- %04
MATHEMATICS OF DIMENSION MEASUREMENT

FOR GRAPHS OF FUNCTIONS E”W Grp zﬂ { };/M% Mé

Patricia H. Carter*, Robert Cawley*, and R. Daniel Mauldin¥* f%wv;ﬁ%%gﬂ4ﬁfg/na§2;%

*Naval Surface Warfare Center, White Qak, Silver Spring, MD 20903-5000 Dee /?5??
**University of North Texas, Denton,TX 76203 ) ) 7

A stable ("real boxes") box-counting procedure introduced previously to measure
the capacity dimension of the graph of a non-differentiable function or random
process data-series, is examined for a test case example due to Besicovitch and
Ursell, where the limit necessary for the definition doesn’t exist.

There are a number of questions about dimensions of graphs of functions and
their numerical measurement. These questions bear, iIn particular, upon issues of
fractal modeling of data presumed to be represented by random processes [1-3]. We
have discussed one of these questions earlier [3], addressing issues associated with
the (at best) self-affinity of the graph of a function, f(t) against t [4,5]. Here
we address a second. The box-counting notion of dimension, for the mathematical
case, that a limit ¢ » 0 is required, is called the capacity dimension, dimca ; it
is never less than the Hausdorff dimension, dimH, which was introduced nearly
seventy years ago by Felix Hausdorff [6]. An important difference between these two
is that the limits necessary to define dimy always exist, while for dim that is
not always so. This situation leads to a question. If we have a stable algorithm,
for box-counting , what happens for the case where dimcap doesn’'t exist? To what
does this "stable™ procedure actually lead?

In our early experience with box-counting applied to graphs we used a simple
grid to effect the count. We quickly found we could get any answer we wanted {2].
Qur solution was to abandon the idea that the count has to bg an integer. One
simply defines the box-count in the ith e-bin as Ni (¢) = ¢ (max.;f - minif), where
max. and min: denote maximum and minimum values taken by the function f in the ith
bin. This is the sort of thing one might do at a first cut approximation before
becoming serious about the problem; but it’s actually the precisely correct thing to
do. We have the immediate relationship for covers of graphs by these "real boxes™

Nkf(e) = kﬁf(e) (real boxes) |, (1)

for all e¢. Here Ng and Ny denote the counts for the cover of the graphs of f and
kf, respectively, where k # 0 is a constant factor. Thus, for example, the
dimension of the graph of a data-string will not depend on the choice of units since
now log Ny g and log Ng are mere translates, by log k, of one another. Consequently,
any dimension measurement procedure based on the behavior of log N(¢) vs. log ¢ will
give the same result for both f and kf. But this critical result is gained for box-
counts generated by grids only for the physically unrealizable limit, that ¢ -+ 0.

An interesting property of the real-box count for cover of the graph of a Levy-
Mandelbrot variant of the nowhere differentiable Weierstrass-Hardy fractal function,

e 1. n
W(t) = 3 —=sinyt, > 1, 0<ac<l, (2)
n=-w g

is that the self:ﬁffine scaling property, [1] W (yt) = 7aW(t), can be used to helpw..—
show that N(¢) ¢ =, where D = 2-a, and where now ¢ =+ 0 is no longer needed. More
carefully, apart from a factor 1 + 0(e¢/T), where T is the length of the interval
over which the graph of W is covered,
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Ale < N(e) « Aze . : (3)



- The two constants, Aq, and A,, are not equal, so the local slopes of log

N(e¢) against log €, instead of being constant, can oscillate. Figure 1 shows a
numerical study for a close cousin of W(t), where Iinstead of sin'ynt terms in the
expansion, a sawtooth function is used {(Eq. (5)). The oscillations have period
log v, and happily, the answer converges to D.

Besicoviteh and Ursell [7] have given an example of a class of functions whose
Hausdorff dimension [6] is known to be different from 2-a. The generic Besicovitch-
Ursell (BU) function is

b
-a n+l
f(r)y = ) b &b ), ———bn =B >1, (4)
where was & taken to be the periodic sawtooth, viz.
P{x) = 2%, 0 s x = 1 : B(x) = &(-x) = &(x+1), elsewhere . {3)
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For bn+l/bn - By =7, f(t) = W(t) when & + sin. We refer to this as the geometric,
or lacunary case. On the other hand, the class specified by two the numbers, a and d,

b b“nul =L@ 2:d 4 g 6)

n 'p a d_ll a! (

have graphs whose Hausdorff dimension [6] is d, and d < 2 - oo. This we refer to as
the exponential, or super-lacunary case. Here again a plot of log N(e¢) against
log ¢ shows oscillations, but this time with growing period, Morxeover, as may be
seen from Fig. 2, attendant oscillations of log N(e)/log ¢ = do not converge
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FIGURE 1 log,Nic)/log,e~" for the cover of the FIGURE 2 log,Nlel/log,z—" for the cover of the
graph of W{t) on [0,1], for a = 0.25 and graph of f(t} on [0,1], for e = 0.26 and b = 2,
y = 2%, Theorem (BU}: dim < 2 ~ o = 1.75. u = 2, which gives d = 1.6. Theorem (BU):

dm=d=1.6 <2 - o= 175,
as ¢ » 0, but instead, as can be proven, bounce indefinitely between d and 2 - a:
the limit for the box-counting dimension simply doesn’t exist; it's not as general a
concept as the Hausdorff dimension.
The mathematical situation is summarized by the following:
Theorem (BU). Let f be a BU series. Then

dimy < 2-o (lacunary case), dimH =d < 2 - a (super-lacunary case).

Remark. The Hausdorff dimension of the graph of f£(t) against t for the
geometric, or lacunary case is still an open question.

Theorem. Let f be a continuous, non-constant function on [0,1]. If any one of
the limits,



log N _(€) log N, (e) log N _(¢)
——B | 4, = lim i , d_ = lim L

i a0 log ¢ P

d = lim , (7

0 - log ¢

- log €

existg, then the other two exist and are the same. In the theorem, N, is the box-
count obtained by laying a square grid of mesh size ¢ over the graph 6f f, N, is the
minimal count using square (integer) boxes, not necessarily arranged as a grid, and
N. is the real-boxes count described in the previous section, and employed in
previous data analyses [2,3].

Theorem. Let f be a BU function. Then

dimcap - 2 - {lacunary case, y:integer)
118 LogNCe) 2 - a; lin logN(e) _ d (super-lacunary case),
£ - -0 -1

log ¢ log ¢

Remark. If ¢ is replaced by a ¢! periodic function in Eq. (4), dim,,, =
2 - a was proved in [9]}. It is probably true for Eq. (4) for all v, also, but we
don't have a proof at present.

The forgoing results have been gained for the deterministic case. Randomized
versions of BU series probably have similar properties, The result gained from
dimension measurements based on logN(e) vs. log ¢, behavior for the super-lacunary
case will depend on how one specifies D from the plots; any value from d to
2 - a may be gotten. However, if the super-lacunary case can be ruled out, e.g., by
examination of the psd, then within the BU class, Eq. (7) quarantees that the real-

box count limit gives dlmcap‘
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