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ON THE HAUSDORFF DIMENSION OF A SET OF COMPLEX
CONTINUED FRACTIONS

BY
R. J. GaroNER AND R. D. MauLpin'

1. Introduction

This note arose from some general considerations concerning geomeltric
representations of the shift operator, Specifically, consider an infinite set
T, the product space TV, and shift operator § : TV — TV defined by

S((Ilv I, Iy, "‘)) = (f:, h. "')'

One can ask whether there are some natural measures on T" with respect
to which § is ergodic or mixing. From our point of view the answer depends
on the geometric structure of a representation of this space. For example.
if T = N, then there are, of course. 2™ probability measures with respect
to which §.is mixing. This can bé seen by noting that the permutations =
of N induce distinct mixing measures y * h,, where y is Gauss' measure
and h, is the natural homeomorphism of NV induced by #. However, if
one considers the extremely natural representation of N™ via the canonical
continued fraction expansion of the irrational numbers in [0, 1], then there
is only one ergodic measure which is connected to the geometric structure
of this set, Gauss' measure. (See, for example {i, p. 40]).) Gauss® measure
is the only ergodic measure which is absolutely continuous with respect to
Lebesgue measure; this is proved in (4, p. 114]. _
Let us consider T = N X Z. Again, there are 2™ measures with respect
to which the shift is ergodic. There is a natural geometric representation
of (N x Z)¥. As is shown here, the map
1
h((by. by, ..)) =

b i

+ —————
i
b2+...

is a homeomorphism of (N x Z)" onto a subset of the open disc in the
plane with center (1/2, 0) and radius 1/2. Our question is, is there an
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A SET OF COMPLEX CONTINUED FRACTIONS 335

ergodic measure which is naturally connected to the geometric structure
of this representation? By analogy with the representation of N¥, one could
speculate that perhaps there is some ergodic measure which is absolutely
continuous with respect to planar Lebesgue measure. However, we shall
show that the planar measure of our representation is 2ero. Perhaps more
to the point is the fact that the representation of N* has Hausdorff dimension
one and that Gauss’ measure is absolutely continuous with respect 1o the
corresponding Hausdorfl measure, obtained from the Hausdorff measure
function k(1} = .

The purpose of this note is to obtain some information concerning the
Hausdorff dimension of our representation of (N X ZY¥. The Hausdorfl
dimension of the set remains an unsolved problem together with the problem
of whether there is an ergodic measure which is absolutely continuous with
respect to the corresponding Hausdorll measure. We show that the Hausdorff
dimension of our representation is strictly between i and 2.

2. Preliminary Lemmas
Kb,n=12 .. are complex numbers, we shall use the notation

LR
b+ byt
for the continued fraction with partial numerators equal to one and partial
denominators by, bs, ... . Then g,, the denominator of the n-th convergent
Polq. to this continued fraction, is defined by g0 = 1, @1 = b,, and
Goer = baer Gx + Gu-aforn =L |
It is shown in this section that the convergents Palqa converge provided
that each b, € N x Z. We call J the set of all limits of such continued
fractions. The geometry of J is indicated in Figs. 1-4. :
Basic results concerning complex continued fractions may be found in
{6]. In order to prove convergence and our Hausdorff dimension estimates
for J we need lower bounds for q,, an upper bound on the distance between
two continued fractions with the same first n elements, and other results.
We have not attempted, however, to obtain best possible constants in
Lemmas 2.3 and 2.4, as the values of these constants are not crucial to
the dimension estimates. The corresponding constants in the theory of real
continued fractions are 1 and (\/5 + 1)/2, respectively (see {5, p. 136]}.

Lemma 2.1, Suppose Re(z) = 1. Then 1/2 - /2 = 1/2.

Lenmma 2.2, Suppose Re(b,) = | for each n. Then
1

Qn-1 L
2. 2

s%‘ forn=12,....
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Fig. 1 Fig. 2

2i o

\

Fig. 4

Proof. This is true for n = 1 by Lemma 2.1. Suppose it is true for
n < k. We have

-t _ Gi-1 - 1
@ b + @iy by + T2
ds-1
As Re(b,) =1, Re(by + gi-2/g:-1) = 1 by the inductive hypothesis, so
91 1 1
4 2 2

by Lemma 2.1.
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We advise the reader who wishes to follow the proofs of Lemmas 2.3,
2 4 and 2.6 that {his may be easier if he draws pictures to illustrate the
fairly simple geometry involved. - : C e e

Lemma 2.3, Suppose v, wand b, € {z : Re(z) = 1}, forn = 1, 2, ...

Then
_‘_i...ll,(}_l...ii
b;""b}"‘ +b,,+v b1+b3_+ +b,,+w (‘)
o V5
2qdGn + Ga-ill
Proof. The left-hand side of (1) is easily shown to be

v w U - W
o - wl jo = >

|UQn + q:'l-—iqun + qu-—!l -

arlo- (o)l - (52)

Set 25 = ~@n-1/g.- Then [z + 172l < 1/2 by Lemma 2.2.

Suppose, without loss of generality, that Im{v) = Im(w). Choose v’ with
Re(’) = 1, Im(v") = Im(v} and

W' - 2 = v - zd.
Similarly, choose w' with Re(w’) = 1, Im(w’) < Im{w) and
W~z = |w — zl.
Let v be the point with Re(t") | and Im(v") = Im(z). From the

i

geometry,
W -l < - v| and " - w < " - w.
So
w=-wslp-v]+h-w=shp - + o~ wl=p - wl
Consequently
v — w| _ T
- = ; (3
o = zdlw =z ' = zdiw - zd |
Let o' — v'| = a. W' — v = b, and Jzo — v"| = c. Then
IU' - “)’! - a + b <.]_ . i (4)
W —zdw —zd i@+ +c) ¢ -zl

Now |z + 1/2| < 1/2, so putting 2, = Xo + i¥o, We have | ~ X = |
= 2y, and thus 5(1 - x4 = (1 - ) + yi So

V3

TIU" -z =1 - zd. (5}
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By (2), (3), (4) and (5), the left-hand side of (1) is no greater than
i _ Vr"s'" i \/5 |
o — zd  Zgdl —zd  Uadga + gl
Note. A more careful argument shows that the constant V5/2 in (5)

can be replaced by 3/24/2 (take 2, to be the point where the tangent through
(1, 0) meets the circle |z + 1/2| = 1/2).

LemMa 2.4. Suppose b, € N x Zforn = 1,2, ... Then lg. = n for
n=1%2and3, and

g, = (&l

a1
5 ) forn= 1.

Proof. Clearly, lg,] = bl = 1. Now g, = b:by + 1 let
by = a + vi, by =B + &i,
so thata =1, 8 = 1. Then
gt = &?B? + 2a8 + (y8 — V) + &’8% + ¥
=3+ (y5 ~ 1) + ™8 + ¥B%
Iflyl = 1 or 5] = 1, we have jg)ff = 4 ify = 8 = 0,
lgff =3 + (v6 — 1 = 4

So lga} = 2.
It may be verified directly, in a similar manner, that lgsl = 3.
Now suppose n = 3. We have

Gnet

qn

Now |g.-1/gs — 1/2] < 1/2 by Lemma 2.2 and Re(b,.,) = 1. It is then
easily verified that for b,., # I, {byet + Gn-i/q4 = d, Where d is the
distance from the origin to the circle (x — 3/27 + (y = I = 1/4. Thus

= tbnd—l + g_n_:_i

13-1
Ig:—;-f—' zd = -—\/:-i"——— provided b,., # L. (6)
Suppose now that b,., = 1. Then
Guetl = (o, + 1) + Toz2 ag:-(-\-/—ri-i—!z @
Qn-l " a1 2

The estimate

e (ﬂi—-’-)

2

now follows from (6) and (7) by induction.
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TuroreM 2.5, Suppose b, €N x Zforn = 1,2, ... . Then the continued

Sraction -+ converges 1o a unique complex number in the open

by *+ by +
disc |z — 1/2| < 1/2.

Proof. This follows from Lemmas 2.3 and 2.4, We note however that
convergence can be deduced, assuming only Re(b,) = 1 for each a, from
the *‘parabola’ theorem [6. Theorem 14.2], To see this, note that it suffices
to prove convergence for the continued fraction

—f

a; @
i 1+

+ +

where a, = 1/b.b,., (the equivalence transformation {6, p. 20]. Noting
also that |1/, ~ 1/2] =< 172, for each n, by Lemma 2.1, we see that the

result follows if forall z;, i = 1,2, with |z, — 1/2] s 1/2,i = 1,2, we
have
i
lzizd - Re(ziz) < 5. @®)
We may suppose that |z; — 1/2] = 1/2, j = 1, 2, i.e., setling z; =

re® i = 1,2, thaty, = cosf;, i = 1, 2. _
Now it is easy to show that the point z,2; = r,r.e"® ' lies in the cardioid
region

r< %(I + cos 8), M)
which in turn is contained inside the parabolic region (8).

Now suppose we have
| 1 1 1

TR —Je—

bl+b1‘ —C|+Cz+

Notice that |1/z — 1/2] = 1/2 if and only if Re(z) = I; so

LS R N
b, + b, + 2

It follows immediately that b, = ¢|, and b, = ¢, can then be proved by
induction. Consequently the representation is unique.
It follows that the map A defined by

{ 1
<-§ for Re(bz + -5—3 + ) > Re(by) = 1.

h((bs, by, by. .0} = 1

1
T b+ by +

"

is a homeomorphism of (N x Z)¥ with the product topology onto the set
J.
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LemMa 2.6, Let Jyn be the set of values of continued fractions
.g.;+.g.:+..-,uhereb-m +n',=f.‘ < Mand -N < n; < N for
j = 1,2, .... Then there is a constant K > 0, depending only on M and
N, such that zf z, and 1., are points in Jyn with

S T W R SO N |
Dt byt by Ut Tb byt
o r o
+lbu+wn-o-l+ )

and V,.y # W,aey, then .
K

— - R
lew = 2 19,4Gn + qu-

(10)

Proof. Set

1 1
v=v, 0t e and w=w,, +

Wyez +

Then

J__ iU"‘"WI

B !an + QA-l"wq:u + qn-!t' (”)
b~ wi

v - (‘“‘qu-—t) i _ (-anl)
U1 qn
We first show Jyy C F,, where F, is a closed set whose distance from ...

the origin is positive. Note that the transformation w = 1/z takes the line
x = ¢ onto the circle |z — 1/2¢| = 1/2lc] and the line y = ¢ onto the circle

Iz + if2¢| = 1/2|cl.
|
—t Ly,
2 2|c|}

la.?

Let

S,={z:

Then Jyn C F, where
Fy = SNS,UTyUT_yuUio)),

which has positive distance from the origin, 6.

Next we need to show that J, in fact lies inside a slightly smaller closed
set F, C F,. The points (1 = i) are carried by w = 1/z to the points
(1/2 % if2). Suppose

zZ = van ejMN'

LA
by + by +
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Then

1 where ' € Jun C F,.

Z'——-
b, + 7'

As F, has positive distance from the origin, the set

{b,+~l-;:z’EF,}
z

has positive distance from (I = i). Consequently Jy,v C F,, where Fy is
a closed subset of F, whose distance from the points (1/2 * i/2) is positive.

It follows that the distance between the sets (v, + Jan) and {w,., +
Jun) (vector addition), for admissible v,., # w,., is bounded below by a
positive constant ¢, which depends only on M and N. Hence

_ [ ~ wj>e. (12)
Now the point —g,_,/q, lies in the circle |z + 1/2] < 1/2; so we certainly
have
b - (:..gm) < VM + 27+ (N + 1) (13)
and

W =~ (= qur/a)l S VIM + 27 + (N + 1)
s VM + 27 + (N + D~ (=g, /gl (14)
Finally, combining (11), (12), (13) and (14), we obtain (10), as required.

12+i/2

Figure 5
The Set Fy in Lemma 2.6



342 R. J. GARDNER AND R. D. MAULDIN

3. Hausdor{lT Dimension

We now estimate the measure of our set-of ‘continued fractions, Qur
methods are not new, but follow the techniques devised by V. Jarnik as
exposited in [5, Chapter 3, §2]). We refer to [5] also for an introduction to
Hausdorff measure.

THEorEM 3.1, The Haésdor[f dimension of J is less than 2.

Proof. Let Kby, bs, ..., b,) denote the set of values of the continued
fractions whose first entries are by, bs, ..., b,, and let d(b,, b,, ..., b,) be
the diameter of this set. By Lemma 2.3,

29.(gn + g0 a8
where B = | + g,../q,, and, in view of Lemma 2.2, |8 - 3/2| < 1/2.

Now
Vs

ZIQR‘- l(q:!4 1 + q:l)‘

VS

" abuer + B~ Bry + A"

d(blt b!- raey bn)

(15

d(bh bz- ey brn bn~t) =

(16)

as in [5, p. 141}

~Suppose s > 0. By the argument of {5, Theorem 61}, u“'(J) = 0 for any
s for which there exist, for each n, open sets E(by, b,, ..., b,), containing
Kby, by, ..., b,), with

Y [dEh,, by o by by e DINAEY, by, . B < 1. (17)

bas 1 ENXZ

Thus, by (15), {16) and (17), it will suffice to show that for some ¢ > 0,
8P

iz Uz + B = Hiz + )"

Putz =m + ni, wheremeNandne Z,and 8 = o + yi. We consider
the following sum which dominates the sum in (18);

@+NT 3 :

mtat m + a— P 4 (0 + ¥PNm + @) + (n + y) ot

<1,for|8 ~ 3/2 = 1/2. (18)

The integral test gives the convergence of this sum for ¢ < 1. Consequently
the sum converges uniformly in ¢ in the interval 0 < g < 1/2, by the
Weierstrass M test, It follows that if (18) holds for ¢ = 0, it also hold for
sufficiently small £ > 0. Thus. we will consider the corresponding sum

b 3 - o ! .
@+NL Y et e T iy 9
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We first fix m and calculate the sum over n, by integrating
fz) = weotrg
TG E e mra—- D+ 9+ nt )]

along the square contour with corners (N + 1/2}(x1 = i), and applying
the theory of residues. (Or, express (19) as the sum of two series by partial
fractions and apply (3. p. 82, (4)].)

Then (19) becomes

’ - I
(o + ) E,(z(m T a) - t)

" sinh 29(m + a — 1)
- (cosh 27(m + a — 1) — cos 2my)in + & — 1)

- sinh 2w{m + a)
(cosh 2m(m + a} — cos 2oy)m + @)

sinh Jrra
{cosh 2re ~ cos 2aylala — 1)

= (a® + y’)w[

-d 5: sinh 27(m + a)
oy {cosh 2nl{m + &) = cos 2ay)(2m + 2a ~ DEm + 2a)2m 4+ 22 + 1)

< (@ '+ N sinh 2ma
- YT Cosh Tra — Ded2a — 1)

i sinh 2ir(m + «a)
Lo (cosh 2n(m + a) + 1)2m + 2& — 1X2m + 2a)0m + 2a + 1)
cothnma
<Qa - [a(2af —
: 1
- dtanhma Y e T Tam + 30Y0m + 2a + 1)] (20)

To obtain (20), we have first noted that {a ~ 3/2)* + ¥* < 1/4, so that
o + ¥ = 3a - 2. Also,

sinh 2w(m + )
cosh2n(m + a) + 1

= tanhw{m + «) = tanhwa,

as tanh x is increasing.
By (18) it will suffice to show that

k
1
,,,E_o Qm + 2a - D2m + 2a)Q2m + 2a + 1)

cothrra | cothra _ 1 2
4 ala - 1D Ga - D7 @

for some k and all a with | € a < 2,
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By direct calculation. e.g., for a = 2. it can be scen that (21) is false
fork = 0and & = 1. However, with the aid of a computer it can be shown
that (21} is true for & = 2, as follows.

With the estimate cothra < coth 3 < 1.01, it is enough to prove

: i
mz,o 2m + 2a — DQ2m + 2a)2m + 2a + 1) 22

gy 1.01
dala — 1) 4(3a ~ 2)(3.142)

>0

Simplifying the left-hand side of (22), we obtain a ninth degree polyaomial
ple) = Sl ¢’ over the canonical denominator of tenth degree. (With
the coefficients rounded down to the nearest integer, p(a) = 1034’ +
43850 + 434547 — 14031a® ~ 34510a° ~ 5592a‘ + 49092’ + 3912947
— 9461 — 8868.) It can now be verified that, for | < a =< 2,

9
pa) < el - i+ 27" <3100
iw}
Thus to show p(e) > 0 for 1 < a < 2, it suffices to check that p(a) >
6000 for 5000 equally spaced values of @ in the range 1 S a < 2.
We thank J. Neuberger for writing the necessary programs. This completes
- the proof.

Remark. The sum in (20) may also be estimated using {3, p. 541, (19)
and (20), and the properties of the psi function Y(x) = d(logl'(x))/dx (see,
for example, [2. p. 147]). However this approach seems also, eventually,
to require the use of a compulter,

THeoREM 3.2. The Hausdorff dimension of J is greater than 1.

Proof. It can actually be shown that there is an M > 0 and N > 0 such
that the set J,,» of values of the continued fraction

11
by + byt

has Hausdorff dimension greater than 1.

Again the proof follows closely that in {5. p. 141-147]. It is clear that
Jyy is a compact, perfect set and that the estimate of Lemma 2 [S, p. 141],
may be replaced by that of our Lemma 2.6, To show that pu"'(Jyn) is
positive, it then suffices to show that

- where b, = m; + nji, 1 sm<Madp]<Nj= 12, ..,

SIS I
- ? T 5 ey B 2
i~ it I((m + o - 1)- + (ﬂ + ‘y)')((m -+ a)' 3+ (ﬂ o+ .},)-)]J... l ( 3)

mef N

for some s > 1, and all B = a + yi with |8 — 3/2] < I/2,
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To this end, we consider

i E 18l

D Um At a — 0 4 (n yHOn + @) + (n+ )R

x =
]

=2 2

me=l pe =x

(m+af +(n +y)

_ . o« sinh 2a(m + a) ,
mat (1 + @) (cosh 2wim + o) — cos 2wy) (24)

again by the theory of residues (or see (3. p. 82, (4)}).
As before,

sinh 2m(m + a)
cosh 2ir{m + &) — cos 2oy

> tanhwa.

So (24) is divergent for all a with | = a < 2, and we may choose M and
N so that

S 3 8 -1

Mt a S m + a = 1 + (n + P Nim + & + (n + Y7

forall 8 = o + yiwith|g8 - 3/2] < 1/2, and hence an s > | such that
(23) holds.
The proof is now complete.

Added in proof. The proof of (22) can also be achieved by studying the
changes of sign of the derivative p'(a) of the polynomial p(a). This method
still requires the use of a pocket calculator, however. We thank G. Siebert
for pointing out this alternative approach.
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