirmed by initial mmerical studies.
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In Fig. 1, we show a mmerical study giving results of varying the LT The
measure and fractal parameter values chosen were n = 4, t;=...=t,=
1/3, py= 0.29, p,= Py~ 0.25, p,~ 0.21. The weights are, for the curve marked:
{1) Wyme o o= W= 1; (2) W= W= 1, W= W, 0.01; (3) LA 1, Wy W= 0; and
W= Wo= 0, Wy= W= 1. The last two, extreme cases are "forbidden" by the theorems;

and case (3) (resp. (4)) is a horizontal translate of the f(a) curve for a middle-
thirds Cantor set having p+p, (resp., p3ip,) normalized to one. Note in particular

that only the first of the two permissible cases has given a curve concave downwards
everywhere. Studies of the generalized multifractal theory are in progress. For
example, we don’t know yet whether the analogue of eq. (4) holds for a nontrival
weight system; and connections to statistical mechanics have to be investigated.
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