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MEASURABLE ONE-TO-ONE SELECTIONS AND
TRANSITION KERNELS

By SIEGFRIED GRAF* and R. DANIEL MAULDIN*#*

1. Introduction. Inthe present paper we continue the study of mea-
surable one-to-one selections, started by the second author in [7], and an-
swer most of the questions raised there.

Let X and Y be analytical topological spaces, R C X X Y a Borel set,
and p a probability measure on Y. A map f from a subset B of Y to X is
called a selection for R if f(y) e RY = {x e X|(x,y) eR }forally € B, i.e.
if the graph of f is contained in R. We will show that, if R is uncountable
for u — a.e. y € Y, then there exists a Borel subset of B of Y with u(B) =1
and 2 ¥ o Borel measurable one-to-one selections for R which are defined on
B and have pair-wise disjoint graphs. If, in addition, X carries a probabil-
ity measure A such that the set R, = {y € Y| (x, y) € R } is uncountable for
N — a.e. x, then there are Borel sets A C X and B C Y of full A — resp. p
— measure and a Borel isomorphism from A to B whose graph is con-
tained in R. While there are many almost everywhere defined, Borel mea-
surable one-to-one selections we show by an example that there need not be
any everywhere defined, Borel measurable one-to-one selection, even if X
=Y = [0, 1], u is Lebesgue measure and u(R?Y) = 1 forally € Y. In
contrast to this last result we prove that Martin’s axiom implies the exis-
tence of an everywhere defined, universally measurable one-to-one selec-
tion, provided A(R”) > 0for ally € Y, where A is any atomless measure on
X. Counterexamples show that these results cannot be easily improved:
There is a Borel set R C [0, 1] X [0, 1] with RY uncountable for everyy € Y
such that R does not admit an everywhere defined, universally measurable
one-to-one selection. There is also a Borel set R C [0, 1] X [0, 1] whose
fibers R, and R have positive Lebesgue measure but which does not have
a universally measurable bijective selection.

Our methods of proof rely on the fact that, iflR” is uncountable for p
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408 SIEGFRIED GRAF AND DANIEL MAULDIN

— a.e. y € Y, then there exists a transition kernel (¢,),cy from Y onto X
such that o, is atomless and supported by R” for p — a.e. y € Y. Analyzing
techniques employed by Mokobodzki [8] we deduce the following theorem
on many-to-one selections from the result stated above: If RY is uncount-
able for u — a.e.y € Y then, given any finite measure A on X, there exists a
A-nullset A in X and a Borel measurable map g: A — Y, whose graph is
contained in R, such that g—1(y) is uncountable for u — a.e.y € Y.

This last theorem is the key to all positive results concerning one-to-
one selections proven in this paper.

2. Auxiliary results on transition kernels. Let X and Y be analytic
topological spaces. Let 7 x and 7 y denote the canonical projections from X
X Y onto X and Y respectively. For a Borel measure 6 on X X Y let (o)
and 7 y(0) stand for the marginal measures on X and Y. The term “mea-
sure” is always used synonymously for ‘‘Borel measure.” If a measure ¢’ is
absolutely continuous with respect to a measure o we write ¢’ << 0.

A transition kernel (0 ),y from Y to X is a family (g, ) ey of probabil-
ity measures on X such that, for each Borel set A C X, themapy b 0,(A)
is Borel measurable.

The following proposition was inspired by the methods used by Moko-
bodzki [8].

2.1. ProposITION. Let X be a Polish space, Y an analytic space, p.a
probability measure on Y, (0,),cy a transition kernel from Y to X, and 0 =
fo, ® €, du(y). Suppose there is a finite measure N on X such that, for
every measure o’ on X X Ywith ty(c’) < pand ¢’ < g,0nehas wx(o")
< N Then o, is atomic for p — a.e. y €Y.

Proof. Since X is Polish, it can be checked that the set {(x, y) € X |x
€ supp o, } is Borel in X X Y and the mapy + card (supp o, ) from ¥ to [0,
+ o] is Borel measurable. Define Yo, = {y € Y| card(supp o)) = o0} and
assume u(Y,) > 0. Using the Jankov-von Neumann measurable choice
theorem repeatedly one can show that, for every . € IN, there exists a Borel
set B C Y, with u(B) = u(Y,) and Borel measurable mapshq, ..., h,:
B — X satisfying k;(y) € supp o, for every y € B and graph (k;) N graph
(h;) = @fori # j. Given e > 0, Lusin’s theorem implies the existence of a
compact set K C B with u(K) > u(B) — e such that &, is continuous for

eachie{l, ..., n}.Letd be a complete metric inducing the topology of X.
Then 6 = min {d(k;(y), h;j(y)) |y € K,i # j} is strictly positive. Forr = &/
4 let Py, P,, ... be a partition of X into Borel sets of diameter less than
and define

Bi,k = {y eK|ay({x EPk|d(x, hl(y)) =< r}) > O}
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(i=1,...,n;k=1,2,...). Sincethe set E = {(x,y) €X X Y|x € P
and d(x, h;(y)) < r}is a Borel set it follows by standard arguments that y
> oy(Ey) is Borel measurable and, therefore, that B; ; is a Borel setin Y.
The definition of the B, ;’s implies that

Bi’kﬂBj,k=ﬂ fOI'l.#=j

and
(*) Lk) Bi,k =K.
1
o) Ze 0y(Py) > 0
Next define 0;‘ = Y

0, elsewhere.

Then, for every Borel set A C X, the mapy — ak(A) is Borel measurable
and for 0% = [o¥® €, du(y) we have 7, (c*) < p and ok <« 0. Due to our
assumption concerning A we obtain

NPy) = wx(ok)(Py) (1/0,(Pr)du(y)

S{er[oy(Pk)>0}
w({y € Y|o,(Py) > 0}).

It follows immediately from the definition and the properties of the sets
B ik that

p{yeY|o,(P) > 0}) = u(vngi,k> = EIM(Bi,k)

and hence that

ANEP) =

g

w(Bi)

Summing both sides of this inequality with respect to k£ and using (*) yields

B

)\(X) E >\(Pk) E E “(Bi,k) = ‘El ;L(Ll;) Bi,k) = n[,L(K)
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Since u(K) = p(Yo) — €, n € IN, and € > 0 were arbitrary, this implies
A(X) = oo, a contradiction. Hence we have u(Y,) = 0 and, therefore,
card (supp 0,) < o for p — a.e.y € Y. In particular ¢, is atomic for u —
ae. yeY.

Remark. By carefully analyzing the proof of the above proposition
one can obtain the following characterization of a.e. atomic transition ker-
nels.

Under the assumptions of Proposition 2.1 the following conditions are
equivalent:

(i) o, is atomic for p— a.e.y € Y.

(ii) There exists a sequence of measures (0,),c;y on X X Y and a
sequence of measures (\,, ), ;v On X such that ¢ = sup o, and, for each o’
< 0, with 7,(0”) < p, one has Tx(c’) < \,.

2.2. ProrosiTioN. Let X and Y be analytic spaces, u a probability
measure on Y, and R C X X Y a Borel set with RY uncountable for p —
a.e. y € Y. Then there exists a transition kernel (0)))ey from X to Y such
that oy is atomless and supported by R for p — a.e. y €Y.

Proof. Let M, (X) denote the space of all probability measures on X
equipped with the narrow topology ([9], p. 370). Then M (X) is an ana-
lytic space ([9], p. 385). We claim that the set D = {(y, ») € ¥ X
MY (X)| » is atomless and » is supported by R7} is analytic. Since D is the
image of Y X {» € M. (X)| » is atomless} under the Borel measurable
map (y, ») = v|py it is enough to show that M, = {v e M} (X)| » is atom-
less} is a  Borel set in ML (X). Because the
Borel field of X is countably generated ([9], p. 108), there exists a count-
able field ¥ generating the Borel field of X. Then a measure » € MY (X) is
atomless if and only if, for every e > 0, there exist A, ..., A, e Y with A4,
U...UA4,=Xandv(A;) < efori =1, ..., n. Hence we obtain

M,={reMiy(X)|Ve > 0dA,, ..., A, eA: A,U ... UA,
=Xandv(4;)<ei=1,...,n}
“ 1
=N 0] N {VEML(XHV(A,-) < -—}

meIN Ay, ..., A, i=1 m
X=4,U ... U4,

Thus M, is a Borel set and our claim is proved.
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Because R is an uncountable Borel subset of X for p — a.e.y € Y, RY
is itself an uncountable analytic space. Thus ([2], p. 118) RY contains a
Cantor space and therefore supports an atomless probability measure. So,
we have D, # @, forp — a.e.ye Y.

According to the Jankov-von Neumann measurable choice theorem,
there is a Borel set B C Y with u(B) = 1 and a Borel measurable map 6:
B— M (X) with 8(y) € D, for everyy € B. Let v € M, (X) be arbitrary
and define

iﬁ(y), y€EB
gy

v, y € Y\B.

Then (0,),cy obviously has the desired properties.

Remark. For compact metrizable spaces X and Y the above propo-
sition can, implicitly, be found in Mokobodzki [8]. The proof given here
resembles Mokobodzki’s proof. The second author of the present paper
proved the result independently using the results of [1].

Our next lemma connects the results obtained so far and will be ap-
plied in section 3.

2.3. LEMMA. Let X, Y, R and p be as in Proposition 2.2. Then,
given any finite Borel measure N\ on X, there exists a Borel set A C X, a
Borelset B C Y with u(B) > 0, and a transition kernel (0,)yepfromBto A
with the following properties :

(i) For everyy € B the measure 7, is atomless and supported by A N
Ry,

(ii) For every Borel set Q C X one has N(A N Q) < [go,(4 N
Q)du(y).

Proof. By Proposition 2.2 there exists a transition kernel (6,),cy
from Y to X such that 6, is atomless and supported by RY for p — a.e.y €
Y. Let 0 = [0, ®¢,du(y). We want to apply Proposition 2.1 which is not
directly possible since X is not Polish. Therefore we restrict our attention to
acompact set K C X with§(K X Y) > 0. Then thesetE = {y € Y|0,(K)
> 0} has positive u-measure and the transition kernel (((1/6,(K ))-0,.
|k )yer from E to K is atomless. Since K is metrizable Proposition 2.1 is
applicable and yields the existence of a measure 6’ << [(1/ 0,(K)-6,15)®
eydp.(y) with 7y(0’) < pand of a Borel set A’ C K suchthat 7w x(0’)(A’)
> N(A’). By the Hahn decomposition theorem there exists a Borel set A
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C A’ with mx(0')(A) > NA) and mx(6')(AN Q) = A4 N Q) for all
Borel sets Q in X. Since 8’ << 0 there exists a Borel measurable function
g: X XY = IR with 6’ (P) = [pg(x, y)db(x, y) = [jg(x, y)1,(x, y)
db,(X)d p(y) for all Borel sets P C X X Y. Since 7,(§") < p we obtain
lg(x,y)db,(x) < 1forp —ae yeY Nowlet B={yeY|0 < 4
g(x,y)db,(x) < 1} and define, for y € B,

1
g, = A 'g(oay)ey'

Yy
X g(x, y)do,(x)
A

Then (0,),ep is the transition kernel we are looking for.

3. Many-to-one selections. It is the purpose of this section to prove
the following theorem.

3.1 THEOREM. Let X and Y be analytic spaces, p a probability mea-
sure on X, and R C X X Y a Borel set with RY uncountable for p — a.e. y
€ Y, \ a probability measure on X. Then there exists a 3C,-set F C X with
N(F) = 0 and a Borel measurable map g: F — Y such that g(x) € R, for
all x € F and g ~1(y) is uncountable for y — a.e.y € Y.

For the rest of this section X, Y, R, u and \ will be as in the above
theorem, whose proof will be split up into a series of lemmas and proposi-
tions.

3.2. LemMA. For every € > 0 there exists a Borel set A C X such
that N(A) < eand RY N A is uncountable for p — a.e.y €Y.

Proof. Let B(X) (resp. ®(Y)) denote the Borel field of X (resp. Y).
Consider the collection JC of all F C ®(X) X B (Y) which have the fol-
lowing properties:

(i) ¥(D,E),(D',E’')eFand(D,E) # (D',E'),thenD N D' =
Gand E N E' = 4.

(ii) If (D, E) € § then u(E) > 0 and there exists a transition kernel
(0,))eg from E to D which satisfies

a) o, is atomless and supported by R N D for p — a.a.y € E,

b) For every Borel set Q C X one has fan(Q N D)du(y) = 1/e \(Q

N D).

By Lemma 2.3 the collection JC is nonempty. Inclusion is obviously an
inductive partial order on 3C. Let &, be a maximal element in JC. Then it
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follows from (i) and the fact that u(E) > 0 for all (D, E) € §, that &, is at
most countable. Let A = U{D|(D,E)e F,}and B = U{E|(D,E) €
F,}. We will show that u({y € Y\B|R” N A at most countable}) = 0. The
set {y € Y\B|R” N A at most countable } is coanalytic ([3], p. 496), hence
p-measurable. Assume u({y € Y\B|RY N A at most countable}) > 0.
Then there is a Borel set E/ C Y\B such that u(E’) > 0 and RY N
(X\A) is uncountable for ally € E’. By Lemma 2.3 we can find a Borel set
E, CE’, aBorel set D, C X\A and a transition kernel (0,) g, from E,
to D, with properties a) and b) in (ii). This contradicts the maximality of
%,. Thus R¥ N A is uncountable for p — a.e.y e Y\B. Foryu — a.e.y€B
the set RY N A carries an atomless probability measure and is, therefore,
also uncountable. Hence we have proved that RY N A is uncountable for p
—ae.yeY.

Now we will show that A(4) < e. For (D, E) € F, let (¢?'¥),.p be a
transition kernel as described in (ii). Then we get

1 1
M= L SaD)s I j P E(D)du(y)
€ (D,E)eF, € (D,E)e%, )

= X =< =1,
= b.5es. n(E) = p(Y)

which proves A(A) < e.

3.3. LEMMA. For every ¢ > 0 and every 6 > 0 there exist disjoint
Borel sets A1, Ay C XwithN(A1 U A,) <éand p({y e Y|R’ N A and
RY N A, uncountable}) = 1 — .

Proof. By Prop. 2.2 there exists a transition kernel (o), y from ¥
to X such that o, is atomless and supported by R” for p — a.e. y € Y.
Applying Lemma 3.2 first to the measure N\’ = [o,du(y) and then to A
yields the existence of a Borel set A; C X such that [0,(A)du(y) < e,
AA;) < 6/2, and RY N A is uncountable for u — a.e. y € Y. Since
f0,(A1)dpu(y) < eweobtain u({y e Y| 0,(A1) = 1}) < e and, therefore,
r{yeY|o,(X\A) > 0}) =1 — e. Since o, is atomless for p — a.e.y €
Y this implies that u({ y € Y|RY\A | uncountable}) = 1 — ¢. By Lemma
3.2 there is a Borel set A, C X\A; withAN(A,) < é/2andu({ye Y|RY N
A, uncountable}) = 1 — e.

3.4.LEMMA. For every € > 0 there exists a compact set C C R with
p{y € Y|CY uncountable}) = 1 — e.
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Proof. By Proposition 2.2, there is a transition kernel (o, )¢ y from
Y to X such that o, is atomless and supported by RY for p — a.e.y € Y.
Define ¢ = joy ® €, du(y). There exists a compact set C C R with
o(R\C) < e. Since 6(R\C) = [0,(R¥\C?)du(y) = p({y € Y|0,(C?)
= 0}) we have u({y € Y| 0,(C?¥) > 0}) > 1 — e. Because o, is atomless
for p — a.e. y € Y this implies the conclusion of the lemma.

3.5. LEMMA. For every ¢ > 0 there exists a compact set K C X with
NK) = 0, a continuous map f from K onto {0, 1}¥, and a compact set L
C Y such that p(Y\L) < eand RY N f~1(z) # @forallyeLandall z €
{0, 1}V,

Proof. Let (e, ), b€ a sequence of positive real numbers with £,
€, < €. By Lemma 3.3, there exist two disjoint Borel sets A (0), A(1) in X
with A(A(0) U A(1)) < ¢; such that

p{yeY|RY N A(0) and RY N A(1) uncountable}) = 1 — %

By Lemma 3.4. there exist compact sets C(0) C (A(0) X Y) N R and C(1)
C (A1) X Y) N R with

p{y e Y|(C(0))? and (C(1))’ uncountable}) = 1 — ¢;.

By Lemma 3.3 there exist disjoint Borel sets A (¢, 0), A (i, 1) C A (¥) with
MNAG, 0 UA@G 1) <ey/2(E=0,1)and

r{yeY[(CD) N A, 0) and

(C(i)¥ N A(i, 1) uncountable, i = 0,1}) > 1 — ¢; — %

Again Lemma 3.4 implies the existence of compact sets C(Z, 0) C C(i) N
(A(i,0) X Y), C(E 1) C CH) N (A(F, 1) X Y) satisfying

p{yeY|(C(, 0))r and
(C(i, 1)) uncountable,i = 0,1}) = 1 — ¢; — €,.

Continuing in this way we obtain, for each k € IN, pairwise disjoint Borel
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setsA(iy, ..., i) and compact sets C(iy, ..., i) CX X Y ((iy, ...,ix) €
{0, 1}¥) which have the following properties:

() Ay, < ey ig) C A, ooy ig_y)-
(i) MU AGy, ..., i) < e
(iii) CGy, ..., i) C Cliy, - .-, ix—1) N Ay, ..., i) X Y).
(iv) u{yeY|(C(iy, ..., ix))? uncountable for all (i, ..., ;) € {0,
1) =1 =Tk ¢,

Define K = N U s« ooy ig)).
etine keIN (iy, ..., ip)e{0, 1}* mx(Cli 7))

Then K is a compact set of \-measure 0. The map f: K — {0, 1}V will be
defined as follows: If x € K then there exists exactly one sequence (i,,), <1y
in {0, 1}V such thatx € 7x(C(iy, ..., i) for all k € IN. Define f (x) =
(i,),ein- By standard arguments f is continuous and maps K onto {0,
1}V, 1t follows from (iv) that there exists a compact set L C Y such that
p(Y\L) < eand, for ally € L, for all k € IN, and for all (iy, ..., ;) € {0,
1}* the set (C(iy, ..., ix))? is uncountable, hence not empty. Now let z =
(in)nein €{0, 13N be fixed. Since (C(iy, ..., i) C wx(C(ii, ..., i)
N (C(i;))’ and these last sets are compact we obtain

U NRY D f~H(z) N (CEYY =
kQN Wx(C(il, ey lk)) ﬂ (C(ll))y * ﬂ

for every y € L. This completes the proof of the lemma.
Lemma 3.5 allows us to prove the following version of a result of Mo-
kobodzki [8]:

3.6. THEOREM. Let X and Y be analytic spaces, p a probability mea-
sureon Y,and R C X X Y a Borel set. Then the following properties of R
are equivalent:

(i) RV is at most countable for p — a.e. y € Y.
(ii) Every family (A;);e] of pairwise disjoint Borel subsets of X, sat-
isfying u({y € Y|RY N A; # @§}) > 0 for every i €I, is at most countable.
(iii) There exists a finite measure \ on X such that, for every Borel set A
C X, MA) = 0 implies up({y e Y|RY N A # @}) = 0.

Proof. (i) = (ii) and (i) = (iii): Assuming (i) one can find a sequence
(f2)nemn of p-measurable functions from Y to X such that RY C {f,(y)|n €
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IN} for p — a.e.y € Y (For sets R in IR” this was proved by Lusin [4], p.
244. But the result can easily be generalized to the present situation). To
prove (iii) let (4;);¢; be a family of pairwise disjoint Borel sets in X satisfy-
ingu({yeY|RY N A; # @#}) > Oforeveryiel. Then, for eachi € I, there
exists an n; € IN with u( f;i‘ (A)) > 0. Since, for each n € IN, the family
(fn '(A;));e; consists of pairwise disjoint sets, we know that only coun-
tably many of these sets have positive u-measure. Thus I, = {i e I|n; =
n}is at most countable. Because I = U , ;v I, this implies that I is at most
countable.

To prove (iii) define A = - 1/2" u°f, 1. Then, for any Borel set A
C X, MA) = 0 implies u(f, 1(A)) = 0 for all n € IN and hence p(U, e
fn'(4))=0.Since{y € Y|RY N A # @} is contained in U , _, £, '(4)
this proves (iii).

(iii) = (ii): This implication follows immediately from the fact that for
a finite measure, a family of pairwise disjoint sets of positive measure is at
most countable.

(ii) = (i): If p({ y € Y|R? uncountable}) > 0 then, by Lemma 3.5,
there exists a family (A4 ,), (0,13 of pairwise disjoint Borel sets in X with
p{yeY|RY N A, #@}) > 0forallz € {0, 1}V,

3.7. ProposITION. Let X and Y be analytic spaces, p a probability
measure on Y, \ a finite measure on X, and R C X X Y a Borel set such
that RY is uncountable for p — a.e. y € Y. Then, given € > 0, there exists a
compact set M C X with N\(M) = 0 and a continuous map g: M — Y such
thatg(x)eR, forallx e M and p({ y € Y |g~1(y) uncountable}) > 1 — .

Proof. We claim that there is an analytic set A C X with A\(4) = 0
and a Borel measurable map #: A — Y satisfying h(x) e R, for allx € A
and p({y € Y|k ~1(y) uncountable}) = 1 — /2.

Assume for the moment that the claim has been proved. Then, by
Lemma 3.4, there exists a compact set C C graph (k) such that u({y e
Y| CY uncountable}) > 1 — e. Define M = 7x(C) andg = h|p- Then M
and g have the properties required in the proposition. Thus it remains to
prove our claim. To this end let L, K and f be as in Lemma 3.5.

Case 1. L is countable. Let (4,),, be a partition of {0, 1}V into
uncountable Borel sets. Defined = U ., (f "1(4,) NRY)andh:A —> L
by h(x) =yifx ef“(Ay) N RY. Then A is a Borel set and % is a well-
defined Borel measurable map with z(x) € R, for all x € A. Since f ~1(z)
N RY # @ for all z € {0, 1}N we deduce that 2 ~1(y) is uncountable for
allye L.
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Case 2. L is uncountable. Then there exists a Borel isomorphism ¢
from {0, 1}/Nonto L ([3], p. 451). Let ¢ be a continuous map from {0, 1}¥
onto itself such that y ~!(z) is uncountable for all z € {0, 1}V, Define h
from a subset of X to Y by graph (4) = graph (¢ o Y of) N R. Since graph
(k) is a Borel subset of X X Y the domain A4 of 4 is analyticand 2: A - Y
is Borel measurable. Since A is obviously contained in the domain of f,
which is K, we obtain AN(4) = 0. Fory € L we have A~ 1(y) = f "1y ~1¢~!
(y) N RY. Since ¥ ~1¢ ~1(y) is uncountable and f ~1(z) N RY # @ for
all z € y "1¢~1(y) we deduce that £~1(y) is uncountable and the proof is
completed.

3.8. CoroLLARY. Let X and Y be analytic spaces, p a probability
measure on Y, \ a finite measure on X, and f: X = Y a Borel measurable
map such that f ~1(y) is uncountable for p — a.e. y € Y. Then, for every
€ > 0, there exists a compact set M C X with N(M) = 0 such that fy is
continuous and p({y € Y|f “1(y) N M uncountable}) > 1 — e.

We are now prepared to give the proof of Theorem 3.1.

Proof of Theorem 3.1. According to Proposition 3.7 there exists, for
each n € IN, a compact set M, C X with A\(M,) = 0 and a continuous
map g,: M,, = Y such that g,(x) € R, for all x e M,, and u({y € Y|g,
(y) uncountable}) > 1 — 1/n. By Proposition 2.2 there exists a transition
kernel (o), egn(My) from g,(M,) to M, such that ¢} is atomless and sup-
ported by g, ' (y) for p — a.e.y €g,(M,). Define

on = j ogdu(y)
gn(Mpy)

and

o
o= ¥ —on.
n=12"

According to Corollary 3.8 there is a compact set K; C M with o(K ;) =
0 and u({y € Y|gi (») N K uncountable}) > 0. Since o(K;) = 0 we
have oj(K{) = 0 for p — a.e. y € g,(M,,) and for every n € IN. Hence gl
(¥)\Kis uncountable for y — a.e.y € g,(M,). By Corrollary 3.8 there is
a compact set K, C M,\K; witho(K,) =0and u({ye Y|g5s ' (y) N K,
uncountable}) > 1 — 1/2.

Since (K { U K ;) = 0it follows as above that g, !(y)\(K; U K,) is
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uncountable for u — a.e.y € g,(M,,). Continuing in this manner yields a
sequence (K ,), ¢y of pairwise disjoint compact sets in X with K, C M,
and

1
p{yeY|g, (y) N K, uncountable}) > 1 — .

Now define F = U, ,yK,andg: F— Ybyg(y) =g,(y)ifyeK,. Then
Fis a 3C,-set with A(F) = 0 and g is Borel measurable and satisfies

{yeY|g 1(y) uncountable}
D L{N{y € Y|g,(») N K, uncountable}.
ne

Therefore u({y € Y|g ~!(y) uncountable}) = 1 and the proof is com-
pleted.

In view of Proposition 3.7 one may ask whether the set F in Theorem
3.1 can be chosen compact. That, in general, this cannot be done is shown
by the following example.

3.9. Example. Let X = Y = [0, 1] and let u and \ be Lebesgue
measure. The non-empty perfect sets of [0, 1] form a dense Gs-set ®@ in the
space JC*([0, 1]) of all non-empty compact subsets of [0, 1] with the Haus-
dorff metric. Hence there exists a continuous bijection ¢ from the space §
of all irrationals in [0, 1] onto ®. Define R C X X Y to be equal to
U{o(y) X {y}|ye g} ThenR is a Borel set with R uncountable for p
— a.e.y € Y. Now let us assume that there is a compact subset K of X with
A(K) = 0 and a Borel measurable map g: K — Y such that g(x) e R, for
allx e K and p(Y\g(K)) = 0. Then we haveg ~1(y) C ¢(y) N K for p —
a.e.y€eY. Sincetheset{ Pe ® |P N K = @} is non-empty and open in @
the same is true for the set { y € | ¢(y) N K = @} relative to g. Thus, this
set has positive u-measure and is contained in Y\g(K), a contradiction.

Theorem 3.1 also suggests the following question: Can one choose the
map g in that theorem to be onto, if one assumes that R” is uncountable for
everyy € Y'? That the answer is no, in general, can be seen by the following
example.

3.10. Example. LetX =Y = [0, 1] and let A denote Lebesgue mea-
sure on [0, 1]. Then there exists a Borel set R C X X Y with A(R?) = 1 for
everyy € Y such that there is no \-measurable set A C X and no A\-measur-
able map g from A onto Y which satisfies g(x) e R, for all x € 4.
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For the proof of this statement we will need the following lemma.

3.11. LemMmA. For 0 < o < 1let 3C, be equal to { K C [0, 1]| K
compact and N(K) = a} considered as a closed subset of 3C*([0, 1]).
Then, for every \-measurable set A C [0, 1], every \-measurable map g:
A — 3, which satisfies x € g(x) for every x € A is not surjective.

Proof. LetA C [0, 1] be \-measurable, g: 4 = JC, a A-measurable
map with x € g (x) for everyx € A. Assume g is onto. For o < 8 < 1, define
Ls={KeX,|NK)=B}. Then £gis a Borel set in 3C,. We claim that
Mg71(Lp)) =1 — B.If N(g ~1(Lp)) were less than 1 — 3, then we could
find a compact set K C [0, 1]\g ~1(£4) with AN(K) = B; i.e. K € L.
Since g is assumed to be onto, there would be a pointx € A withg(x) = K,
but because of x € g(x) C K C [0, 1]\g ~1(£L;p) this is impossible. The
family (£g), < g <1 is an uncountable family of pairwise disjoint Borel sets
and, therefore, (g ~1(£4)), < g < 1 is an uncountable family of pairwise dis-
joint A\-measurable sets of positive A\-measure, a contradiction.

Proof for Example 3.10. Forn €N, let 3C,, = 3C; _ 4, +1). Then
7o —=13C, is an uncountable compact metrizable space. Hence there exists
a Borel isomorphism & from [0, 1] onto 7= ;3C, ([3], p. 451). Let &,
denote the n-th component of this isomorphism. Define R, = {(x, y) €
X XY|xe®,(y)}and R = U7 |R,. We claim that each of the sets
R, and, therefore, R is Borel. The set E, = {(x,y, F) e X X Y X
JC*(X)|®,(y) =FandxeF}isaBorelsetinX X Y X JC*(X), because
it is the graph of the Borel measurable map (x, y) = ®,(y) intersected
with the closed set {(x,y, F) e X X Y X K*(X)|XGF}. Since R,, is the
image of E, with respect to the canonical projection from X X Y X
JC*(X) onto X X Y which, restricted to E,, is one-to-one, it follows that
R, is a Borel set. For eachy € [0, 1] and n € IN we have A\(R?) = N(®,(y))
=1 — 1/(n + 1) and therefore, N\(RY) = 1.

Now assume that A C X is \-measurable and g is a \-measurable map
from A onto Y satisfying g(x) e R, for everyx € A. Let A, = {x € X|(x,
g(x))eR, }. Then A, is a A-measurable set. The map ®,0g 4 : 4, > 3C,
is A-measurable and satisifies x € ®,(g(x)) for every x € A,,. It follows
from Lemma 3.11 that &, 0g 4, is not onto. Hence there exists a K, € 3C,,
withK, ¢ ®,0g(A,). Lety €[0, 1] be such that ®(y) = (K ) ,ein- Since g
is assumed to be onto there is an x € A with g(x) = y. Because (x, g(x)) €
R this implies (x, g(x)) = (x,y) € R, for some n and, therefore,x € ®,(y)
=K,;ie.xeA,and ®,(g(x)) = K,, a contradiction.
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Remark. It should be noted that Example 3.10 and Lemma 3.11
remain true if we replace Lebesgue measure by any atomless measure.

4. Borel measurable one-to-one selections. In this section we deal
with existence problems for Borel measurable one-to-one selections. Our
main tool for proving positive results is Theorem 3.1. We also give some
counterexamples which show that our results are, in some sense, the best
possible.

Our first theorem improves Theorem S of [7].

4.1 THEOREM. Let X and Y be analytic spaces, p a probability mea-
sure on Y, \ a probability measure on X, and R C X X Y a Borel set with
RY uncountable for p — a.e. y € Y. Then there exists a Borel set B C Y
with u(B) = 1 and a one-to-one Borel measurable map f: B — X such that
N(f(B)) = 0and f(y) € R for every y € B.

Proof. Let F and g be as in Theorem 3.1. By the Jankov-von
Neumann measurable choice theorem there exists a Borel set B C Y with
p(B) = 1 and a Borel measurable map f: B — F withgof = id 3. Thenfis
obviously injective.

The following is a refined version of the preceding theorem using the
parametrization result of [6].

4.2 THEOREM. Let X and Y be analytic spaces, u a probability mea-
sure on Y, \ a finite measure on X, and R C X X Y a Borel set with RY
uncountable for . — a.e. y € Y. Then there exists a Borel set B C Y with
w(B) = 1 and a family (f;);c; of power 2% 0 such that

(i) fi: B = X is Borel measurable and one-to-one;
(ii) f;(y) e RY for all y € B;
(iii) Gr(f;) N Gr(f;) = Qifi #j;
@iv) N(U ;1 fi(B)) = 0.

Proof. According to Theorem 3.1 there exists a JC,-set F C X with
A(F) = 0 and a Borel measurable map g: F — Y such that g(X) € R, for
allx e Fand g~ !(y) is uncountable for y — a.e.y € Y. Let (K, ), < ;v be an
increasing sequence of compact sets with F = U, ;v K ,,. It follows from
Proposition 2.2 that there exists a transition kernel (g,)yey from Y to X
such that o, is atomless and supported by g —1 y)forp —ae.ye?.
Using standard arguments we can find a sequence (L), of compact
subsets of Y with the following properties:

a)u(U=1L,) =1
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b) For every y € L, the measure o, is atomless, supported by g ~1(y),
and satisfies 0,,(K,) > 0.

Condition b) implies that g ~1(y) N K, is uncountable for every y €
L,. Let I be a set of power 2%0, Since K, and L, are metrizable and com-
pact, Theorem 2.4 and 2.5 in [6] imply that there exists a family (f; ,,);¢s of
Borel measurable mapsf; ,: L, = K, withf; ,(y)eg~(y)foreveryyeL,
and gr(f; ,) N gr(f;,,) = @ifi # j. Now definef;: U, nL, = X byfi(y)
= f; o(y)ify € L,\ U™} L. Thenf; is Borel meaurable, f;(y) € g~ 1(y)
for everyy € U , ey Ly, and Gr(f;) N Gr(f;) = @ifi # j. Since gof; =
id 1, we know that f; is one-to-one and the theorem is proved.

Remark. 1t has been noted in [7] (Example, p. 828) that there is a
Borel set R C [0, 1] X [0, 1] with RY and R , uncountable for all x, y € [0,
1] which does not admit a Borel measurable selection defined everywhere.
On the other hand it is known that R admits 2 *0 everywhere defined Borel
measurable selections with disjoint graphs provided there exists an atom-
less measure » on Y with »(R>) > 0 for every y ([6], p. 229).

The question, whether under this condition there exists an everywhere
defined Borel measurable one-to-one selection, has a negative answer, as
can be seen from the following example.

4.3. Example. LetX = Y = [0, 1] and let A be Lebesgue measure on
[0, 1]. Then there exists a Borel set R C X X Y withA(RY) = 1forallye
Y such that there is no one-to-one Borel measurable map f: Y — X with
f(y)eRyforallyeY.

Proof. LetR be the set defined in Example 3.10. Let us assume that
f: Y — X has the properties listed above. Then A = f(Y) is a Borel set and
g =flis a Borel measurable map from A onto Y with g(x) € R, for every
x € A. But according to Example 3.10 such a map does not exist.

Remark. The preceding example shows that it is almost hopeless to
look for measure theoretic conditions on the fibers RY of R which would
ensure that there is an everywhere defined one-to-one Borel measurable
selection for R. But there is a positive result of D. Maharam & A. Stone
[10] which can be rephrased as follows:

Let X =Y = [0, 1] and let R C X X Y be a Borel set, such that RY
has non-empty interior for every y € Y. Then there exists a Borel measur-
able one-to-one map f: Y = X with f(y) e RY foreveryy € Y.

Our next result provides a positive answer to Question 3 in [7]. Our
method of proof involves the same technique used in [7] to prove this theo-
rem assuming almost all RY and R, have positive measure.
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4.4. THEOREM. Let X and Y be analytic spaces, N\ a probability
measure on X, p. a probability measure on Y, and R C X X Y a Borel set
such that R, is uncountable for N\ — a.e. x € X and RY is uncountable for p
— a.e. y € Y. Then there exists a Borel set A C X with N\(A) = 1, a Borel
set B C Y with u(B) = 1, and a Borel isomorphism f from A onto B whose
graph is contained in R.

Proof. According to Theorem 3.1 there exists a 3C,-set ' C X with
A(F) = 0 and a Borel measurable map g: F — Y such that g(x) e R, for
every x € F and g ~{(y) is uncountable for p — a.e.y € Y. Again by Theo-
rem 3.1 there is a JC,-set G C Y with u(G) = 0 and a Borel measurable
map h: G = X\F such that k(y) € RY for every y € G and h~!(x) is
uncountable for N — a.e. x € X. It follows from the Jankov-von Neumann
measurable choice theorem combined with Lusin’s theorem that there ex-
ists a JC,-set B; C g(F) with u(B{) = 1 and a Borel measurable map f;:
B, — F with gof; = idp, as well as a 3C,-set A; C h(G) C X\F with
A(A4 1) = 1 and a Borel measurable map g,: A; = G with hog; = id4,.
Then f; and g are one-to-one and map Borel sets onto Borel sets. In par-
ticular A, = f;(B) is a Borel set contained in F. Now defineA = A U
Aj,andf: A — Y by

f(x) — {gl(x)s xEAl
ffl(x), x €A,

Then f is a well-defined one-to-one Borel measurable map which maps
Borel sets onto Borel sets. Thus, if B = f(A ), then f is a Borel isomorphism
from A onto B. By definition we have N(4) = 1. Since B = f(A) D
f1 Y (A,) = By we also deduce u(B) = 1. For x € A we obtain f(x) =
g1(x) and hence (x, f(x)) = (hof(x), f(x)) €R. Forx e A, we get f(x) =
fl_l(x) = g(x) € R, hence again (x, f(x)) € R.

Remark. Let0 < o < 1. By modifying Example 4.3 one can obtain
a Borel set R C [0, 1] X [0, 1], such that, for all x, y € [0, 1], the Lebesgue
measure of R, and RY is greater or equal to o and R does not contain the
graph of any Borel isomorphism from [0, 1] into [0, 1] (see Example S.4).
The question whether this is still true for « = 1 remains open.

5. Universally measurable one-to-one selections. In the last section
we have seen that everywhere defined Borel measurable one-to-one selec-
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tions need not exist even if the fibers of the Borel set R have large measure.
In contrast to this negative result we will now show (assuming Martin’s
axiom) that everywhere defined universally measurable one-to-one selec-
tions exist provided all fibers have positive measure (for some atomless
measure).

S.1. THEOREM (MA). Let X and Y be analytic spaces, \ an atom-
less probability measure on X, and R C X X Y a Borel set with A\(RY) > 0
foreveryy €Y. Then there exists a universally measurable one-to-one map
f: Y > Xwith f(y) € RY foreveryy € Y.

Proof. If Y is countable then the result is easily proved by induction.
Therefore, suppose Y is uncountable. Let € denote the smallest ordinal
with the cardinality of the continuum and let M i (Y) stand for the space of
all probability measures on Y. Let (1,) < ¢ be an enumeration of M} (Y).
Using Theorem 4.1, transfinite induction, the fact that under the assump-
tion of Martin’s axiom the union of less than € A-nullsets is again a \-
nullset ([S], p. 169) and A(R”) > 0 we define a family (B, fy)s < With
the following properties:

(i) B, is Borel in Y with u,(B,) = 1;
(i) f,: B, — X is one-to-one Borel measurable and satisfies
AN fy(By)) = 0andf,(y) € RY for everyy € B,;
(iii) For o, B < € and o # (8 one has f,(B,) N fz(Bg) = P.

We claim that Y = U, _sB,. Lety, € Y be arbitrary. Then there
exists an o, < € with €, = p,,. Since y, is contained in every set of full
1q,-measure we havey, € B, and hence our claim is proved. Define D, =
B, \U g ,Bg. Then D, is universally measurable because, under the as-
sumption of Martin’s axiom, the union of less than § universally measur-
able sets is universally measurable ([6], p. 169). Define f: Y = X by f(y)
= f.(y) ify € D,. We will show that f is universally measurable. Let u €
M (Y) be arbitrary. Let T = {y < €|u(D,) > 0}. We claim that p is
supported by U, crD,. There is an o < € with p = p, and p,, is sup-
ported by B, hence by Uz _,Dg. Since Martin’s axiom implies that
U{D,|y < aandy ¢T }is a p,-nullset our claim is proved. Because I is
at most countable and each of the f., is Borel measurable, it follows that
flu{D,|yer} and, therefore, f is u-measurable. Since p € M 1 (Y) was arbi-
trary, this proves f to be universally measurable.

The following example shows that, in Theorem 5.1, the assumption
on the fibers R”, to have positive measure, is essential.
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S.2. Example. LetX = Y = [0, 1]. There exists a Borel set R C X
X Y with RY uncountable for every y € Y such that, for every atomless
probability measure p on Y, there is no u-measurable one-to-one map f: Y
— X with f(y) e RY for everyy € Y.

Proof. Let @ be the space of all non-empty perfect subsets of [0, 1]
(see Example 3.9). Then there exists a Borel isomorphism ¢ from [0, 1]
onto ® ([3], p. 451). DefineR C X X YbyR = {(x,y)eX X Y|x €
¢(y)}. Then R is a Borel set. Let u be an atomless probability measure on
Y. Assumef: Y — X is a one-to-one u-measurable map with f(y) € RY for
ally e Y. Then there exists a Borel set B C Y with u(B) = 1 such thatf|p is
Borel measurable. Since f|5 is a Borel isomorphism from B onto the Borel
set f(B), this last set carries an atomless probability measure and contains,
therefore, a non-empty perfect set K,. For every K € ® and K C K, we
obtainf(¢~1(K)) € K C f(B). Since f is one-to-one this implies ¢ ~1(K) €
B. Let v be an atomless probability measure on Ky. Let ®, = { K € @ | K
C K, and »(K) > 0}. Then g = fo¢ 1|4, is a Borel measurable map
from ®, to K, with g(K) € K for every K € ®@,. Using the methods em-
ployed in the proof of Lemma 3.11 one can see that such a map does not
exist.

In view of Theorem 4.1 one may ask whether the selection in Theorem
5.1 can be chosen to satisfy A(f(X)) = 0. The following example shows
that, in general, this is impossible.

5.3. Example. LetX = Y = [0, 1]. There exists a Borel set R C X
X Y with RY uncountable for every y € Y such that, for any atomless prob-
ability measure A on X and any map f: Y — X satisfying f(y) € R” for all
y €Y, the set f(Y) is not a N\-nullset.

Proof. LetR be as in the preceding example, \ be an atomless prob-
ability measure on X, and let f: Y — X satisfy f(y) € RY for ally € Y.
Assume A(f(Y)) = 0. Then there exists a non-empty perfect set K C
X\f(Y). Thus there is ay € Y with K = R and, therefore, f(y) e K C
X\f(Y), a contradiction.

Theorem 5.1, together with Theorem 4.4, suggests the possibility that
a Borel subset R of [0, 1] X [0, 1] whose fibers R , and RY have large Lebes-
gue measure for all x, y € [0, 1], might always contain the graph of a uni-
versally measurable bijection f from [0, 1] onto itself. That this is not the
case can be seen by the following example, which also answers Question 1
in [7] in the negative.

5.4. Example. LetX =Y =[0,1]and 0 < « < 1. Let X be Lebes-
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gue measure on [0, 1]. Then there exists a Borel set R C X X Y satisfying
AR,) = aand A(R?) = «afor allx, y € Y such that there is o universally
measurable map f from Y onto X with f(y) € RY for everyy € Y.

Proof. Let 3C, be as in Lemma 3.11. Then there exists a Borel iso-
morphism ¢ from [«, 1] onto 3C,. Define

R =10, a] X [0, 1] U {(x,y)€la, 1] X [0, 1]|y € $(x)}.

Then R is a Borel set with A(R?) = v and A\(R,) = «for all x, y € [0, 1].
Assume f is a universally measurable map from Y onto X satisfying f(y) €
R for every y € Y. Then B = f~{([«, 1]) is universally measurable. For
everyy € B we havef(y) e RY N [a, 1] and hence y € ¢(f(y)). Thus ¢ of |5
is a universally measurable map from B onto JC, which satisfiesy e fo¢(y)
for every y € B. But according to Lemma 3.11, such a map does not exist.

Remark. It remains open whether an example like the above exists
fora = 1.
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