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INTRODUCTION 

Some twenty-five years ago Stan Ulam began this new collection of 
problems as a sequel to his Problem Book [l]. Several years ago he invited 
me to become a part of his project to develop and present these problems. 

Our work proceeded by bits and pieces, mostly in the summers, since I 
was caught up in my professorial duties during the academic year and Stan 
was generally busy with lecturing and other professional engagements. In 
addition, his work habits, at least in his later years when I knew him, made 
it somewhat difficult to put things together: his manner was to explore and 
discuss a specific problem or a vague speculation for a short time, then 
leave it and go on to something else. Invariably the subjects would reappear 
and we repeated the process, until something new would be seen and the 
problem or speculation became more definite. While our discussions were 
great fun, progress was slow. At all times, however, including those of 
intense concentration, our mood was lightened by Stan’s frequent bursts of 
humor. This allowed him to be playfully creative with seemingly serious 
and “sacrosanct” mathematical structures. 

Stan had some very general ideas concerning the edifice of mathematics 
and the role of mathematics in other sciences, particularly physics and 
biology, which he planned to develop extensively and incorporate in this 
collection. 

We were in the process of generating specific problems to illustrate these 
theories and we had been planning enthusiastically to spend the summer 
finishing this work when our collaboration was abruptly interrupted by 
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Stan’s sudden death, May 13, 1984, at the age of 75. I therefore have had to 
complete this collection alone. 

Stan was a true genius and he had a tremendous talent for getting to the 
heart of the matter (witness in his early problems [27]), but he was loath to 
struggle with finishing details, and he often left that to others. Endowed 
with a phenomenal memory he kept most things in his mind after he had 
worked them out in the form of cryptic little notes scribbled on small pieces 
of paper. 

Another characteristic of his was an uncanny feeling for relative orders of 
magnitude both in mathematics and in the natural sciences. This unusual 
ability was already.apparent in his early works on the theory of cardinal 
numbers and continued to his conjectures in combinatorics and graph 
theory. This ability is well documented in the physical problems he treated 
in Los Alamos. At the same time it led him to become one of the 
originators of the use of computers as an experimental tool in physics and 
mathematics, and he became very adept at adjusting initial guesses and 
conjectures in the light of numerical evidence. 

He also loved to play little games. These sometimes became transformed 
into seminal examples of new fascinating processes. In this connection he 
liked to quote two lines he had found in Shakespeare [3]: 

Things done without example 
In their issue are to be feared. 

Some readers will probably recognize a number of problems; they are those 
Stan freely tossed around over the years in his innumerable talks and 
seminars and never bothered to write up. (Some of the ideas in the realm of 
mathematics and science which are floating around today in the public 
domain can be traced to his casual remarks.) Other problems we reworked 
together; still others we formulated jointly. Some are my own. 

He meant this collection to include a gathering of all his thoughts of the 
last twenty-five years, but I had to abbreviate the planned sections on 
physics and biology for Stan’s written notes concerning general schemes 
were unfortunately very sketchy and our interaction on these topics had not 
yet reached a level where it would have been proper for me to try to read 
his mind. Incomplete as this last section is, I hope that it may inspire some 
budding mathematicians to pursue and develop his train of thought, just as 
his ideas have inspired so many of us in the past. 

Without the encouragement and assistance of FranGoise Ulam it would 
not have been possible to complete this work. It is evident from the text 
that Jan Mycielski made a great contribution to this project. Among the 
many who graciously helped me were Paul Erdos, Ron Graham, and G.-C. 



MATHEMATICAL PROBLEMS ANDGAMES 285 

Rota. I also wish to thank the National Science Foundation, the Sloan 
Foundation, and Los Alamos National Laboratory for their support. 

R.D. MAULDIN 
Denton, Texas 

September 21, 1986 
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I. LOGIC, SET THEORY 

1.1. Variations on Suslin ‘s Problem 

A Suslin family of subsets of a set X is a collection S of subsets of X 
such that any two members of S are either disjoint or one is a subset of the 
other. 

For each cardinal n, finite or infinite, what is the maximal size of a Suslin 
family of subsets of a set of cardinality n? Clearly if card(X) = CJ,, then 
there is a Suslin family of cardinality 2 ‘0. For any infinite cardinal m, there 
is a monotone family of size m+. 

We say that two Suslin families S, and S, are “internally” isomorphic 
provided there is a permutation of X which takes S, onto S,. We say that 
S, and S, are “externally” isomorphic provided S, and S, are algebraically 
isomorphic, i.e., there is a one-to-one map of S, onto S, which preserves 
disjointedness and inclusion. For each cardinal n, how many non-isomor- 
phic Suslin families are there? Erdiis comments that for N,, there are 2’ 
internally non-isomorphic Suslin families. 

1.2. Generalized S&in- Visual Classes 

Suppose that we only “visually” distinguish between two sets. We only 
know which of the following three possibilities occur: they are disjoint, one 
is contained in the other or they have a nonempty intersection. Thus, a 
Suslin family is a collection of sets for which only the first two configura- 
tions are allowed. 
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Now according to these rules there are eleven possible visual configura- 
tions of three sets. Some estimates on the exact rate of growth in the 
number of configurations of n sets have been given by Lynch [l]. However, 
the exact rate is an open problem. 

A generalized (or k) Suslin family is a family of subsets of a set X such 
that only certain 3 (or k) set visual configurations are allowed. For each 
cardinal n, finite or infinite, what is the maximal size of such a generalized 
Suslin family of subsets of n? For each cardinal n, how many non-isomor- 
phic (internally or externally) Suslin families are there? What is the rate of 
growth in the number of these families with n? In connection with this, 
some estimate in the number of (internally) non-isomorphic subfamilies of 
the iterated power set operator have been given by Lynch [2]. 

1.3. Product Space Problems 

Let R = {A X B : A, B c [0, l]}. It is known that if the continuum 
hypothesis holds (or Martin’s axiom), then every subset of [0, 11 x [0, l] is 
in .G?( R), the Bore1 field generated by R. In fact every subset of [0, l] X [0, l] 
is in the family R,,. In general, if every subset of [0, l] X [0, l] is in g(R), 
then there is a countable ordinal (Y such that every subset of [0, 11 X [0, l] is 
generated in a steps from R [3]. It is consistent with ZFC that this ordinal 
(Y be any countable ordinal 2 2 [4]. 

On the other hand, it is consistent that every subset of [0, l] X [0, l] be 
the kernel of some Suslin scheme with sets from R, and yet that not every 
subset be in 9(R) [5]. What is the situation if we allow more general 
operations, e.g., Hausdorff operations? 

If the continuum is real-valued measurable, is there a sequence of sets 
Ex=o,, such that the Bore1 field generated by these sets includes all 
analytic sets? The reason for this question is that if the continuum is 
real-valued measurable, then there is a family of subsets of [0, l] with 
cardinality 2’0 such that no sequence of sets generates this family [6]. We 
are seeking an explicit example of such a family. 

Is there a sequence { A,, }Fw 1 of subsets of [0, l] which separates points 
and such that “all questions” are decided for the u-projective algebra 
generated by this sequence? In other words, each set in this algebra is either 
countable or of power 2’0, each set is measurable with respect to some 
continuous probability measure and there is some reasonable u-ideal of sets 
such that each set in the algebra has the Baire property with respect to this 
algebra. 

1.4. Product Space Mappings 

Is there a one-to-one map g of E3 into E * such that the image of each 
set of the form A x B x C is in the u-field generated by sets of the form 
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A x B? What is the situation when 2 and 3 are replaced by integers n and 
m? 

Perhaps there is a theorem concerning the invariance of the combina- 
torial dimension of the nth product of the set of all integers E. If n < m, is 
it true that there is no mapping of En onto Em such that the image of each 
generalized subproduct in E” is the union of finitely many subproducts in 
E”‘? Perhaps there is no map which takes “almost all” subproducts to such 
unions. 

1.5. Problems for Projective Algebra d la Ramsey 

Divide a projective algebra into two classes of elements and then add the 
elements 0 and 1 to each class. Must there be a big projective algebra in one 
of these classes? We consider this for the operations of products, unions 
and projections only. 

An analogous problem for relation algebras occurs when we consider the 
operations of composition. 

Choose two subsets A and B of Z x Z at random. (This means with 
respect to Haar measure on (0, 11’ xz .) What is the probability that the 
projective algebra generated is infinite or even dense in (0, l}zxz? Is this 
probability l? 

Choose a sequence of subsets A,, A,, A,, . . . of Z x Z independently at 
random. What is the probability that all the A,‘s are elements of a finitely 
generated projective algebra? 

1.6. Infinite Sequences of O’s and l’s with Changes on Sets of 
Frequency 0 

Consider the space S of all infinite two-way sequences of O’s and l’s: 
S = (0, l}“. We say that two sequences (I and 7 are equivalent provided u 
may be transformed into 7 by a finite number of applications of operations 
of one of the following types. 

Type 1: We may shift u to the right or left one unit. 

Type 2: We may erase some O’s (or l’s) in u as long as the set of 
indices which are erased has frequency (or arithmetic density) zero. 

Type 3: We can change some entries from 0 to 1 (or 1 to 0) provided 
the set of entries has frequency 0. 

Type 4: We may insert l’s (or O’s) into the sequence u as long as the 
set of insertions has density 0. 

This clearly defines an equivalence relation on S. Is there a Bore1 subset 
of S which meets each equivalence class in exactly one point? 
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Mycielski [7] asks whether there is a Bore1 isomorphism between 
P( @)/Fin and (0, l} */shifts or even the space of equivalence classes given 
above? Mycielski showed P(o)/Fin is Bore1 isomorphic to R/Q. 

One reason for considering this space is that it models some aspects of 
the theory of finite sequences that arise in biology [8, 91. 

1.7. Problems in Classes of Finite Sets 6 la van der Waerden 

Characterize sequences of sets of integers { Ak}TS1 such that in every 
division of k into two disjoint classes at least one must contain infinitely 
many of the A,‘s. If a permutation of Z is given, must there then be 
infinitely many A,‘s going into A,‘s? 

Erdbs comments that there is probably no reasonable answer to the first 
question. The second question raises some interesting problems. First, a 
negative example. If A,, A,, A,, . . . is a list of all arithmetic progressions of 
length t, then the answer is no provided t is chosen such that any subset of 
size t/2 of an arithmetic progression of size t contains an arithmetic 
progression of length 3. To see this, write N = A u B, where B contains no 
three term arithmetic progressions and A = N \ B. Let QJ be a permutation 
of N which maps A onto B. Now, suppose xi,. . . , x, is an arithmetic 
progression of length t. At least t/2 of the x’s lie in A. Otherwise, the x’s 
in B would contain an arithmetic progression of length 3 and B has none. 
Let y; = cp(x;). If yi,..., y, formed an arithmetic progression of length t, 
then, again, by Roth’s theorem, the y’s in B would contain an arithmetic 
progression of length 3. The situation when the A’s list all three or four 
term progressions remains open. Davis, Entringer, Graham, and Simmons 
[lo] have considered similar problems. 

1.8. Internal and External Boolean Operations on Classes of Sets (Joint 
with Rota) 

Let E be a set-finite, infinite or uncountable. We consider families of 
subsets of E. If JX? and g are two such families, then a’U ?tY”, the usual 
“external” union, is the family of all sets which are elements of ZZ? or g. 
The “internal” union of &’ and 9 consists of all sets C which can be 
expressed as the union of two sets, one from JZ~ and the other from %?. 
Note that an internal union of a family with itself leads, in general, to a 
new family in contrast to an external or Boolean such union. Similarly, we 
consider the internal intersection of two families and the internal comple- 
ment of a family. 

One problem concerns the existence of a basis for families of sets. One 
way to construct such a basis is to find an analog of the Rademacher-Walsh 
sequence of sets which through the Boolean operations give all possible 
subsets. Given a fixed basis one may define the complexity of a family by 
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the smallest number of operations leading from the basis to the given 
family. The allowed operations could be not only the internal and the 
external Boolean operations but also the operation of direct product, 
projection and perhaps fixed allowed transformations of a given initial set 
E into itself. 

As in the study of subsets themselves one could perhaps allow the 
formation of the operation of subsets-in our case of families of sets, the 
formation of all subfamilies. 

A number of questions concern the character set theoretically or topo- 
logically, of families of sets; for example, the idea of a Bore1 family or 
projective family, etc. 

One would like to generalize problems like that of Suslin for existence of 
families of sets with given properties by considering subsets of the set of all 
integers or the set of all real numbers. The idea is to define a class of 
properties of families generalizing the property of Suslin and then attempt 
to prove that the set of all undecidable families is of measure one in the 
class of all properties defined initially. 

This could perhaps be attempted through picturing families of sets as a 
hyper-graph (a set of the family being a vertex of the hyper-graph) 
enumerated by real numbers. In this way, the meaning of measurable or a 
Bore1 set of families will be made precise. 

Let E be a set with n elements. What is the probability that if kn classes 
of subsets of E are chosen at random the union of the sets in these classes 
covers E? Finally, how many non-isomorphic “external” rings of classes of 
subsets of E are there? Rota also had in mind problems concerning these 
Boolean operations in an entirely different direction. 

1.9. Product Isomorphisms 

Let E be a set and A and B be subsets of E X E. We say that A and B 
are product isomorphic provided there is a one-to-one map r of E onto E 
such that r x r(A) = B, where r X 7(x, y) = (T(X), r(y)). If 1 El = n, 
how many classes of product isomorphic sets are there? Of course, this 
number is 2 2”‘/n!. Note that if E = {l,.. ., n} and A = {(i, j)li ~j}, 
then the images of A under product isomorphisms are distinct. We say that 
A and B are k-weakly product isomorphic provided A can be partitioned 
into sets A,, . . . , A, and B into sets B,,. .., B, such that for each i, Ai is 
product isomorphic to Bi. 

For A and B to be k-weakly isomorphic for some k, is it necessary and 
sufficient that IAl = 1 BI? Call D(A, B) the minimal k for such A and B. 
What is the expected D(A, B) taken over all A and B with cardinality n? 

One can of course consider these problems for subsets of E X E X E, 
etc. 
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1.10. Problems on Matrices of Abstract Sets 

Erdbs and Ulam have raised the following problem [ll]: Let k = (k, : n 
E w) with 2 I k, < k, < .* * and let K be a cardinal. Let PART(k, K) 

say: there exist partitions of K into k, disjoint pieces A& A;, . . , , Ain-, 
such that for all f E vk,,, 

So, PART(k, w) is true. PART(k, c+) is false; moreover, K < X and 
PART(k, X) implies PART(k, K). 

Erdiis and Ulam showed that for any w  I K and partitions A& . . . , A;,- 1, 
n = 1,2,3, . . . , there is always some p,,, 0 I p, < k,, n = 1,2,3,. . . , such 
that 

IK\ uJnl 2 a. 

They noted that_if c = wi, then PART(k, c) is true. They speculated that 
whether PART(k, c) is true could not be answered without some assump- 
tion about the power of the continuum. Ken Kunen has shown that this is 
indeed the case as follows. 

To get c big and PART(k, c): Let GCH hold in V, and let K > q be 
regular. Let V[G] be V with K Cohen reals added. So, V[G] I= c = K. Think 
of G as adding w  mutually generic functions, (pn: K + k,, and let A: = 
q;‘(i). Then for each f E rk,, UA;(,, contains all (Y < K except possibly 
for those (countably many) such that X, - cp(cu) is not Cohen generic over 
V[f I- 

On the other hand, MA + ‘CH * ‘PART(k, wi). To see this: Given the 
partitions, for each (Y let ‘p, E A;*,,,. By MA, choose f E Irk,, which is 
eventually different from all ‘p,. Then for each (Y < oi, there is an f’ = f 
(mod finite) with (Y @ UA;,(,,,. Thus, oi = U,,,[w, \ UA?,,,,]. So, for some 
f’ = f, 

Among the questi_ons raised by Erdbsand Ulam is this, If PART(k,, c) 
holds for a given k,, then does PART(k, c) hold for all k? 

I. 11. Universal Sets 

Is there an analytic subset E of [0, l] X [0, l] which is universal for all 
Bore1 sets with positive measure? This means that for each x E [0, 11, E, is 
a Bore1 subset of [0, l] with positive measure and if B is such, then there is 
some x such that B = B, = ( y 1(x, JJ) E E }. There is a coanalytic set with 
these properties [12]. Is there such an E with the property that for each B 
of positive measure there is a unique x with B = E,? 
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1.12. Mauldin Problem: Analytic Sets and the Bore1 Hierarchy 

Let ‘E be a subset of [0, l] and let B be the family of Bore1 subsets of E. 
Suppose there is a subset A of E such that A is the kernel of a Suslin 
scheme, 

A = u fi G(+d, 
aefp n=l 

where each G(s,, s2,. . . , s,) is open relative to E, and A is not a Bore1 set 
with respect to E. Is it true that for every a! -C wi, there is a Bore1 subset of 
E which is not generated in (r steps from the open sets by the operations of 
countable unions and intersections? 

1.13. Problems and Theorems from Ulam’s Master’s Thesis of 1932 

Jan Mycielski has gone through Ulam’s unpublished Master’s Thesis and 
has translated and reformulated some of the problems and theorems in it, 
for “this may have some historical interest, indicating what a very good 
student in Lwow around 1930 was thinking about.” 

Ulam in his autobiography [13] describes how he worked on it for a week 
and wrote it up in one night! 

(1) What are the cardinalities of the subgroups of S,,? This problem is 
open. 

(2) Let G be a subgroup of S,. Is there a binary relation R c n X n 
such that G is the automorphism group of the structure (n, R)? If not, is 
there a ternary relation with that property? 

(3) How many isomorphism types of nary relations on a set of 
cardinality n are there? This problem was apparently first solved by 
Oberschelp [ 141. 

(4) A and B finite groups, A” z B”. Is A 2 B? This problem was 
solved by L. Lovasz in the affirmative (Acta. Math. Acad. Sci. Hungar. 18 
(1967), 321-328). His theorem yields this result for any finite algebras A 
and B. 

(5) THEOREM. If for all A, B E C (C is a class of structures closed under 
direct products) A2 P B2 * A P B and for some D E C, D” 4 D for all 
n = 2,3,4, . . . , then D” f D” for all n # m. 

(6) Let X be a Frechet space, i.e., a set R of w-type sequences of 
elements of X, i.e., R c X”, is distinguished and a function L: R + X is 
given such that 

(A,) If u E R and a0 is a subsequence of u, then a0 E R and 
L(uo) = L(u). 

(A*) (a, a,. . .) E R, for each a E X, and L(a, a,. . .) = a. 
(A3) If u=(uO,ul ,... )~R,and T=(Q,T~ ,... )~R,and L(u)= 

L(7), then L(q,, q,, q, 71 ,...) = L(u). 
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THEOREM. (K R, L) and (Y, S, Q) are homeomorphic Frechet spaces if 
and only if the structures (X, R) and (X, S) are isomorphic. 

Proof: If one knows (X, R), L can be reconstructed. Namely, 
L(a,, a,, . . .) = a if and only if (a,, a, a,, a, az, a,. . .) E R. 

II. COMBINATORICS, GAME THEORY, NUMBER THEORY, COMPLEXITY 

11.1. Games with Sets as a Result 

A game between two players on the set X = 17zlXi is played where 
xi = {1,2,..., 3’ }. A Bore1 measurable subset E of X is given. Player I 
chooses n, E X1, Player II chooses n2 E X,, etc. Consider the set G = { x 
E X: x(i) # n,; i = 1,2,3,. . . }. The set G is closed in X and has measure 
l/2, with respect to the standard product measure m. If the measure of 
G f? E is greater than the measure of E - G, then player I wins. Is it true 
that one of the players has a winning strategy? What if we declare that 
player I wins in case the measure of G n E is greater than G n (X - E)? 
What if we declare that player I wins in case m(G f~ E)/m(E) > m(G n 
E’)/m( X\ E )? Comment: it follows from Martin’s [15] theorem that all 
Bore1 games are determined that the answer to both of these questions is 
yes. 

Consider a game on X between three players. A partition of X into sets 
A, B and C is given. Each player in turn chooses an integer ni. Consider 
the set G as before. Player I wins if m(G n ,4)/m(A) is greater than the 
other two ratios or relative measure. Does one of the players have a winning 
strategy? We assume that no coalition is allowed. 

11.2. Some Problems Connected with Playing Solitaires 

We shall give a few examples of mathematical problems based on playing 
combinatorial schemata extracted from playing card solitaires and phrased 
in probabilistic connections and with investigations of strategies which are 
optimal for winning such games. 

These games are played against a passive player, so to say, who does not 
participate actively in the game. -“Nature” might play such a role, and 
understanding some physical problems could possibly be of that sort.- 

We start with examples of the simplest games played on a finite set; we 
shall generalize these to, say, countably infinite ones. 

EXAMPLE 1. Suppose a permutation is given of the first N integers 
which is written down on a line as follows: We first write zero. leave one 
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place next to it on the right vacant, then write the given permutation of the 
integers from 1 to N. The game proceeds in this fashion: We put in the 
vacant place on the right of 0 the number 1, which is written somewhere in 
the permutation. This will leave a vacant place where the number 1 was 
located. The place immediately to the left of this vacant place is occupied 
by some integer. Call it n,. We look for the integer n, + 1 and put it in this 
vacant place. This will leave a vacancy at the place from where it was taken. 
Let n2 be the integer occupying the place immediately to the left of the new 
vacancy. We continue this procedure as long as we can. The solitaire is won 
if we obtain the permutation which is identity, that is, gives 0, 1,2, . . . , N. 

Clearly the chance of winning is very small, because if N is sizeable, the 
chance is very large of getting, during the process, a vacancy such that N is 
the leftmost preceding it. This situation ends the game since there is no 
longer any way to move. In fact, it is easy to see that the chance of winning 
decreases exponentially with N. There is no question of strategy in this 
game; it is completely deterministic. 

EXAMPLE 2. Suppose we now have a different arrangement: We write 0 
and then we put two vacancies next to it on the right and then a given 
permutation of the N integers. Now at every move there are two choices of 
putting the numbers into the vacancies. There will be in general, in the 
beginning, at least two different vacancies, and the outcome of the game 
depends on the strategy of the order in which we fill these vacancies. The 
problem arises: What are the probabilities of winning using the best 
strategy for a given N? The chance of winning is now larger. 

We could, of course, have more than two holes. One little mathematical 
question that arises would be, e.g., if the number of vacancies is, say, about 
fi, is there a sizeable chance of winning, i.e., not tending to 0 with N 
tending to infinity? 

This scheme is reminiscent of the Canfield solitaire. We have considered, 
so to say, a linear or one-dimensional game. One could imagine more 
generally that we have a number of permutations of integers which are of k 
different colors. We now write each given permutation of the first N 
integers in a row, forming k rows one above the other. In each row we start 
with 0 and have a vacancy after it. The game is now played by trying to 
obtain the identity permutation in each row, but in each row the colors 
must be the same. Of course, in each move of the game we can still fill a 
vacancy behind some integer n with any of the k integers n + 1 regardless 
of the colors. Obviously there are many choices in each step and the game is 
highly non-commutative. 

The mathematical problem now is how to estimate the probability of 
winning the game if k is some (small) fraction of N. With k = 4 and 
N = 13, this closely resembles the actual Canfield solitaire. 
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EXAMPLE 3. We consider another solitaire analogous again to one 
played with a deck of cards, but we shall of course schematize it and at the 
same time generalize it into a combinatorial question. 

Imagine the integers from one to NZ ordered arbitrarily into a square 
array. We may remove any two numbers in the same row or in the same 
column if they add up to a number belonging to a prescribed class of 
integers. For example, if they add up to a prime (or in another game if they 
add up to a square, etc.). The question could be what is the probability that 
you could remove by suitable choices all or “almost” all the integers? 
Speaking precisely for how many orderings of the N 2 into an array can it 
be done? 

EXAMPLE 4. An infinite solitaire is played as follows. First, suppose the 
positive integers are listed at random in a square array. If two numbers in 
the same column or row sum to a prime (or square), then they can be 
removed. What is the probability of removing a set of positive density? 

We can list the positive integers at random according to the following 
rule. First one chooses a number z in [0, l] at random. Then consider the 
continued fraction expansion of z. The entries of the bottom row in the 
array are the first, third, fifth, etc. integers which appear in the expansion of 
z. The second row consists of the second, sixth, tenth, etc. 

11.3. Is Possession of a Winning Strategy Independent of Base 
for Expansion? 

We consider Ulam’s modification of Mazur’s game (Problem 43 in “The 
Scottish Book”). For a given subset E of [0, l] players A and B give in turn 
the digits 0 or 1. Player A wins if the number whose infinite dyadic 
expansion consists of these digits taken in order belongs to E. 

We also consider the same game where players A and B give in turn the 
digits 0, 1, or 2 and so on. 

Name a set E which is a winning set for the first player in the binary 
development but not in the ternary development. Is it true that for most 
sets E, player I wins with asymptotic density l/2? 

11.4. Games by Teams Playing Each Other 

Let E c [0, l] X [0, 11. Consider two teams of two players each. Player 
A, selects the first digit in the binary expansion of the x coordinate; then 
player A, selects the y coordinate without the knowledge of his partner’s 
selection. After this, players B, and B, have their turn and the game 
continues. Team A wins provided the final point determined by the play is 
in E. In which cases can there be an arrangement of strategies between the 
partners so that they have a winning strategy even though the winning 
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strategy is not unique? (Otherwise, trivially each will select a move with the 
knowledge that his partner has made the best selection which is unique; if 
the number of winning moves at some stage is greater than one or even 
infinite, there has to be a convention between the players on how to select.) 
Games between teams of course, are very general and common, e.g., 
“armies” without a “general’‘-games between organisms and groups of 
animals or groups of cells, etc. 

11.5. Complexity of Integers 

Let us define the arithmetic complexity ] n ] of a positive integer n to be 
the smallest number of operations of addition, multiplication and expo- 
nentiation which combine l’s to form n. Thus ] 1 ] = 0, ] 2 ] = 1 and ] 5 ] = 4 
since 5 = (1 + 1) + (1 + 1) + 1 and no fewer operations with l’s will form 
5. This notion has been studied and some tables of the behavior of ] n ] are 
given by Beyer, Stein, and Ulam [16]. 

A number n is said to be complicated if In ] > ] m ] for all 1 I m < n. 
Clearly there are infinitely many complicated numbers. Is it true that there 
is an integer k such that if n > k and n is complicated, then n is prime? Is 
it true that if n is sufficiently large, then n is the sum of < lo z(n) 
complicated integers? Is there a number c such that ] n I < c + $-g log,n , for 
n sufficiently large? For each n, let k(n) be the average complexity of all 
integers I n. What is the order of growth of k(n)? Let f(n) be the number 
of integers with complexity exactly n. A straightforward calculation shows 
that f(n) is bounded above by the n th Catalan number. What is the order 
of growth of f(n)? 

For each x in [O,l] with binary expansion x = .u1a2u3.. . let c(x) 
= lim,,,(a,2” + ..a +a,)/k(2”+’ - 1). What is the expected value of 
c(x)? 

Suppose we are given points xi,. . . , xN of a set E and binary operations 
Ri(x, y), i = 1,2,. . ., k on E. Consider the structure S generated by these 
relations. We define the complexity of an element of S according to the 
rules (1) ]xi] = . . . = ]xN] = 1; (2) if z = R;(x, y), then ]z] I Ix] + ]y] 
+ 1; and (3) for each z in S there are points x and y and some i such that 
z = R;(x, y) and Jz] = Ix] + ]y] + 1. In particular, what happens if 
A i, . . . , A, are subsets of E = Y X Y and the binary operations are inter- 
section, union, projection and direct product?’ 

‘Note u&fed in proof. Mycielski asks: Let T and S be two theories containing PA and let 
T I- Con(S) (S is recursively axiomatizable). Let d,(n) and d,(n) be the lengths of the 
shortest definitions of )I in T and in S, respectively, such that those theories can prove that 
those definitions define n. Is it true that for all recursive functions r there are arbitrarily large 
PI such that r( d,(n)) < ds(n)? 
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11.6. Winning Almost Always and Change of Roles and Rules 

For what subsets E of [O,l] is it true that one of the players almost 
always wins (almost always means in the sense of measure or in the sense of 
category in the space of all sequences of choices). 

For what subsets E of [0, l] is it true that one of the players has a 
winning strategy when the rule of the game is that if either of the players 
has lost the usual binary game after a finite number of moves, that player 
can “take back a move,” i.e., may change the preceding move or, say, a 
previous move on a specified level of moves beforehand. 

11.7. Ramsey and van der Waerden Problems 

Let E be a set of n elements. Divide the class of all subsets of E into two 
parts such that a set is in one part if and only if its complement is in that 
same part. How big is, of necessity, the biggest Boolean algebra contained 
in one of the two parts? 

Consider the family of all subsets of a given set and the group structure 
on it provided by the operation of symmetric differences. Again we divide 
the subsets of this set into two classes. How big is, of necessity, the 
symmetric difference group of sets which will be contained in one or the 
other parts of the division of the class of all subsets? 

If E is taken to be countably infinite and the class of all subsets is 
divided as above into two parts, must one of these parts contain arbitrarily 
large finite Boolean algebras or groups? 

Let E be a countably infinite Abelian group. Partition E into two sets, 
A and B. Must one of the parts contain arbitrarily long arithmetic progres- 
sions: for each n there are elements xi,. . . , x, all in A or all in B such that 
xi+1 - xi = xi+* - x~+~, i = l,..., n - 2. In particular, what about the 
weak direct product of Z,‘s? 

Finally, let E be a group. Partition E into two sets such that x is in one 
set if and only if x- ’ is in the same set. How big is a subgroup or coset 
which one can find in one or the other part? What is the situation in which 
each element of E is of finite order? 

11.8. Games and Number Theory 

Let ] E ] = N. Two players choose in turn points of E X E. The player 
with the largest product set A x B in their final set wins; if both players’ 
largest product set have the same size, it is a draw. What is the largest 
product the first player can achieve? (Erdbs comments surely (c log n) x 

(c log n).) Who has a winning strategy? (Erdijs believes it is a draw.) 
Nowsuppose E = {l,..., n }. Two players choose in turn elements of E. 

The player with the largest subset such that the sum of two distinct 
elements of this set are all different wins; if both players’ sets are of the 
same size it is a draw. What is the maximal guaranteed size subset of the 
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first player’s set such that the sums of two distinct elements of this set are 
all different? Or such that no sum of any two numbers is equal to another 
number of the set? 

Erdiis notes that in the first case there is a “Sidon” set of size (1 + 
o(l))&. So, each player can make sets of size at least (1 + o(l))fi/2. Can 
a bigger set always be obtained? Erdos also suggests some variations. Two 
players in turn choose an edge of a complete graph. Player I wins if he has 
the larger complete subgraph, otherwise he loses. Erdiis conjectures if 
n > 2, player II always wins. One can modify this game by declaring that I 
wins if he has more complete maximal subgraphs than II [17]. Another 
modification [18] would be that I wins if the degree is bigger-perhaps 
neither player gets more than n/2 + clog n in this case? 

11.9. Feebly Isomorphic Structures 

Two graphs G and G’ are called feebly isomorphic provided there is a 
partition {E,, . . . , E, } of E(G), the edge set of G, and a partition 
{E;,..., E,’ } of E(G’) such that for each i, Ei and El are isomorphic as 
graphs. If G and G’ are feebly isomorphic, then G and G’ have the same 
number of edges. Also, if G and G’ have the same number of edges, then G 
and G’ are feebly isomorphic. Let U,(G, G’) be the smallest value of n such 
that there are pairwise isomorphic partitions of E(G) and E(G’). For each 
positive integer n, set 

U,(n) = FF U,(G, G’), 

where G and G’ each have n vertices and the same number of edges. 
Chung et al. [19] have shown that U,(n) = 2n/3 + O(n) and have raised 

a number of interesting questions. Yao has shown that the question “Is 
U,(G, G’) = 2?” is NP-complete [20]. 

One can extend the notion of feeble isomorphism to three or more 
graphs. In [21] it is shown that 

U,(n) = 3n/4 + O,(n), for each k 2 3. 

Of course, U,(n) is the largest possible value U(G,, . . . , Gk) can assume 
where G,, . . . , G, are graphs, all having n vertices and e edges and 
U(G,, . . . , Gk) is the smallest possible value of r such that there are 
partitions { ~ij}J=i of E(G,) such that for each j the graphs Eij, i = 
1 ,..‘, k, are isomorphic. Some of the results are surveyed in [22]. 

The notion of feeble isomorphism is extended to hypergraphs by Chung 
and Erdiis [23] and they have focused on the major techniques used in these 
works [24]. 

11.10. The Reconstruction Conjecture for Graphs 

Let G and G’ be graphs each with n vertices. Suppose that for each 
subset A of the vertex set of G with cardinality n - 1 there is a subset B of 
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the vertex set G’ such that A and B are isomorphic as subgraphs. Is it true 
that the graphs G and G’ are isomorphic? This problem was formulated 
many years ago by P. J. Kelly and Ulam. Some of the first results 
concerning this problem were obtained by Kelly [25], who proved the truth 
of the conjecture for trees. This is one of the central unsolved problems 
today in graph theory [26, 271. 

11.11. Random Partitions 

One can generate an ordered partition of N, the set of all positive 
integers, at random as follows. First, choose a number pi in the interval 
[0, l] at random and form the first set A, in the partition by declaring that 
n is in A, with probability pi independent of the other choices. Second, 
choose a number p2 in the interval [0, l] at random and form the second set 
A, in the ordered partition by declaring that an integer n which is not in A, 
is in A, with probability p2. Continue this process through all the positive 
integers forming A,, A,, A,, . . . . We note that with probability one each of 
the sets A, is infinite and with probability one {A,, A,, A,, . . . } is a 
partition of N. 

One can alter this process to obtain partitions where some of the sets are 
finite. The first set is formed as before. Next, let ni be the first integer not 
in A, and let 1;1 consist of the first n1 integers not in A,. Now choose q1 
and take [qln,] integers from Fl to form a finite set B, which is in the 
partition. Form the infinite set A, as before, but only examining the 
integers not in A, U Fl. Let nz be the first integer not in A, U Fl U A,. 
Let F2 consist of the first nz integers which are not in this union. Choose q2 
and form B, by taking [q2(n, - [ qln,])] of the integers in Fl \ B,. Also 
form B, by taking [q2n2] of the integers in I;;. Finally form the infinite set 
A, by examining the integers not in A, U Fl U A, U F2. Continue this 
process. 

We can consider the process just described for the partition of Fl as a 
process for generating a partition of a set with n elements at random. What 
is the expected number of sets in such a partition and what is the 
distribution of the sizes of the sets in the partition? 

11.12. Permutations 

Two players build two permutations ITS = (k,, . . . , k,) and 9 = 
Cm i,. . . , m,) of the first n integers as follows. First, player I chooses k,, 
then player II chooses mi. Next, player I chooses mz and then player I 
chooses k,, etc. Consider the subgroup G of S,, generated by ni and 1~,. 
What is the size of the subgroup that player I can always achieve? 

Is there a permutation P of { 1,. . . , n } such that for all i # j, 

I’(i) - PcjjI # Ii -jl 
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or even, 

for some positive constant c? The first problem is, of course, the old 
problem of whether n Queens can be placed on an n x n chess board so 
that no two attack each other [28]. 

11.13. Approximation of Primes by Product of Three Fractions 

Let p be a prime. If a,, a2, b, and b, are integers less than p then the 
minimum of 

is obtained for a, = a2 = p - 1, b, = 1 and b, = p - 2. Suppose we want 
to minimize 

d3+?.?mP, 
1 2 3 

for a, and b; less than p. If one chooses a, = a2 = p - 1, ag = p - 4, 
b, = 1, and b, = b, = p - 3, then d, = 4/(p - 3)2. However, this is not 
the best choice for all p. For example, if p = 13, the above formula yields 
d, = l/25. If one chooses a, = a, = a3 = 10, b, = 1, b, = 7 and b, = 11, 
then d, = l/77. Does the formula yield the best approximation for all but 
finitely many primes? In the Introduction to “Problems in Modern 
Mathematics” it is conjectured that min d, + l/p2 as p + 00. 

11.14. Quasi Primes 

We consider a probabilistic method of generating a sequence which may 
mimic the sequence of primes in its various asymptotic properties. 

Begin with the sequence d, = 2, d, = 2, and d, = 4 and define d,+l by 
first choosing j, 1 ~j I n, at random and setting d,+l equal to the dj or 
else to dj + 2 with equal probability. As a sample asymptotic property note 
that with probability one infinitely many of the di’s are equal to 2. Thus, 
with probability one there are infinitely many “twin” quasi primes. 

Is it true that with probability one 

p, := 1 + i di = n log n? 
i=l 

A heuristic for this conjecture is the fact that the conjecture is true for the 
sequence e,, e,, e3,. . . of expected values d,, d,, d,, . . . . In fact, we have 
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the general recursion e,,, = e,, + l/n from which logarithmic growth 
follows. 

Is it true that with probability one, the integers p,, which are equal to 
1 modulo 4 have density l/2? 

Occasionally, rarely, the difference between consecutive primes exceeds 
any previous difference by more than two. So, we could modify our 
procedure by choosing d,, 1 as follows. First, select j, 1 I j I n, at 
random. Then with probability l/2, d,,+i is dj, with probability l/2 - 
l/2”, d,,. 1 = dj + 2, and finally, with probability l/2”, d,+l = d, + [&I. 

One can refine this random recursion to mimic the sequence of dif- 
ferences of primes even more closely. For example, one can introduce the 
rule that there must not be two consecutive 2’s or 4’s in the sequence 
d,, d,,d,, . . . . Even with these refinements computer studies by Tony 
Warnock indicate that the p,,‘s grow as n log n. 

We also consider the same problem for “deterministic” methods of 
generating pseudoprimes. For example, as before, set d, = 2, d, = 2, 
d, = 4. Now, if n is even set d,,+l = dLz,,sl + 2 and if n is odd, set 
d ,1+1 = &n/5,: 

2,2,4,2,4,4,4,2,6 ,... . 

11.15. Sequences of integers DeJined by Unique Sums 

Beginning with a list of two distinct integers, add an integer to the list if 
it is uniquely expressible as the sum of two distinct integers already in the 
list. If we begin with 1 and 2, does the sequence have density zero? Studies 
of this problem were made by Queneau [29]. 

11.16. Sets of Integers from Integers 

We make correspond to every positive integer n a set of positive integers 
as follows: If n is developed in a binary sequence with O’s and l’s, we 
attach to this integer the set of all indices where in the development of n we 
have a 1. We may now consider all the sets of integers corre;ponding to 
primes. On this class of sets of integers we may now perform some Boolean 
operations. As noticed by Erdos, one obtains all finite sets of integers as 
differences of such. What does one obtain using only sums, i.e., unions? 
What are the sets of integers which we obtain starting from the class of 
integers corresponding to squares or cubes, etc? 

Similarly for a number x in the unit interval, let A, = { nla, = l), where 
.ala2a3.. . is the infinite dyadic expansion of x. Now define x + y as 
A, U A,,, etc. What do the rational, quadratic irrational or algebraic num- 
bers generate in this algebraic system? 
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11.17. Generation of Primes 

Starting with two primes, say pi = 2 and pz = 3, put p,,+i = pn + pk - 1, 
where k I n is to be chosen every time. Can one obtain an infinite 
sequence consisting of primes only or containing infinitely many primes? 
One cannot, of course, obtain all primes because there exists a prime p, 
such that the next prime P,+~ is such that pS+l - p, = 8. Thus 97 is the 
smallest prime one cannot get in order. Erdos believes the density of primes 
one obtains is 0, but almost certainly infinite. He comments that if 
p, + i - p,, is not a prime then you cannot get p, + i from the sequence. 

11.18. Little Number Theoretical Curiosities concerning Primes 

Which fractions can be obtained in the form pl/ql + p2/q2, where p1 
and p2 are primes? 

Suppose we enumerate all rational fractions by lattice points in the plane 
putting the fraction p/q (in reduced form) at (x, y), where x = p, y = q, 
and make an Erastothenes sieve on a spiral. Consider those fractions which 
correspond to primes in the sieve. Which fractions can one get by sums of 
two “ prime fractions”? 

Consider the expansion p = 1 + 0~~2 + (r,2* + . . e +(~,2”, (Y; = 1 or 0. 
Are there, asymptotically, as many primes with an even number as with an 
odd number of ai’s corresponding to ei = l? Is it true that for most primes 
the difference between the number of ai’s = 1 and the number of 0~~‘s = 0 
is I J;;, etc.? 

11.19. An Old Conundrum 

Let a,, and a1 be given positive integers. For each n > 1, set a,,+ 1 = (an 
+ a,-,) (mod n). 

For each positive integer k consider the subsequence of a,-,, a,, a*, . . . 
consisting of all ai’s I k. Is it true that each integer i, 1 I i I k, appears 
in this subsequence with frequency l/k? 

Let a, = 2” (mod n), for n = 1,2,3,. . . . For each positive integer k 2 2 
consider the subsequence of this sequence consisting of all ai’s from 2 
through k. Is it true that each integer in this subsequence appears with 
frequency l/k - 2? 

11.20. Problems on Neighbors of Sets 

Suppose N x N is covered by sets of uniformly bounded cardinality. We 
say two points are neighbors if the distance between them is no more than 
6. It follows from a topological theorem on covers of the plane by 
uniformly bounded regions that there must be some set in the partition 
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which has six neighbors. Two sets are neighbors means each contains a 
point such that the two points are neighbors. 

Suppose neighbor is defined by distance I 1. Cenzer and Howorka [30] 
have shown that any such cover of lattice points as before must contain at 
least one set with at least four neighbors. They also reference a number of 
related results and questions. 

In three dimensions, if we define neighbor by distance I 1, the conjec- 
ture is that there is at least one set with 6 neighbors. If we define neighbor 
by distance I 6, the conjecture is that there is at least one set with at 
least 14 neighbors. If neighbors is defined by distance I 0, what can be 
said about guaranteed neighbors of at least one set? 

In n dimensions, with distance I 6 defining neighbors, the conjecture 
concerning neighbors of a set is 2”+l - 2. 

Presumably, the theorem should assert not merely the existence of one 
such set, but that the number of such sets has positive asymptotic density: 
If we consider concentric spheres with radii 1,2,3,. . . , the number of sets 
with the guaranteed number of neighbors which are subsets of the sphere of 
radius n divided by the number of all sets in the cover which are subsets of 
the sphere of radius n has a positive lower limit as n goes to infinity. 

One might ask about neighbors of neighbors in the above sense. What is 
the minimum guaranteed number of such? 

Finally the whole problem may be formulated for graphs which are 
infinite, but with each vertex having a fixed finite number of edges; the idea 
of neighbor being two vertices joined by an edge. 

Given a set of N elements we may consider two subsets as being 
neighbors if the symmetric difference in cardinality is less than k. Now 
consider two classes of subsets as neighbors if each class contains a set so 
that these two sets are neighbors. Estimate the number of classes which 
must have a given number of neighbors. 

Analogous problems arise for subsets of the set of integers when two sets 
are neighbors if the Hausdorff distance between sets is less than a given 
integer k. 

Determine x = x(n, j) or x = x(n, j, k) such that if the class of all 
subsets of a set E with cardinality 2” is partitioned into subclasses each of 
power n (or 2”-’ or 2n-k) then there must be one of them which has x 
neighbors. Again two sets are neighbors if their symmetric difference is in 
cardinality no more than j. 

11.21. Problems by Erdiis 

1. Sierpinski proved c e (N,,N#, i.e., one can color the edges of a 
complete graph of power c by two colors so that every complete subgraph 
of power N, contains edges of both colors. Assuming c = W,, Hajnal, 
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Rado, and I proved that one can color the edges of a complete graph of 
power c by c colors such that every subgraph of power c contains all the 
colors. 

Let us now assume no hypothesis about c. Is it true that c + [H,]:, i.e., 
can one color the edges of a complete graph of power c by three colors so 
that every complete subgraph of power H, contains all three colors? We 
made no progress with this problem, which quite possibly is independent.* 

Galvin and Shelah [31] showed that W, j, [rJ,]i and c j, [cl&. 
Similar problems are stated in my paper with Hajnal [32]. Finally, 

Todorevic states that HJ, j, [Cs,];,, i.e., one can color the edges of a 
complete graph of power H, with W, colors so that every square of size H, 
contains all the colors. 

2. Join two points in the plane if their distance is j. Hadwiger and 
Nelson asked, What is the chromatic number of this graph? It is known to 
be between 4 and 7 and is probably greater than 4. Now join two points 
whose distance is one of the numbers r,, 1 I i I k. Denote the chromatic 
number by f(ri.. . . , r,,) and put 

max f(r,,...,r,) = F(k). 
1‘, . 1 ‘i 

Is F(k) polynomial, exponential, or something in between? Is it true that 
F( k)/k + cc? (The answer is yes for lattice points in the plane.) 

11.22. Problems by Ronald Graham 

1. Is it true that if {a,, a,, . . . , a,,} is a set of n positive integers, then 
for some i and j, 

ai 
g.c.d.( a,, aj) 

2 n? 

Comments. This problem has had an active history (some of which is 
mentioned in the little monograph with Erdiis (pp. 78-79)) [33]. In the case 
that ak are square free, it is equivalent to the (true) theorem that for any 
family of n (distinct) sets A,, . . . , A,, there are always at least n distinct 
differences Ai - Aj. M. Szegedy has just found a very ingenious proof. 
Graham has paid (see the end of this section). 

2. For a finite set X of points in the Euclidean plane, let L(X) denote 
the shortest total length a tree connecting together the points of X can have. 
Is it true that if Y c X, then 

L(X) 6 

L(Y) 2 7 

2Nore u&fed in proof. Shelah has shown c -P [N,l: is consistent. 
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Comments. By a tree we mean a collection of edges between various 
pairs of points of X which is connected and has no cycles. Thus, L.(X) is 
the length of the so-called minimum spanning tree for X. At first, it is not 
obvious that it is possible to have Y c X and L(Y) > L(X). However, the 
set X = {O,l, exp(2ai/3), exp(4ai/3)} and Y = X - (0) give L(X) = 3 
and L(Y) = 20. The conjecture (due to Gilbert and Pollak and now more 
than 25 years old) is that this is as small as the ratio ever gets. There have 
been a series of increasing lower bounds given on this ratio over the years, 
the most recent due to Fan Chung and myself [83] which asserts that 

L(X) 
L(y) 2 0.8214.. . 

(the RHS is a root of an irreducible 12th degree polynomial equation). If 
instead of Euclidean distance we use the fi metric 

d(h YA (x2, Y*)> = Ix1 - x21 + IY, - Y2lr 

then the corresponding ratio is known to be bounded below by 2/3 which 
is in fact the best possible lower bound. 

3. It is true that for any integer k f 1 there are infinitely many n such 
that n divides 2” - k? 

Comments. It is easy to show that 2” f 1 (mod n) for n > 1. Of course, 
2” = 2 (mod n) quite often. There does not seem to be any good reason 
why 2” (mod n) cannot be anything besides 1. The Lehmers did a computer 
search some years ago and finally found solutions for all k, 2 I k I 100. 
The last holdout was k = 3, for which the least (and only known) solution 
is n = 4700063497. A related question is whether for all k there are 
infinitely many n such that +(n) divides n + k (where 4(n) is the Euler 
phi-function of n). This has not been looked at much but it is clean. 

4. What is the maximum area an octagon of unit diameter can have? 

Comments. In general, one can ask for the largest area possible for the 
convex hull of a set of n points of diameter 1. For odd n, it has been known 
for more than 50 years that it is given uniquely by the regular n-gon of 
diameter 1. For n = 4, a square of side l/fi (and diagonal 1) gives the 
maximum possible area for n = 4 but it is not the only such figure. In fact, 
there are infinitely many, all having an orthogonal pair of diagonals of 
length 1. The case n = 6 was open since the 1920s until I settled it about 10 
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years ago [34]. The maximizing hexagon is unique and not the regular 
hexagon. 

5. Is it true that if the integers 

{L...J(4>, 

where r(n) is the tower function of powers of 2: 

t(n) = 22”‘z) height n 

are partitioned into n subsets, then at least one of the subsets contains an 
arithmetic progression of n terms? 

Comments. The exact form of this bound for van der Waerden’s theo- 
rem is not crucial. Any primitive recursive function would do and would be 
of great interest. Whether such bounds actually hold is not as clear as it 
once seemed because of the well-known work of Paris and Harrington (and 
recently, Friedman), who showed that for some similar-looking problems, 
no primitive recursive bound can hold. I still believe the answer to this 
question is yes, however. 

6. Show that for infinitely many n, 

g.c.d.(( 2,n), 105) = 1. 

Comments. This, in spite of appearances, is a very tough problem. It is 
equivalent to asking if there are infinitely many n which when expanded in 
bases 3, 5 and 7, have digits all less than half the base. The answer is yes for 
any two distinct prime bases p and q [84]. 

A related problem: Show that only finitely many n satisfy 

g.c.d.( (:), 3*5*7*11 =l. 
1 

In fact, it is known that this holds for n = 3160 but no n satisfying 
3160 < n -C 10’“~ooo. Probably n = 3160 is the last one. 

As a token of my estimate of the difficulty of the preceding problems, I 
am willing to part with the following amounts (for proofs or counterexam- 
ples). 
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1. $ loo3 

2. $ 500 

3. $ 100 

4. $ 50 

5. $1000 

6. $ 100 

Erdijs comments that it has been conjectured by Erdos, Graham, and 
Straus that for n > 4, *,” ( 1 

is never squarefree. Sarkozy proved this if 
n > n,. His proof will appear in the Journal of Number Theory. 

III. ALGEBRA 

111.1. The Infinite Permutation Group S, 

S, is the group of all permutations rr of the set of all integers. The results 
about this group contained in the papers by Ulam and Schreier [35] can be 
obtained, if necessary mutatis mutandis, for certain subgroups of it. The 
problems concerning such groups refer to the existence or non-existence of 
normal subgroups, their automorphisms; the existence of a finite base in the 
sense of approximating all permutations of the subgroup by means of 
composition of a finite number, etc. 

S,, is the group of all rr that move each n a bounded distance: 
Is(n) - n ] < k, where k is independent of n but, of course dependent on 
s. S,, denotes the group of all s for which, except for a set of frequency 0, 
all the displacements are uniformly bounded. Clearly, one can consider 
other “naturally defined” subgroups of S,, among them the group of 
permutations which are recursive in the sense of logic. S, is the group of all 
7~ which preserve the density of every subset of the integers. In particular, 
Erdijs showed that S, is not isomorphic to S,. Prove S, is not isomorphic 
to s,. 

The reader can generalize these questions to the case where we consider 
S, as the group of permutations of Z*, the lattice points in the plane. Thus, 
one could consider the group of all IT such that ] a( n) - n ] is bounded by a 
polynomial in n. Or one can consider the permutations which are of a 
specified type horizontally and of a different specific type vertically and 
their compositions. To increase the complications one could even allow 
switches (i.e., add to the permutations a change by 90” of the vertical into 
the horizontal). This would be in a way analogous to the consideration of 
ideals of sets in the plane (e.g., those sets which are of the first category on 
every horizontal line and of measure 0 on every vertical). 

‘Note udded in proof. This $100 has already been collected 
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Finally one can consider the problem of defining measures on these 
subgroups with various “natural” properties as discussed in problem V.5. 

111.2. Groups Isomorphic via Decomposition 

Are there non-isomorphic groups G and H such that G and H can be 
decomposed into two parts: G = G, U G, and H = HI U H2 with G, - H, 
and G, - Hz. The notation A - B, where A c G and B c H, means there 
is a one-to-one map f of A onto B such that if x, y, and xy are all in A, 

then f(xy) = fWf(~). 

111.3. “Funny Addition” 

What are the possible additions on the integers which distribute with 
respect to the usual multiplication? For example, let T be a permutation of 
the primes. Extend T to all positive integers via their decomposition into 
products of primes. Now define a @ b = T-‘(Ta + Tb). This defines con- 
tinuumly many such additions. Consider the same problem for the ration- 
als. Note that for each such addition $ on the integers, the addition 
a/b @ c/d = ad $ bc/bd on the rationals distributes with respect to multi- 
plication [36]. 

111.4. Composition of Relations in Three Variables 

If R and S are binary relations on a set X, it is standard to define R 0 S, 
the composition of R and S, as {(x, y) ( there is some z with (x, z) in R 
and (z, y) in S}. However, if R and S are ternary relations on a set X, 
there are several distinct possibilities which present themselves. For exam- 
ple, we could set 

R”S = U(R,,~SX,)U(RX20SX*)U(RXI.SX~)~ 
Xl x2 x3 

where 

Rx, o sx, = {(xi, y, z)] there is some u with (x1, y, u) E R and (xi, u, z) 
E S} and similarly for RX2 0 SX, and R,, 0 SX2. 

It is known that if { R, } is a sequence of binary relations on a countably 
infinite set, then there exist two binary relations S and T such that the 
semigroup generated by them contains all the R,‘s. Is this true for ternary 
relations? 

111.5. Maximal Group Structure on a Countable Set 

Is there a group structure on a countable set such that the group of 
endomorphisms is maximal? 
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111.6. Possible Generalizations of the Friibenius-Perron Theorem 

This theorem, which has important applications in probability 
theory-specifically in the study of branching processes-asserts the con- 
vergence of iterates of a linear transformation of the n-dimensional space 
into itself, provided all the coefficients in the matrix representing the 
transformation are positive, to a unique characteristic vector in the positive 
“octant” of the space. Actually, the condition can be weakened; it suffices 
that some power of the transformation has, in matrix form, all terms 
positive. From this theorem one concludes, in certain stochastic processes, 
the expected variants for ratios of the population tend to stabilize-speak- 
ing loosely one can say that the steady state, or an equilibrium, is ap- 
proached. 

Among the applications of this theorem, when generalized to infinitely 
many dimensions, one can assert that for equations of the type of diffusion 
and multiplication by a potential, e.g., in the Schriidinger equation, the 
highest energy value is the characteristic multiplicand of the state repre- 
sented by the invariant vector. 

A number of generalizations will be proposed for the case where the 
transformation is not linear but, e.g., quadratic, and instead of asserting the 
convergence to an eigenstate, we will merely desire convergence in the mean 
or rather the validity of an ergodic behavior, that is to say, the existence of 
limits of the ratios of the time spent by iterates of the transformation in 
certain regions, e.g., cones. Clearly the convergence to a line, in direction, 
guarantees the existence of the time of sojourn-in each cone the limit of 
the time spent there is equal to 1, provided it contains the invariant 
direction, and it is 0 otherwise. 

We should also consider the fact that in the other, so to say, extreme, the 
existence of the limit is guaranteed. If the given linear transformation is a 
rotation, the theorem of Weyl guarantees the equipartition of iterated 
points, i.e., the existence of the “time” limit, in this case equal to the space 
measure. It is of interest to consider from this point of view more general 
linear transformations of Euclidean n-space. 

Suppose we have a linear or quadratic transformation, T, of Euclidean 
n-space and let C be a cone of directions issuing from the origin. We are 
interested in the behavior of 

k-l 

)irn,l k c l,(TP(x)). 
p-0 

We want to know how the value of the limit depends on the initial vector x. 
Our conjecture is that given such a cone, the number of possible values for 
the limit is finite. In other words, the space of the initial vectors can be 
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divided into a finite number of “regions” in which each initial point gives 
rise to the same limit of average time. 

IV. TOPOLOGY 

IV.1. Groups of Homeomorphisms 

Ulam and von Neumann [37] noted that the identity component of the 
homeomorphism group of the two-dimensional sphere is simple. Anderson 
[38] extended this result to various groups of homeomorphisms of other 
spaces. The simplicity of the identity component of the homeomorphism 
group of various manifolds, in particular, S4, remains open. 

Similarly, every automorphism of the homeomorphism group of S4 is 
inner. For what topological spaces does this result hold? 

Finally, Everett and Ulam [39] noted that the topology of the real line is 
uniquely determined by the group of homeomorphisms in the usual topol- 
ogy. For what spaces X is there a unique topology on X in which X is a 
complete separable metric space? When is X determined by its homeomor- 
phism group? As noted in [39], these problems in an algebraic formulation 
originated in conversations of Everett and Ulam with Teller and von 
Neumann. Recently Kallman [40] has given some general conditions which 
answer these questions for various spaces X. The problem seems to remain 
open for the universal curve of Sierpinski. 

IV.2. Isometric Squares 

Let A and B be two topological spaces such that A x A and B X B are 
homeomorphic. Is then the space A homeomorphic to B? This is Problem 
77b formulated by Ulam in the Scottish Book. The commentary accompa- 
nying that problem details some of the tremendous amount of work 
concerning it. The answer in general is no. R. H. Fox showed that the 
answer is yes if A and B are two-dimensional compact manifolds with or 
without boundary. In fact, Rosicki [41] has given an affirmative answer in 
case A and B are compact, two-dimensional polyhedra. The situation 
concerning compact, three-dimensional manifolds remains open. 

If A and B are metric spaces and A x A is isometric to B X B, then is A 
isometric (or homeomorphic) to B? This question has a negative answer in 
general [42]. However, it remains open in case A is a complete or compact 
metric space. Some sufficient conditions are given by Kelly [43] in case A is 
finite. 
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IV.3. Transformations Preserving Various Properties 

Let E and F be two topological (e.g., metric) spaces. Let T be a 
transformation of E into F such that if A, B c E are homeomorphic, then 
T(A) and T(B) are homeomorphic in F. Must T be a homeomorphism 
(e.g., for E a Euclidean space!)? 

Variations on this theme: Suppose that if B is a continuous image of A, 
then T(B) is a continuous image of T(A). Does it follow that T is 
continuous? etc. Or suppose the map T has the property that if A = B, 
then T(A) = r(B). Does it follow that T(A) = A? Here = means isomet- 
ric, linear similarity or congruence in a general sense or perhaps A and B 
have the same measure. 

IV.4. Natural Measures on Homeomorphism Groups 

In many attempts to model various phenomena, one finds that there is a 
space of objects which is being acted upon by some group of transforma- 
tions-a group of similarity maps, diffeomorphisms, C” maps, etc. If one 
wants to make some statements about average or expected behavior of this 
system, some sort of “natural” measure is needed on this group. If the 
group is locally compact, then left Haar measure is available as a first 
choice. However, if the group is large, then there is no such measure. Our 
idea here is that one could manufacture some measure on the group which 
is appropriate for the problem under consideration. We illustrate this idea 
with the space of objects being I, the unit interval, and the group being 
H(I), the homeomorphism group of I [44]. 

It is known that there is no u-finite measure on H(I) such that this 
measure is left invariant or even, more generally, left quasi-invariant. 
However, there may be measures on this space which are “natural” in some 
sense. For example, if one is asked to produce a homeomorphism h of [0, l] 
onto itself such that h(0) = 0 and h(1) = 1, one could proceed by indi- 
cating the values of h at particular points. Thus, h(1/2) is somewhere 
between 0 and 1. Not having any additional information, let us say that 
h(1/2) is uniformly distributed on [O,l]. Now, given h(1/2) what is 
h(1/4)? We know h(1/4) is somewhere between 0 and h(1/2), let us say 
h(1/4) is uniformly distributed over this interval. Continue this process. It 
turns out that this process produces a homeomorphism of [0, l] onto itself 
with probability one [45]. Thus we have a natural measure P on H(I). Of 
course, one could think of the random homeomorphisms as random distri- 
butions, and indeed, this process was first introduced and studied from this 
point of view by Dubins and Freedman [46]. 

There are many interesting properties of these random homeomorphisms. 
For example, with probability one, there are a finite odd number of fixed 
points which alternate between repellent and attractive. 
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We have indicated a method of generating a “natural” measure P on the 
homeomorphism group of the unit interval. By identifying end points, the 
measure P may be regarded as a probability measure on H,(T), the group 
of homeomorphisms of T, the unit circle, which leave the complex number 
1 = e” = ei2” fixed. Now choose one of these homeomorphisms at random 
with respect to P and follow this by a rotation of the circle chosen at 
random with respect to U, Lebesgue measure (or Haar measure) on the unit 
circle. This yields a probability measure Q on H(T), the homeomorphism 
group of T. Formally, Q(B) = u X P( r-l(B)), where ?T maps T x Ho into 
H by m(s, f) = s 0 f. The measure Q has the natural property that Q is 
invariant under the left action of the isometry group of T acting on H(T). 
It can be shown that the Q measure of the homeomorphisms with a fixed 
point is positive and the Q measure of the homeomorphisms with no fixed 
point is positive. Is the Q measure of the homeomorphisms with no 
periodic points positive? If so, is the measure of the “Denjoy rotations” 
positive? These are the homeomorphisms with no periodic points but which 
are not conjugate to irrational rotations. These are the homeomorphisms of 
T which leave some Cantor set invariant and permute the complementary 
intervals in a fashion such that there are no periodic points. 

Another way to produce a homeomorphism of T at random is as follows. 
First one chooses at random the images a’, b’, and c’ of the cube roots of 
unity a = 1, b = (- 1 + ai)/ and c = (- 1 - fii)/2. Next, let d be 
the point on T which divides the arc from a to b which does not contain c 
in half. Then choose the image d’ of this point on the arc a’b’ which does 
not contain c’ according to the uniform distribution on this arc. Continue 
in this fashion. Computer studies indicate that with probability one there is 
a periodic point. In fact, it seems that there is a point of period I 5 with a 
very high probability. There is no proof of this conjecture yet. 

Of course, one could carry out this process for homeomorphisms of the 
unit square by first generating at random those which leave vertical fibers 
invariant, and then those which leave horizontal fibers invariant. Eggleston 
[47] has shown that the group generated by these is dense in the group of all 
homeomorphisms which fix the boundary. Thus, one could generate such a 
homeomorphism by choosing some number of those which leave fibers 
invariant and then composing them. If one wanted to move the boundary, 
one could follow this by some homeomorphism of the boundary which has 
been extended radially. There are many questions here. For example, what 
is the expected number of fixed points? One can extend this process to 
higher-dimensional cubes. Whether the probability measure so generated 
would give each open set positive measure rests on the following apparently 
unresolved question in topology: 

For 2 < n, let G,, be the group of all homeomorphisms of H( 1”) 
generated by those homeomorphisms h such that h leaves all (n - l)- 



312 MAULDIN AND ULAM 

dimensional cubes parallel to some coordinate axis invariant and fix the 
boundary. Is this group dense in the space of all homeomorphisms of I” 
which fix the boundary? 

One could ask the same question for the group generated by all homeo- 
morphisms h which leave invariant all intervals Z parallel to some axis. 

Now, one could generate homeomorphisms of a planar annulus A = 
{(r, 0) : R, I r I R, > at random as follows. First, one builds a homeomor- 
phism of A which leaves each radial interval 8 = S, invariant. This is done 
by choosing at random a continuous map of { 0 : 0 I 8 I 2n) into H(Z), 
the homeomorphism group of the unit interval which has the same value of 
0 and 27r. Next one chooses a homeomorphism of A which leaves the circles 
r = ‘a invariant, or equivalently choosing at random a continuous map of 
{r : R, I r I R2} into H(T). Next one chooses a positive integer n with 
probability, say 2-“. Then one chooses n homeomorphisms of the first type, 
fi.. * * 9 f”, and n homeomorphisms of the second type, g,, . . . , g,,. Finally, 
set h = fi 0 g, of2 0 e-e 0 f,, 0 g,,. This will generate a probability measure 
on the space of all homeomorphisms of A. This measure will give each 
nonempty open set of homeomorphisms positive measure, provided the 
group generated by the set of all homeomorphisms of the first or second 
type is dense. But, this is true. One could generate twist homeomorphisms 
of the annulus in this fashion. These homeomorphisms either have a fixed 
point or else move some essential closed curve inside itself. What is the 
probability of each case? 

It would be very interesting to obtain similar results for the production of 
measure preserving homeomorphisms at random. 

For example, on S,, for each latitude choose a rotation of that latitude in 
a continuous fashion. This of course yields a measure preserving homeo- 
morphism of S,. Consider the set M of all such homeomorphisms together 
with some isometry T of S,. Is the group generated by M U {T} dense in 
the group of all measure preserving homeomorphisms of S,? In particular, 
what happens in case T has axis of rotation perpendicular to the 
north-south axis and angle of rotation 90”? What is the situation if we 
consider the group generated by M together with all isometries? 

How can the measure preserving twist homeomorphisms of a planar 
annulus be generated? 

IV.5 Random Cantor Sets and Continua 

Let us describe two methods of constructing a Cantor subset-a perfect, 
nowhere dense subset-of [0, 11. 

For the first method one first chooses an open subinterval of [0, l] at 
random, which is then deleted. In each of the two remaining closed 
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subintervals one chooses an open subinterval at random which are then 
deleted. Continue this process. 

For the second method, one first chooses a point xi in [0, l] which is not 
to be in the final Cantor set. Next, one chooses at random a,, 0 < a, < x1, 
and b,, xi < b, < 1. The open interval (a,, b,) is deleted. Now, choose x2 
in [0, ai] and x3 in [b,, l] at random. Then one chooses open intervals 
about x2 and x3 to be deleted. What is the distribution of the measure of 
these sets? What is the expected Hausdorff dimension? These processes 
have been investigated by Kahane and Peyriere [48] and more generally, by 
Mauldin and Williams [49]. 

IV.6 Random Topological Objects 

Consider the unit square [0, l] x [0, 11. Choose at random an open 
rectangle, (a, b) x (c, d), lying in the square which is then removed. 
Extend the edges of this rectangle dividing the square into eight remaining 
rectangles. In each of these, choose an open rectangle at random, each of 
which is removed. Continue this process. What are the topological and 
measure theoretical properties of the sets which remain? In the plane, do we 
get a Sierpinski curve and, in R3 a Menger curve? 

One can alter this process in many ways. For example, first let us choose 
an open ball at random which is then removed. At the n th stage, choose an 
open ball at random, but disjoint from those already chosen. Of course, 
what remains is a continuum. 

One could generate Cantor sets at random by the following procedure: 
First, fix a base of open balls B,, B,, B,, . . . . In each ball choose at random 
an open spherical shell in the ball with the same center as the ball. With 
probability one, the set that remains after the shells are removed is a Cantor 
set. What is the probability that the Cantor set is wild for this construction 
carried out in dimension 2 3? 

IV.1. Continuous Maps as Projections of Homeomorphisms 

We consider the problem of reconstructing a homeomorphism of “phase” 
space from the knowledge of one or more of its “projections.” For example, 
let f be a continuous map of [0, l] into itself. Under what conditions is 
there a homeomorphism h of [0, l] x [0, l] such that for each x E [0, l] 
there is a point p in the square such that for each n, f”(x) = proj,( h”( p))? 
Can one find such an h if the desired equation is to hold for one fixed x 
given in advance; or, for a dense set of x’s, etc.? Of course, one could 
consider this problem for general spaces, X X Y. In particular, what is the 
situation for the plane? 



314 MAULDIN AND ULAM 

Finally, when can h be constructed on X1 x . . . XX, if “projections” f, 
on Xj are given? We seek h such that if xi E Xi, then there is a point p 
such that for each n, f”(x;) = proj,(h”(p)). 

IV.8. Problem by Mycielski and Ryll-Nardzewski 

Let A and B be compact metric spaces and f a continuous map from 
A X B into C, the Cantor set. A game is played as follows. A subset E of C 
is given. Player I chooses a point a of A and then player II chooses a point 
b of B without any information about the choice made by I. Player I wins if 
and only if f(a, b) E E. Suppose there is a winning strategy for one of the 
players whenever E is both open and closed in C. Is there then a winning 
strategy for one of the players if E is a Bore1 set? 

V. REAL VARIABLES, FUNCTIONAL ANALYSIS, MEASURE THEORY 

V.l. Set Valued Measures 

Is there a non-trivial set valued map F defined on the family of all classes 
of subsets of N, the natural numbers, such that each finite or even 
countably infinite class is mapped to the empty set, and, if R, n R, = 0, 
then both F(R,) n F(R,) = 0 and F(R, u R2) = F(R,) u F(R,)? One 
can consider many variations of this problem including the degree of 
additivity of F, e.g., can F be made countably additive? 

V.2. Relative Measure 

It can be shown by the axiom of choice that for every set A of measure 
zero in the unit interval, there is a countably additive measure pa defined 
on the family of Bore1 subsets of A so that 

1. Pi = 1; 

2. pA({ p}) = 0 for all points p if A is uncountable; 

3. if A c B c C, then pc(A) = pLB(A)pCLC( B). 

PROBLEM. Let 2’ be the space of all closed subsets of I = [0, l] and 
B(Z), the Bore1 field on I. Is there a map ~1: 2’ x B(Z) + [0, l] so that 

1. for each F E 2’, p( F, .) is a probability measure on B(Z) and 
P(F,F) = 1; 

2. for each B E B(Z), p( *, B) is a Bore1 measurable map of 2’ into I; 

3. if A G B !G C, then p(C, A) = p(B, A)p(C, B)? 

In this problem we regard the space 2’ provided with the Hausdorff 
distance. 
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V.3. Invariant Measures in the Hilbert Cube 

Is there a measure IYI defined on all Bore1 subsets of the Hilbert cube 
such that if A and B are isometric, then m(A) = m(B)? Does the usual 
product measure have this property? What is the situation for I”? The best 
results to date have been obtained by J. Fickett, Studia Math. 72 (1982) 
37-46. 

V.4. Problems on c-Theorems and Theories 

The problems considered here concern the notion of stability in a wide 
sense. Broadly speaking we consider the following situation: Given a 
theorem with its hypothesis and conclusion, you might inquire whether a 
“small change” in the assumptions will allow a statement with a small 
change in the conclusion. In other words, whether a change in the assump- 
tion will produce a correspondingly small change in the thesis of the 
theorem. The problems surrounding stability arose at first, naturally, in 
problems of mechanics. Mathematically speaking, they concern the depen- 
dence in a solution of a problem on initial parameters or conditions. Often, 
one might desire continuity in bounded time, or, in some cases, arbitrarily 
long times. Similar problems arise of course in other branches of physics-in 
mechanics of continua, in field theories, etc. 

We shall not try to formulate a most general problem involving such 
ideas of stability but will instead proceed by a sequence of concrete 
problems starting with some in pure mathematics-analysis or even indis- 
crete algebraic situations-in many cases without regard to physical inter- 
pretations or consequences. Perhaps the most elementary such problem 
concerned the stability in the above sense of a classic functional equation. 
A problem formulated by Ulam around 1941 was as follows: 

The functional equation 

f(x) + f(Y) = fb + Y) 
can be replaced by the inequality 

If(x) + f(r) - f(x + Y)l < E. 

(1) 

(2) 
The question arose whether a solution of this inequality must of necessity 

be close to the solution of the strict functional equation above. Hyers’ result 
asserts that this is so for continuous or measurable functions [50]. More 
generally, even without the assumption of measurability, any solution of (2) 
will be close to certain solutions-perhaps a non-measurable one of the 
Hamel type. The result is true more generally in that the variables x, y 
need not be real numbers. They can be elements of a Banach space. 

More generally, one may ask, at first for compact continuous groups, 
whether an “almost automorphism” or endomorphism is necessarily close 
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to a strict such transformation. This does not seem obvious even for some 
classical metric groups (511. 

Or one may inquire about almost additive set functions-functions f 
which satisfy (2) when x and y are disjoint sets in some algebra or satisfy 

for x and y elements of some lattice. 
In a different type of generalization, one could study functional equations 

from this point of view. For example, one could ask whether functions 
satisfying an “almost algebraic” addition formula are close to the famous 
analytic functions which satisfy it exactly. 

In problems of geometry, one could, taking a rather special example at 
random, ask whether the theorems of Pascal and Brianchon on hexagons 
lying on tonics remain true, if the hypotheses on the intersections of three 
diametric diagonals in the same point replaced by an assumption that the 
three intersections be close together imply that the points are located on a 
circle which is “close” to a conic. 

Hyers and Ulam have studied the stability problem for isometric trans- 
formations. If we introduce a notion of “almost isometry” one might ask 
whether such a transformation is necessarily close to a true isometry. A 
theorem stating the “stability” of this notion is contained in the papers of 
Hyers and Ulam [52, 531. Partial results and a short survey were given by 
Gruber [54]. The problem was solved by Gervirtz [551 and extensions were 
given by Lindenstrauss and Szankowski [56].4 

Let us consider still another question of stability of a more geometric 
nature. Let c > 0. Suppose we are given two surfaces which can be mapped 
into each other in such a way that the curvatures and the inverses of 
curvature at corresponding points differ by less than 6. Are there then, 
surfaces within C(E) of the given ones that are strictly isometric in the sense 
of internal geometry? 

V.5. Natural Measures, Metrics and Pairs 

Let (X, 7) be a topological space. We can place stronger and stronger 
conditions for a measure ~1 to be a “natural” measure. 

A measure p is natural provided there is a metric pP compatible with the 
topology and a base 9’ = UzEp-, 9?‘, such that the sets in gn are congruent 
open sets of equal measure. 

We give the following example on S,. It is known that S, does not 
possess a u-finite measure which is invariant or even quasi-invariant under 
the group action [57]. However, S, does possess a “natural measure” in the 
above sense. Note that S, is a complete separable metric space in which 

4Nore u&led in proof. Related results have recently been obtained by J. Rassias, J. Approx. 
T/w~f~~. to appear. 
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every compact set is nowhere dense. Thus there is a homeomorphism h of 
the set of all irrational numbers, J, onto S,. 

Now define a new metric on S, by setting p(a, 7) = ]/z-‘(a) - h-l(~)]. 
This metric is compatible with the topology of S,. We set 

g”+([yg]) nl:O_ci<n-1). 

Certainly, the sets in .%?,, are open and congruent. Also $8 = U.Q?, is a 
base for the topology. Define p(E) = h( h - ‘( E )), where A is Lebesgue 
measure. Then p is a natural measure since the sets in 9’” have equal 
measure. 

Is there a natural measure p on S, so that the corresponding metric is 
complete? Note that we can construct a natural measure p on S, and 
corresponding metric p such that the group of rational translations is the 
group of isometries; can one do this so that the isometry group is uncount- 
able? 

What groups can be realized as the group of isometries of S, for some pP 
where p is a natural measure on S,? 

A natural pair for a topological space (X, 7) is a pair (p, p) such that p is 
a natural measure with corresponding metric p such that if v is a natural 
measure for X with corresponding metric d, the isometry group of X under 
the metric d is isomorphic to a subgroup of the isometry group under 
metric p. 

Does S, possess a natural pair? What about R”? 
One could say that a measure p on a topological space S is natural 

provided the group of measure preserving homeomorphisms is maximal or 
the semigroup of continuous similarity maps. A map f is a similarity means 
if p(A) = p(B), then y(f(A)) = p(f( B)). For example, it is easy to see 
that Lebesgue measure on [0, l] is natural in this sense. Is Lebesgue measure 
on [0, l] X [0, l] natural in this sense? 

V.6. Premeasures 

Can one prove in ZFC that the power set of the unit interval can be 
partitioned in families of sets, E,, 0 I a I 1, with the following properties: 

(1) If A is the disjoint union of { Ai}:“,,, B is the disjoint union of 

tBilEl and, for each i, Ai and Bi are in the same class .&, then A and B 
are in the same class, 

(2) If A E .$,, then for each p, 0 I /3 I (Y, there is a subset C of A 
such that C E .$a, 

(3) If A and B are in 2, and A c C c B, then C E I,? 
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One could continue in this manner toward a measure, e.g., 

(4) If N E &, and A E [,, then A - N and A V N are in E,. 

What is the situation for other cardinal combinations? 

V.7. Curiosities 

Is there an infinite array of O’s and l’s such that the frequencies of O’s 
and l’s are equal along every line? What is the situation if we allow some of 
the lattice points to be unmarked? 

V.8. A Problem by Ronald Graham 

What is the length of the shortest curve which cannot be enclosed in an 
open unit equilateral triangle? 

COMMENTS. It is perhaps surprising that this length is strictly less than 
1. When I first raised the problem at the 1963 Boulder Number Theory 
Conference, I had examples of polygonal curves of length 0.99 which would 
not fit into a unit triangle. In contrast, for the circle and square, any curve 
having length less than the diameter will fit. A few papers have appeared on 
this question, including one by Besicovitch [58], but it is still wide open. 
Straus solved the problem for the square but it has never been published. 

I offer $100 for the solution. 

V.9. Problems by Erdiis 

1. Is it true that if x, + 0 there is always a set of positive measure which 
contains no subset similar (in the Euclidean sense) to xi, x2, x3,. . . ? For 
finite sequences of course this is true. Komjath [59] has shown this is true if 
x, converges slowly to zero. The problem remains open. 

2. Is it true that there is an absolute constant c so that every set in the 
plane of area > c contains three points xi, x2, and x3 so that the area of 
the triangle determined by xi, x2, and xj is l? the best value of c may be 
given by the area of the circle whose inscribed equilateral triangle has 
area 1. 

Perhaps the following more general result is true. Denote by ck the area 
of a circle so that the inscribed regular k-gon in such a circle has area 1. Is 
it then true that if a measurable set S in the plane has area > ck, then one 
can find k points xi,. . . , xk in S so that the area of the convex polygon 
Xl,. . . , xk is l? These problems can of course be generalized to higher 
dimensions. 
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3. Let S be a planar set of positive measure. Is it true that there is a 
point x (x is in S) so that the set of distances d(x, y), y E S, contains an 
interval [60]? 

4. Let G be a denumerable complete graph. To every edge (x, JJ) of G 
there corresponds a subset M(x, y) of (0,l) of measure > C. Prove (or 
disprove) that there exists an infinite path so that the corresponding sets 
have a nonempty intersection. Several related problems stated in [61] have 
been solved by Fremlin. 

5. E. Klein asked: Is there an f(k) so that every set of f(k) points in the 
plane no three of which are on a line has a convex subset of k points? 
Szekeres and I proved 

2k-’ + 1 <f(k) s 2kkI; . 
( 1 

Probably f(k) = 2k-2 + 1. 
Is it true that there is an F(k) for which any set of F(k) points, no three 

on a line, contains k points which form a convex set which has none of the 
other points in the interior? F(4) = 5 is simple. F(5) = 10 has been proved 
by Harborth [62]. It is not known if F(6) exists. Horton [63] proved F(7) 
and F(n), n 2 7, do not exist. 

6. Is it true that to every c > 0 there is an rO(c) such that for every 
r Z- r&c) and for every set S of measure > cr* in the circle of radius r, S 
contains the vertices of an equilateral triangle of side > l? Straus added 
that it perhaps suffices to have the measure of S > cr if c is a sufficiently 
large constant. Is it true that to every c there is a k so that there are 
integers 1 = rl < r, < . . - < rk (r; = 2’ should be OK) so that if S is a set 
in ]z] < R and m(S) > CR*, then S contains the vertices of an equilateral 
triangle of side rj for some i, 1 2 i I k? 

The reason for the conjecture is that having no equilateral triangle of a 
certain size decreases the measure by a constant factor and if the sizes are 
sufficiently different they seem to be independent. 

VI. METRIC SPACES, GEOMETRY 

VI.1 Metrics on Spaces of Algebraic Objects of a Given Type 

What we wish to do is place a metric on the set of all finite objects of a 
given algebraic structure. Actually our metric will be on the space of all 
isomorphism classes of these objects. For example, a metric can be placed 
on the space of graphs or relations as follows. First consider two subsets A 
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and B of {l,..., N} x {l,..,, N } = N *, where N * is imagined to consist 
of all lattice points in the Euclidean plane with each coordinate a positive 
integer I N. Compute the Hausdorff distance between A and B, d&A, B). 
Now, this is not the distance between the relations or graphs that A and B 
represent since this present number depends on an arbitrary numbering of 
the points of the graph or given relation. Thus to obtain a distance we set 

d(G, G’) = min d,(A, B), 

where the minimum is taken over all pairs (A, B) such that the graph or 
relation determined by A is isomorphic to G and similarly for B. What is 
the expected distance between two graphs with n vertices? Set d, = 
max d(G, G’), where the maximum is taken over all G and G’ with n 
vertices. What is the rate of growth of d,,? 

Note that this distance is independent of N so we have defined a metric 
on the space of all finite binary relations or graphs. We note that this metric 
will make random graphs rather close to each other with great probability. 

A metric of the same type can be placed on the space of partially ordered 
sets, groups, lattices or geometries. On which of these spaces is there a 
natural metric? 

We can define a metric on the space of all metric spaces of the same 
cardinality as follows: Let (X, d) and (X’, d’) be finite metric spaces with 
1 XI = 1 X’ 1. For each bijection f of X onto X’ set 

q(K X’) = i c id(x, Y) - d’(f(x), f(y)) 1 
X..!JEX 

and define the distance p( X, X’) by 

p(X, x’) = mine/(X, xl), 

where f runs over all bijections of X onto X’. One can ask for the expected 
distance between two metric spaces of cardinality n, the rate of growth of 
this expected distance or of the maximal distance with n, etc. 

One can specialize this distance function and various questions to special 
classes of metric spaces. For example, let us consider T,, the space of all 
isomorphism classes of trees having n vertices. We define an “internal” 
distance on each isomorphism class by the “minimum path length” between 
vertices. 

For example we consider the six trees on six vertices: 

Bob Schrandt produced the following tables. 
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1. The distance table for Td. 
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Tl T2 T? T4 T, T6 
? 0 5 8 10 16 11 

T2 0 5 5 11 8 

T3 0 6 10 5 

T4 0 8 5 

Ts 0 5 

T6 0 

table which gives for each pair of trees the number of permutations 
720) which yield the minimum distance. 

T T2 T3 T4 T, T6 
r, 3 11 15 479 12 

r, 4 7 120 24 

? 16 120 12 

T4 240 24 

T, 120 

T6 

3. A table which gives for each pair of trees the maximum value of cf. 

Tl T2 T3 T4 T, T6 

T 25 24 22 18 21 

T2 23 21 15 20 

T3 20 14 19 

T4 12 17 

T, 11 

Again one can inquire about the rate of growth of the expected distance 
in T,, etc. Also, the computation of these distances between elements of T, 
quickly requires more power than our present computers have. Thus we are 
interested in obtaining bounds on some “Monte Carlo” techniques of 
estimating distances. For example, given two trees on n vertices, let us 
compute all the distances between two subsets of k vertices in the two trees 
where k I n and let us compute the average distance. How does this 
average distance compare with the defined distance? Of course, another 
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random method would be to choose two subsets of size k from the trees at 
random and calculate the distance between these two subsets. 

VI.2. Natural Metrics 

Let X be a topological space. A metric d on X which is compatible with 
the topology of X is maximal means that the isometry group Z(d) is 
maximal. This means that the isometry group of X under any other metric 
on X is isomorphic to a subgroup of Z(d). Kallman and Mauldin [64] have 
shown the following: 

1. There is a maximal metric on the Cantor set K or (0, l}” with the 
product topology and under such a metric K cannot be isometrically 
embedded in W” for any n. 

2. There is a maximal metric on K under which K can be embedded 
in Hilbert space. 

3. With a little work one can prove that the usual metric Ix - y] is 
maximal for the unit interval on W. 

4. The usual Euclidean metric is maximal on S2, the unit sphere in W 3. 

5. On the other hand, there are two metrics pi and p2 on tR2 such that 
for any metric p on W 2 yielding the usual topology, Z(p) is isomorphic to a 
subgroup of Z(p,) or Z(p,). 

The existence of a maximal metric on the space of irrational numbers 
seems to be related to the question posed by Schreier and Ulam in Problem 
95 of the Scottish Book, which essentially asks whether every complete 
separable metric group can be abstractly embedded in S,. If the answer to 
this question is yes, then one can obtain a maximal metric on the space of 
irrationals (or equivalent S,) by simply taking a left invariant metric d on 
S,. This metric is maximal. This follows from the fact that S, is a 
subgroup of Z( d ). If r is any compatible metric on S,, then Z(Y) is a 
subgroup of the isometry group of the metric completion of S, under the 
metric r, and the isometry group of a complete separable metric space is a 
complete separable metric group. 

Is there a natural metric on the nth symmetric product of the interval? 
Certainly this space is metrizable [65]. 

As a matter of fact, Kallman and Mauldin noted that there is a natural 
metric on the space of all closed subsets of [0, l] provided with the Vietoris 
topology. According to a result of Curtis and Shori [66] we are asking 
whether there is a natural metric on the Hilbert cube. Let X = IIG,, where 
each G, is the unitary group on a complex n-dimensional Hilbert space and 
each such group is some G,. Thus x is a compact metric group such that 
every compact metric group is isomorphic to a subgroup of X. Let p be a 
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left invariant metric on X. Then X is a subgroup of I(p). Since the 
isometry group of a compact metric space is a compact metric group, p is a 
maximal metric on X. But since each G, is a Peano continuum, X is 
homeomorphic to the Hilbert cube. 

Another notion of maximality of a metric d is that there be no compati- 
ble metric r such that I(d) is isomorphic to a proper subgroup of I(r). 
How is this notion of maximality related to the first one? 

Finally, let us mention two other notions of maximality. A metric d 
could be said to be maximal provided the semigroup S(d) of all similarity 
maps of X into X is maximal. We consider then two notions of maximality 
of S( d ). First, if r is compatible metric, then S(r) is algebraically isomor- 
phic to a subsemigroup of S(d). Second, there is no compatible metric r 
such that S(d) is isomorphic to a proper subsemigroup of S(r). How are 
these four notions of maximality related? 

VI.3. Distances or Metrics in the Space of AN Graphs or Relations 

One sensible such metric is obtainable as follows. Given two graphs, i.e., 
subsets of all pairs of integers from one to N located on the lattice points, 
i.e., points with integer valued coordinates ranging from one to N, we may 
compute the Hausdorff distance between them. This of course depends on 
an arbitrary numbering of the points of the graph or the given relation. 

We now get rid of the arbitrariness by considering not just the given sets 
A and B representing the two relations, but also two classes consisting of 
all possible relations of the two sets by all possible numberings of the given 
points. 

We now use the Hausdorff idea iterated twice. This will make two 
random graphs rather close to each other with great probability. We can 
consider similarly a definition of distance between two families of subsets 
of a given set. ErdGs comments: 

Let IS1 = n, and A,, A, ,..., A, be a maximal family of sets so that 
d(Aj, Aj) > n/10. It is well known and easy to see that 

2nwcd > t > p-Cl). 0) 

No doubt 

t = p(l-c+o(l)) 

for a certain c, but I think this is not yet known. Thus from (1) there are at 
least p-rl) families of sets so that the distance between any two is 
2 n/10. Since if A, occurs in one of the families and not in the other, their 
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distance is at least n/10. Now that we have a, not too bad, lower bound let 
us try to get an upper bound. Suppose that there are f(n) families any two 
of which have distance > n/10. This means that one of the families 
contains a set A so that all the sets of the other family have distance 
> n/10 from A. Now apply this to all pairs of our families. Then it easily 
follows that there is a set A, and more than f(n)/2” families so that none 
of these families contain a set whose distance is I n/10 from A,. Hence- 
forth, we only consider these families. Repeat this process k times. Then we 
get k sets Ai, 1 5 i I k, every two of which have distance > n/10 and 
there are 2 f(n)/2k” families so that every set occurring in these families 
has distance > n/10 from all of the A’s. Thus by (1) if we repeat this 
process 2 n(1-C2) times we arrive at a contradiction with (1). But this means 
that 

which is a reasonably good upper bound since we have 

22”“-‘1’ <f@) < 22”“-‘2). 

VI.4. Natural Metric for hrentz Group 

Let E and T be metrizable topological spaces. For each metric u on E 
and metric T on T, consider the set of all cones in E X T. Each point 
(x0, to) E E X T defines a cone by 

c(xm to) = {b, t) : 4x, xl)> = 7(t, to)}. 

The Lorentz group associated with the metric u and r is the group of all 
transformations f of E x T into itself which takes cones to cones and such 
that if (s;, t,‘) = f(s,, t;), for i = 1,2, then 

UY%v $2) - T2(t*, t2) = u2(s;, 3;) - T2(t;, t;). 

Do there exist natural metrics u and 7 on each E and T, respectively, for 
the Lorentz group L(u, T)? In other words, metrics u and 7 such that 
L(u, 7) is maximal in one of the senses given in problem VI.2. 

If u and 7 are maximal for the Lorentz group, are u and 7 maximal 
metrics on E and T? 

In particular, what is the situation when T is R’ and E is either W 2 or 
some n-dimensional torus? 



MATHEMATICAL PROBLEMS AND GAMES 325 

VI.5. Borsuk’s Intrinsic Metric [68] 

Let X be a metric space with metric p such that for every two points x 
and y there exist arcs in X of finite length joining x to y. Let px(x, y) be 
the lower bound of the lengths of all such arcs. Borsuk introduced this 
metric. If for every sequence { yk}rzl converging to x, lim, _ 03px(x, yk) = 

0, then the topology induced by px in X coincides with the topology 
induced by p. Is it true that px is a natural metric on X? This is true if X is 
the reals, the circle or S,, the two-dimensional sphere. 

VI.6. Analytic Sets and the Visual Hull 

It seems that the existence of many objects can only be proved with the 
aid of the axiom of choice. This is perhaps best illustrated by the results of 
Solovay [69] concerning the existence of non-measurable sets. However we 
can also estimate the complexity of a construction by the lowest possible 
descriptive character of such an object. Thus a non-measurable set cannot 
be an analytic or coanalytic set. This in itself indicates that the construction 
of non-measurable sets cannot be very explicit. We raise a number of 
questions concerning this notion. 

There is a subset of the Euclidean plane which meets each straight line in 
exactly two points. Can such a set be analytic? It is known that such a set 
cannot be the union of countably many compact sets [70]. One can prove 
that every such set is totally disconnected. 

Let M be a maximal set of pairwise orthogonal probability measures on 
[O,l]. Can M be an analytic set in the weak topology on the space of 
measures? 

Let E c IR”. For each set & of subspaces of R”. Let H,(E) be the 
largest subset of R” which includes E and such that H,(E) has the same 
projection as E does for each M E A. Thus H,(E) is a visual hull of E 
[71]. If E and AZ are analytic (or Borel) sets, must H,(E) be analytic or 
Borel? What if A is u-compact? Some partial results are given by Larman 
and Mani [72]. 

VI.7. Random Metric Spaces 

We will define a metric d of diameter I 1 on the set of all positive 
integers. 

Let d(l,2) be a number chosen at random from the open interval (0,l). 
Suppose n is a positive integer and the numbers d( i, j), for 1 I i, j I n, 
have been determined such that the numbers obey all the axioms of a 
metric whenever all the quantities in question have been defined. Choose a 
permutation s of (1,. . . , n} at random and a number d(a(l), n + 1) in the 
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open unit interval at random, Suppose 1 < j 5 n and the function d has 
been extended to all pairs (n(i), n + l), for 1 I i < j, and suppose that d 
again satisfies all the axioms of a metric whenever all the quantities in 
question have been defined. 

To define d(lr(j), n + l), we need the inequalities 

d(w(j), n + 1) I d(r(i), v(j)) + d(a(i), n + l), for 1 s i ~j, 

(1) 

d(s(i), n + 1) I d(n(i),n(j)) + d(n( j), n + l), for1 lilj, 

(2) 

and 

d(di), r(j)) 5 d(s(i), n + 1) + d(s(j), n + I>, for 1 ~2 i -cj, 

(3) 

to all hold simultaneously. For these inequalities to be satisfied, it is enough 
to have for all i,, i,, 1 I i,, i, < j, 

db(id9 n + 1) - d(did,di)) 5 d(lr(i,), j) + d(r(i,), n + 1) (4) 

and 

44hA dj)) - 4GA n + 1) s d(s(i,), v(j)) + d(s(i,), n + 1). 

(5) 

We can then choose d(n(j), n + 1) at random from the interval with 
left-hand end point the maximum of all quantities on the left-hand side of 
(4) and (5) and with right-hand end point the minimum of the number one 
and all quantities on the right-hand side of (4) and (5). Now, to see that (4) 
holds, we already have 

d(n(i,), n + 1) I d(lr(i,), n(i,)) + d(r(il), n + 1) 

s d(did, n(i)) + d(di,), q(i)) + d(n(i,), n + l), 

since d is defined for all quantities which appear. But, rearranging we have 
(4). Inequality (5) can be obtained similarly. 

Let (X, d) be the separable space obtained by completing the metric d. 
We note that with probability one this metric space is dense-in-itself. What 
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is the probability the space is connected or infinite dimensional? There are 
of course any number of questions concerning these spaces. 

VI.8. The Copernicus Problem 

The general idea is as follows: We consider properties of a number of 
curves in Euclidean space viewed from a moving system of coordinates. An 
example will indicate the type of mathematical questions which could be 
studied. Suppose several curves are given, considered as trajectories de- 
scribed in time by points moving on these curves. Is it possible by viewing 
these trajectories from a moving system of coordinates to make them 
“simpler”? Indeed, the Ptolemaic motions on epicycloidal trajectories as 
viewed from the earth will appear simpler if one assumes a motion of the 
observer around the sun. An example of the question could be: Given say, 
four closed curves, described by uniformly moving points, can one find a 
motion of the system of coordinates, by which we mean an arbitrary motion 
of the origin, and an arbitrary rotation of the axis in time so that in this 
system all the given curves would appear to be convex? More generally, 
what are the invariants of a system of n trajectories for an arbitrary motion 
of the system of coordinates? It is clear that for n = 3 there will be no 
interesting properties since we may assume the origin of the coordinate 
system to be located on one of these points and the rotation of the axes 
such as to have one of them always pass through the second point. In this 
system one point will be at rest, the second will move up and down on one 
of the axes and the motion of the third one may appear to be quite simple 
by suitable rotation of the system of axes. 

We should assume that the motion of the coordinate system should be 
continuous but perhaps otherwise arbitrary. What are the properties of 
surfaces, or more generally sets other than trajectories with respect to a 
general group of transformations of the coordinate system? We require, of 
course, that the coordinate system be in each instant of time a Euclidean 
rigid form. 

What is a space-time formulation generalizing this mathematical puzzle 
above? 

VII. PHYSICS AND BIOLOGY 

This section is based upon some sketches and general speculations of 
Ulam. Some of the topics planned to be discussed here were presented in 
[73]. Some of his general ideas are also mentioned in 19, 741. Here are some 
of his general thoughts for the readers’ perusal: 
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Is an “experimenturn crucis” possible-an experiment to decide the 
finiteness or the infinite nature of a true physical model? Or, is this question 
undecidable? Which is the more convenient thing to assume-the role of 
“convenience” and simplicity for a perhaps only temporary description; cf. 
the discussion in Poincart of the invariance or conservation of energy? Is it 
however possible that, for example, one could see a mirror type or isomor- 
phism of a physical system in a part of itself which is similar or a 
constituent? Would that be a hint then of a true infinity? 

Discuss the differences between mathematics and theoretical physics. The 
inverse of mathematical procedures: in physics, given “facts,” find their 
“bases” or “laws.” In mathematics we assume a base, that is to say, axioms, 
and we derive facts, i.e., theorems. That is an inverse procedure. 

Develop games for various statistics- the Planck distribution, Fermi- 
Dirac statistics, etc., and statistical mechanics in general. Investigate the 
fundamental role of the “identity” of different particles, namely which is 
the primitive notion: analog of points or sets of points, that is to say, 
unordered collections. 

Can one attempt to axiomatize the idea of experiments (sic!)? More 
generally, how to define heuristic approaches in physical sciences or “ob- 
servations” of theoretical experiments or “experiments in theory.” 

VII.l. Pair Production with Conservation, Collision Transformation 

Consider a large number of particles to each of which has been assigned 
a positive number, for example, energy. Pair the particles at random. Each 
pair produces a new pair and each particle of the new pair is assigned new 
numbers at random with the constraint that the sum of the new numbers 
must be the sum of the numbers assigned to the old pair. 

Iterate this process. It seems that for a number of fixed random methods 
U of redistributing the numbers (the energies) there is a limiting distri- 
bution G(U) such that for each initial distribution P of the numbers, the 
iterates T(P), T( T( P)), . . . converge to the distribution G(U). 

We consider two examples of redistribution. For the first method we 
assign to each of the new particles one-half the sum of the energies of the 
“parents.” For the second method, the new distribution is generated by 
choosing a number tu from [0, l] according to the uniform distribution, and 
then assigning to the first new particle (Y times the sum of the old numbers 
and (1 - o) times the sum to the second particle. 

For the first method, it is clear on physical grounds that the limiting 
distribution G(U) should be point mass at 1. This follows from the strong 
law of large numbers: Since if u is the distribution on R, with first 
moment 1 (normalized total energy), then T(p) is the distribution of 
(Xi + X,)/2, where Xi and X, are independent with distribution /.L Thus, 



MATHEMATICAL PROBLEMS AND GAMES 329 

T”(p) is the distribution of (Xi + * . . +X,.)/2”, where Xi,. . . , X,, are 
independent with distribution ~1. Therefore, T”(p) converges to point mass 
at 1. 

For the second method Ulam [75] conjectured on the basis of some 
computer studies that the limiting distribution G(U) is the exponential 
distribution. It can be seen that the exponential distribution is the only 
distribution of energy which is fixed under this method of redistribution 
and T”(P) converges to this distribution at least for all distributions P on 
R, such that all moments exist [77]. 

Ulam also believed there is a fixed limiting distribution in case the law of 
redistribution is given by always assigning sin*u times the sum to the first 
new particle and the remainder to the other. Blackwell and Mauldin [77] 
proved this. 

For each given law of redistribution, L, is it true that there is a 
distribution G(L) such that for any initial distribution of energy P, the 
iterates T(P), T(T( P)), . . . converge to G(L)? In case G(L) exists, what is 
it? In case G(L) exists, we will call it the collision transformation of L. 
(G(L) exists and is an attractive fixed point [77].) 

More generally, we have associated with each particle a point in a space 
X. X could be the space of pairs of energy and momentum, for example. 
We are given an invariant of the system-a map g: X x X + X. The 
particles are paired at random. Each of the new particles is assigned at 
random new labels in X with the constraint that the g-value of the pair of 
new labels must be the g-value of the pair of old labels. Again, for each 
given law of redistribution of labels L, does the collision transform G(L) 
exist? 

VII.2. Natural Metric in Lorentz Space 

Some problems on the “natural” group of isometries in the four-dimen- 
sional time-space Euclidean version: 

One can consider straight lines in this space by presenting life lines of 
points moving with constant velocities. The question arises of a metric in 
the space of such lines restricted, in the relativistic case, to velocities less 
than c. In the relativistic case one could take as a distance between points 
the usual Minkowski expression. 

In the Lorentz space we would like the distance between life lines to be 
invariant under the usual method and perhaps more. 

In general, there seems to be no good simple generalization of the 
Lorentz method for a wide class of “special relativity” type geometries. 

But, even in the ordinary three-dimensional space the problem is to 
define a metric which would be invariant under ordinary isometries of the 
point-space period. And perhaps under an even larger group? 
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One might try to define the Hausdorff formula using a stereographic 
projection Hausdorff distance of acquiring a compact space which underlies 
the space of objects for which we want to define a distance. 

VII.3. Random Walks 

Consider a random walk in one dimension with step n of size + n * with 
equal probability. It is possible that the walk passes through every integer. 
In fact, with probability 1 the walk passes through every integer infinitely 
often. But, what are the average relative frequencies between A and /, 

. 4th’) 
A& L’(N) ’ 

where j(N) is the average number of times the walk is at integer j in the 
first N steps? Also, consider this problem with step k n3 or *f(n). 

If we consider the walk with step n equal to 0 or n* Graham has shown 
that the walk can pass through every integer 2 128. In other words every 
integer 2 128 is expressible as the sum of squares such that no square is 
used more than once. He also showed that for cubes, every sufficiently large 
integer is so expressible. 

For f(n) = fn3, we have -(n + 1)3 + (n + 2)3 + (n + 3)3 - (n + 4)3 
+ (n + 5)3 - (n + 6)3 - (n + 7)3 + (n + 8)3 = 48. So, if the integer k 
occurs, then every integer of the form k + 48j, j = 1,2,3,. . . , also can 
occur. All we need check is that the integers from 0 to 47 occur. 

VII.4. Random Walks Again 

Consider a random walk of a point on the line starting at 0 and with step 
n of size f l/2”. Then the final position of the particle is uniformly 
distributed over [ - 1, 11. 

Next, consider a random walk of a point on the line starting at 0 and 
with step n of size X, = f l/n with equal probability. Now, with probabil- 
ity one, CX,, exists and the limiting distribution has variance a*/6. What is 
the limiting distribution? 

Consider a random walk with X0 = 0 and X,, = fn with equal probabil- 
ity. Is it true that with probability one the walk goes through every integer 
infinitely often? Is it true that the distribution of S,, = Xi + . . . +X,, is 
approximately uniformly distributed over [ - l/ fi, l/ fi]? 

In general, consider a random walk ( Xn}r’i, with X, = kf( n) with 
equal probability. Then for almost every walk is it true that 

(‘I :if n ._ 
1 lcl & ( w  ) exists? 
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#({i 5 n: S,(w) = k}) 

(2) ,,‘if #({i 5 n: s,(w) = 1)) exist? 

Next, consider a random walk in R2 with X0 = (0,O) and X, = (0,1/2n), 
(0, - 1/2n), (1/2n, 0) or (- 1/2n, 0) with equal probability. Then the final 
position of the particle is uniformly distributed over the /, unit ball 
I<-% Y): 1x1 + IYI s 11. 

More generally, consider a random walk in the plane where step n has 
magnitude f(n) and the direction is chosen according to a given distribu- 
tion function on the directions-on the unit circle. Is it true that for almost 
every walk 

(a) nlimm t ,t Xi ( w  ) exists? 
r-l 

(b) the average amount of time spent in a sector exists? 

Consider the relative motion of two or more random walks with red 
particles and black particles starting at different points in some dimension, 
with each obeying one of the rules given earlier in this section with some 
additional rules concerning their interaction. For example, a red and a 
black particle annihilate each other if they come within distance c 2 0. Or 
more generally, some rule is given governing the production of elements 
when two particles come within a specified distance. 

Finally suppose we begin with a distribution of points at time t = 0 on 
the unit sphere. Consider various specified walks which the particles per- 
form simultaneously with various rules governing possible constraints, e.g., 

Rule A: A particle cannot move if all possible positions are occupied. 

Rule B: The particle moves, but there may be more than one particle 
occupying a given system. 

What are time n distributions of density of particles and the limiting 
behaviour? 

Let g=R2+R’ and suppose we are given k angles 8,, . . . , ek, 0 I 
8, < 2a. Fix e > 0. For points p and q of R2 we define a “deterministic” 
distance p,,,(p) between p and q by setting the distance equal to the 
smallest value of k such that qk . . . q,(p) is within E of q (in the 
Euclidean norm) where q(x) = x + g( x)e”l. 

We also define a “probabilistic” distance pd, ,( p, q) by setting it equal to 
the positive integer n such that random walk starting at p has greatest 
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probability of being within c of q after n steps. The walk proceeds by 
choosing one of the transformations q at random at each step. 

Conjecture. There is a map f,: N --) N such that p,,,( p, q) = 

m,, A P* 4)). 

VII.5. Symbolic Dynamics of Billiards 

Consider a closed convex curve in R2 and a light ray emerging from 
some point on the curve into the interior of the curve. We associate with 
this motion a sequence of the symbols R, L and C as follows: At each time 
that the ray hits the curve we look into the region from the outward normal 
at the point. We write down an R if the light ray leaves the point going to 
the right. Similarly we write down an L if it leaves going to the left. We 
write down C if it leaves along the inward normal. What are the possible 
sequences? What are the possible periodic sequences? 

One can of course model the system by points on a planar annulus [78]. 
With each point of the annulus we have associated a symbolic sequence. It 
would be interesting to study the behaviour of the sequences as one moves 
around the annulus. 

It is true that for each point the arithmetic density of the number of R’s 
exists? What is the behaviour of this density? What is the expected density? 

Consider a rectangle with sides of lengths a and 6. For each angle (Y, 
0 < (Y < n/2, shoot a light ray out from one fixed corner at angle (Y and 
associate with (Y the symbolic sequence of R’s and L’s. How does the 
frequency of R’s vary with cy? 

VII.6. Some Notes about the Brain (Synopsis of Peripheral Items) 

Notions of memory, not the physiological memory which is not at all 
known, but the schematic or combinatorial nature of memory-ideas of 
holographic or multistored items. The duality between holographic or 
Fournier series type of notation and point notation, whatever the points are 
-individual sets of points, graphs or trees, general multigraphs. 

1. Recognition: mention and description of report with Schrandt 
about recognition of letters, speculation on generalizing it [82, pp. 150-1511. 

2. Building of a network or interaction between elements of memory in 
cells or in sets of cells. 

3. Analogies with existing computers and their codes. Outline of 
scheme for parallel work [82]. 

4. Molecules, autonomous nervous system recognition of immunology. 
5. Access to memory, various schemata, i.e., astronomers find new 

stars by flicking sequences of photographs of the sky. 
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6. Codes or distances between encephalographic data. Detailed discus- 
sion of distances between pictures. 

a. Distances between codes, one-dimensional pictures, 

b. Hausdorff distance between pictures on screens, in a plane or 
even three-dimensional space by the sense of touch. 

VII.7. Hypotheses concerning the Brain 
(From Ulam’s remarks at Rockefeller Neurosciences 

Institute/August, November 1983) 

One fragment of the problem of recognition, e.g., specifically visual 
impressions or “pictures,” is their various codings in the brain. Everything 
that follows is relative to a preferred size and orientation. 

Hypothesis I The brain performs deformations of the retinal input and 
compares the deformed schemata with a given storage or several storages 
contained in the memory. These processes must be performed extremely 
fast. In fact one can try to estimate the speed of the neuronal operations 
from the time taken by selection of one shape among a very great given 
number or say finding a subpattern in a complicated maze. 

Hypothesis 2 is an evolutionary or individual “micro evolution” in the 
brain by adapting its functioning to the set of previous experiences with a 
“Darwinian” process of establishing habits of inferences by a probabilistic 
or statistical mechanism from its history. 

Hypothesis 3 is that a picture could be thought of as an analog of a 
“photograph,” that is to say a set of states of groups of neurons or of 
impulses. How many could be stored? There are about 1014 connections. In 
addition, sets of such connections corresponding to impressions need not be 
disjoint, i.e., a neuron may initiate in connection with some other neurons 
different sets of impulses. A temporary or very short memory may initiate 
many comparisons. They may be organized in clusters. A class of impres- 
sions we may call “concept.” A collection of classes of concepts we may call 
“ ideas,” etc. 

Hypothesis 4 deals with the notion of distance between pictures or their 
codes in the memory. We hypothesize that there are dozens of metrics 
between these coded pictures. For example: 

1. A Hausdorff distance. 

2. Hausdorff f a number of deletions or additions of elements to the 
two pictures which we compare, say the square root of their number is 
added to the Hausdorff distances. 

3. A distance is obtained by subdivision of the screen on which the 
pictures are compared by a weighted system of coordinates, e.g., the one 
used by Schrandt and myself. 
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4. The minimum number of “errors” necessary to bring one picture 
into the other. 

5. A distance between codes analogous to the distance I have defined 
for linear sequences, DNA codes, etc. 

6. The distance between “features,” e.g., we treat lines as elements or, 
even more generally, a number of given types of curves as points and use 
one of the above distances between those. 

7. Unions of pictures, that is, the Boolean union of sets, e.g., just the 
decomposition of each of the two pictures into two patterns which are 
individually compared, etc. 

Hypothesis 5 is that there is a physiological or anatomical mechanism to 
measure such distances, i.e., at least to scrutinize and decide whether they 
are sufficiently “small.” With a discernment that none of them is suffi- 
ciently small the new picture or impression is put into the memory(?). 

VII.8. Genealogical Distance 

We begin with an initial population consisting of n asexual individuals. 
This population mates and changes at time t = 0, 1, . . . according to the 
following rules: 

1. A fixed proportion p of the population which is unmated at time t 
mates and forms a couple at another time t. 

2. There is a fixed distribution function for all couples having 0, 1,2,. . . 
offspring. This distribution function has a finite expectation. Also there is a 
fixed distribution for the first offspring to appear at time n units after the 
formation of the couple, and for the second offspring at time m units after 
the appearance of the first, etc. 

3. Once a couple forms, it exists until the last offspring is produced. 

What is the expected length of ancestry of an individual who exists at 
time n? What is the expected difference in the lengths? 

One can form a number of interesting metrics on this population. Some 
of these and their properties are given in papers by Mycielski and Ulam [79] 
and by Kahane and Marr [80]. One could inquire about the properties of 
these metrics in the framework. 

VII.9. Items from Discussions with Mycielski on the Building of Memory 
in the Brain or the Nervous System 

1. Distances between sets (i.e., pictures on a screen-the retina) the 
class of “equivalent” sets obtained by enlargement, by small rotations and 
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small “ wigglings.” The distance between such, obtained by either Hausdorff 
metric, Steinhaus metric, and/or the distance between such obtained by 
Rademacher-Walsh coefficients and by a “dual” method that is using the 
first few coefficients in a series development and a small number of 
individual points. 

2. “An electronic way” to compute such distances, perhaps by ad- 
dition of points modulo 2, and registering total luminosity, in the case of 
S(?). Distance-find the way of realizing the other distances through the 
parallel boards behind the retina, processing it. 

3. The role of composing transformations or, more generally, relations 
on sets. The idea is to use a small number of given functions or relations to 
obtain approximations to “arbitrary” pictures. This is an economic way to 
memorize a great number of sets, by remembering the sequence of ap- 
proximating transformations. Is there a mechanism, in the nervous system 
or in the brain to effect such? 

4. Classes of such collections of pictures. ..How to devise distances 
between them perhaps by coding linearly each set-and iterating the 
Hausdorff distance? 

5. The operation of “gluing” a number of pictures, say four, and 
remembering their addresses, that is to say coding by simple logical or 
Boolean operations. 

6. The problem of taking representative examples from classes of sets 
and having those in the memory-either at random, as Mycielski likes, or 
from the most economical finite number approximating the class or defining 
the “center” of mass of such collections. The problem of what the most 
economical procedures for such are. 

7. The operator of “consciousness” that is in a subconscious branching 
process of search and analogy finding, selecting a one-parameter path 
through these which, on the one hand, is determined by the branching 
process and on the other hand, directs it by a conscious decision sequence. 

8. The method of search through a tree analogous to the 
Mycielski-Ehrenfeucht procedure for “learning.” 

9. The mathematical problem of the analogy to measure theory: in- 
stead of attaching real numbers to sets, we want to attach single sets to 
various classes of sets so that the empty set would be attached to classes 
composed of a single set. The correspondence should be additive, that is to 
say, to a union of classes there should correspond the union of the 
corresponding sets and finally, if T is an arbitrary point transformation on 
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the fundamental space, then the generated transformation of classes of sets 
should have the generated individual sets correspond to them. 

VII.10. Notes on Organization of Memory and the Tree of Associations 

The number of neurons in a human brain seems to be of the order of 
10”; the number of connections from each to the others, of the order of 
105. Very roughly the number of connections then, from an average 
element, is of the order of fi, where N is the number of elements. These 
elements seem to be much more than mere “on/off’ or similar switches. 

It seems manifest that any given impression or “ thought” is deposited in 
a considerable number of different places. This seems particularly apparent 
when one tries consciously to remember the name of an object or person. 
The conscious search, for example, tries to find the name under a beginning 
letter or by recollecting whether the name is short or long, or whether it is 
in English or some other language, or it searches the number of syllables, or 
the appearance of consonants in the middle. Often remembering the first 
name leads to the recollection of the last name, etc. 

One can hypothesize that a metric, given an idea of proximity or 
similarity or analogy, is used for locating the deposited information. Indeed 
this measure of similarity must be akin to the metric which we used for the 
space of DNA codes. 

Roughly speaking in a very general situation the distance is expressed by 
the number of steps leading from one mental picture to another. These 
steps for the sequence of symbols in the DNA code consisted of replacing 
one symbol by another, erasures, or insertions, or, more generally, the 
application of some deformation stated in advance. 

An interesting feature of the organization in the nervous system is, 
however, that a number (20?) of metrics are used, corresponding to the 
different classes of location in which the sought for impression is located. 
The organization then would conjecturally involve a number of different 
metrics in the same network. One could speculate about the way in which 
the neural system can produce, working simultaneously in parallel, a great 
number of stored pictures together with a number of programmed small 
deformations in order to find the location for a new impression or a 
“question.” 

We can take as an example the problem of how to encode a great 
number, say 104, of numbers which are written in a binary (or decimal) 
system if we imagine each to be written on the circumference of a circle so 
that there is no clear beginning or end to arrange them lexicographically. 
This is so because forgetting the initial digit would be completely mislead- 
ing. In fact the similarity of two numbers each of forty or fifty digits would 
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be of a global nature defined by a metric involving the “morphology” of the 
sequence. 

Presumably the connections are not completely randomly arranged but 
are largely between clusters of receptors and emitters and, in the building 
up of a memory of new impressions or experiences, they are placed in the 
clusters according to the metric, or distance proximity, with other parts of 
the cluster. 

We shall enumerate now some of the possible metrics of which, as 
conjectured earlier, there might be a sizeable number of different ones. 

(a) The metric used for linear codes in DNA. In the simplest case 
depending on the number of erasures and substitutions to make two linear 
sequences of symbols (i.e., digits), on a circular arrangement. A similar one 
can be defined for two-dimensional pictures consisting of symbols of a 
number of letters or colored dots. This refers to a visual distance or 
similarity. 

(b) A number of cw-tuples of the same symbols consecutively where we 
imagine (Y to be a small integer, say 3, or 4, or 5 . . . . 

(c) For linear arrays of O’s and l’s we may imagine them to be coding 
integers in a binary development and the distance between two of them can 
be the relative complexity as discussed elsewhere. One can generalize this to 
two-dimensional rectangular arrays of O’s and 1’s. 

(d) The simplest distance between sequences could be the comparison 
of the number of occurrences of the same symbols irrespective of position. 

(e) We may imagine that we count the number of identical first 
differences between successive symbols or even second differences and 
compare these sequences according to some of the indicated metrics. This 
would perhaps play a role in the auditory memory of sequence of tones or 
sounds. 

(f) We can consider for two sequences the number of motions of each 
symbol into other places to make the two identical. One may count not only 
the number but the sum of all the distances in those motions operating on 
one or both sequences. Similarly for two-dimensional pictures consisting of 
a number of dots of several colors. This distance is in a way analogous to 
the definition of the minimal work in the problem of “deblais and remblais.” 

(g) Possibly, in a simultaneous or parallel scheme, a new picture or 
arrangement is presented to several clusters and placed where its distance 
from other members of this cluster is small. If none of this takes place we 
have a “new” element in a new potential cluster in vacant places. Whether 
this is registered permanently would depend on repetition of this or very 
similar first impressions. For such a scheme to function, one would need to 
have an arrangement which in some way plays the role of a counter. 
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VII.ll. On the Evolutionary Importance of Mathematics as a Biological 
Force as a Way to Perfect the Brain of Mankind and on Understanding 
some Mental Processes 

This is a philosophical view which Ulam often mentioned but which we 
did not develop. 

VII.12. A Distance between Two-Dimensional Codes 

Suppose we are given an n X n matrix A of O’s and l’s and an m x m 
matrix B of O’s and 1’s. We are allowed to change an entry in such a matrix 
to a blank. If we have altered A by such changes to A’ and B to B’, we then 
calculate a number pl(A’, B’) as follows. 

First we form the subset (pi of [l, n + 11 x [l, n + 11, which is the union 
of all squares [i, i + 11 X [ j, j + l] such that a;/ = 1. Similarly, we form a 
subset B, of [l, m + l] X [l, m + 11. 

Set pl(A’, B’) = min{ pH(T(al), B,)}, where pH is the Hausdorff dis- 
tance between T(q) and B, and T runs through all translations of the 
plane which take lattice points to lattice points. We also calculate 
po(A’, B’) = min{ pH(T(aO), B,)}, where cY,(resp. B,) consists of the un- 
ion of all intervals [i, i + 11 X [j, j + l] such that aij = O(resp. b,‘i = 0). 
Finally, we define the distance between A and B to be the minimum of 
k, + k, + p,,(A’, B’) + pl(A’, B’), where k, is the number of blanks in the 
matrix A’ and k, is the number of blanks in the matrix B’. 

VII.13. Quadratic Transformations and Pair Production 

Consider a large population consisting of individuals of two types. Let us 
denote the proportions of these types by x and y, so, 

x+y=l. 

Let us suppose that these individuals are paired at random and each pair 
produces a new pair according to the following pair production rules: 

(x3 4 + (XT Y) 

(XT Y) + (xv 4 

(YY Y) -+ (Y7 Y). 

What is the expected behaviour of this population under iteration of mixing 
and pair production? Letting x’ and y’ be the expected proportions on the 
next level we have 

x’ = (1/2)x2 + 2xy 

y’ = (1/2)x2 + y2 
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or 

f(x) = x’ = 2x - (3/2)x2. 

For this map of the interval, 2/3 is an attractive fixed point for all initial 
values of x; i.e., if 0 < x I 1, then x, f(x), f(f(x)), . . . converges to 2/3. 

If we use the pair production rules 

(x, x) -+ (x9 4 

b> Y) + (x7 4 

(Y> Y> + (YT Y), 

then 0 is an unstable fixed point and if 0 < x s 1, then the iterates 
converge to 1, the stable fixed point. 

The situation becomes more complicated when one has more than two 
types of individuals and even more so if, instead of binary reactions, triple 
collisions, etc., are allowed. Years ago Menzel, Stein, and Ulam [81] carried 
out numerical studies of pair production with particles of three types. A 
number of interesting conjectures were made in that report, and later 
studies led Stein and Ulam to believe that some “strange” invariant sets 
could be obtained from these systems. We will consider one example and 
show how one could possibly incorporate the notion of time into such a 
system. Of course, there are many variations on this method. 

We consider example 1.2.m from the report. We have three types of 
particles and the rule governing the system is 

(k 4 --) (Y> Y) 

(XI Y) + (x,x) 

tw 
( (4 + tz, 4 

(Y> Y) + (x, 4 

(YT 4 + (Y9 Y) 

\ tz> 4 + b, 4. 

Thus 

x’ = y* + z* + 2xy 

(-0 
i 

y’ = x2 + 2yz 
z’ = 2xz. 

Since x + y + z = 1, we have the transformation 

(*) 
i 

x’ = 2y* + 4xy + x2 - 2y - 2x + I 

y’ = x2 + 2y + - 2xy - 2y*, 

which takes the triangle region A = {(x, y) : x, y 2 0, x + y < l} into 
itself. The transformation (t) has one fixed point x0 = l/2, y0 = l/\/8, 
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FIGURE 1 

and z0 = (2 - fi)/4. The point (x,, yO) is an attractive fixed point for (*) 
since the maximum modulus of an eigenvalue of the Jacobian matrix of ( * ) 
at (x,, ya) is less than 1. 

There is one fixed point of ( *) on the boundary of the triangular region 
since (*) takes the line x + y = 1 to itself. This point is ((6 - 1)/2, (3 
- 6)/2) and it is a repellent fixed point. 

The points (1,O) and (0,l) are exchanged under (*) and form an 
attractive two period. 

This example is one of many studied by Menzel, Stein and Ulam. They 
conducted numerical studies which show that the region A is partitioned as 
shown in Fig. 1. The iterates of an initial point in the region R are attracted 
to the internal fixed point (l/2,1/&). The iterates of an initial point in 
A \ R are attracted to the period two orbit ((1, 0), (0, l)}. 

Now we would like to modify this example to demonstrate how one can 
use iterations of maps to code the passage of time until some qualitative 
change in the behaviour of the system takes place. 

We introduce additional variables wt, w2,. . . , w, and add to the rule 
(R,) the additional transforms: 

(WI, a,) --* (w,, w2>. where a, is any type, 

(w,, a*) --, (W,? w3x where a2 is any type other than wr, 

(Wj, a3) -+ (w.41 w‘l), where a3 is any type other than wt and w2, 

(w,-17 a,-,) + (W”? wn), where CI,-~ is x, y, z, w,-t or w,,, 

(w,, a> + (x, xl, where u,, is x, y, z, or w,. 
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Thus (t) now becomes 

w 

I 
x’ =y2+z2+2xy+w,2+2w,(w,+x+y+z) 

Y’ = x2 + 2yz 
Z’ = 2xz 
w; = 0 
WI2 = wf + 2w,( w2 + . . . + w, + x + y + z) 

iw’n = i& + 2w,-,(x + y + z). 

We iterate the transformation (jj) but at each stage we regard the w’s as 
fictitious quantities which only act as counters or catalysts. Thus, at each 
stage we examine only the proportions x/(x + y + z), y/(x + y + z) and 
t/(x + y + z). 

If we begin with an initial distribution of x, y, and z and w1 > 0 but 
W 2= **- =wn = 0, then we see that the transformation (tt) iterates x, y, 
and z similar to the way in which (t) does until n iterates have occurred. 
Then in the (n + 1)st iterate there is a tremendous increase in the propor- 
tion of x. After this iterate, there are no w’s and the transformation (tt) is 
(7). For example, if one takes n = 10 and the initial distribution x = 0.3, 
y = 0.5, z = 0.1, wi = 0.1. Then the first ten iterates of x and y converge 
quickly toward the internal fixed point. However, the 11th is close to the 
point (1,O) in the periodic attractor and of course the system converges 
toward the periodic attractor from “then on.” 
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