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ON THE BOREL CLASS
OF THE DERIVED SET OPERATOR

BY
DoucLas CENZER and R. Danie MAULDIN (*)

RESUME. — Soit X une espace topologique métrisable compact, 2* I'espace topologique des
compacts de X avec la topologie de Hausdorff et soit D la dérivation de Cantor. Kuratowski a
démontré que D est borélienne et précisément de la deuxiéme classe, et a posé le probléme de
trouver la classe précise des dérivés successifs D*. Nous démontrons que les classes précises sont
non bornées dans ®, ; D* n’est pas de la classe « et si A est un ordinal de seconde espéce, alors D*
est précisément de la classe A + 1.

ABSTRACT. — KURATOWSKI showed that the derived set operator D, acting on the space 2* of
closed subsets of a metric space X, is a Borel map of class exactly two and posed the problem of
determining the precise classes of the higher order derivatives D*. We show that the exact
classes of the higher derivatives D®are unboundedin®,. In particular, we show that D*is not of
class @ and that, for limit ordinals A D* is of Borel class exactly A + 1. The proof involves the
construction of a sub-lattice A~ of the space of closed subsets of 2" on which (1) both the union
and intersection maps are continuous lattice homomorphisms, (2) D is a lattice homomorphism,
and (3) the derived set order map is a lattice homomorphism, and (3) the derived set order mapis a
lattice homomorphism into ®,.

Introduction

In this paper, we consider the Borel class of the derived set operator D and
its transfinite iterates D° acting on the space 2* of closed subsets of a metric
space X. The study of this operator seems to have been initiated by
KuraTowski[5]. Insection one, we recount his result that the operator D is
exactly of class two. Many years later, KuraTOWsKI [8] posed the problem
of determining the precise classes of the operators D® (also known as the

(*) Texte regu le 31 juillet 1981, révisé le 24 mai 1982.
D. CENZER, University of Florida, Department of Mathematics, 201 Walker Hall, Gainesville,
Florida 32611, USA.

R. D. MAULDIN, North Texas State University, Department of Mathematics, P.O. Box 5117,
Denton, Texas 76203 U.S.A.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE — 0037-9484/1982/357/$ 5.00
© Gauthier-Villars



358 D. CENZER AND D. MAULDIN

derivatives of higher order). We obtain in section one simple upper bounds
for the classes of these operators.

The remainder of the paper deals primarily with the more difficult problem
of finding some lower bounds on the complexity of these operators. In
section two, we demonstrate that the exact classes of the operators D® are
unbounded in ,.

In sections four and six, we prove that, for each countable ordinal a, the
iterated derived set operator D is not of Borel class . Combined with
results from section two, this shows that for limit ordinals A, D* is exactly of
class A + 1. Section four contains the finite case and section six the infinite
case; the two cases require slightly different methods.

We actually show, for each a, that the family (D*)~}({ & }) of closed
subsets F of the Cantor set (2V) such that D*(F) = & is not both of additive
and multiplicative class a. This follows from the construction, for each
subset 4 of N¥ of additive class a (if a is even) or multiplicative class o (if o is
odd), of a continuous function H mapping N into the space of closed subsets
of 2V such that A = H™Y(D*)"({&})). The argument outlined here is
easily accomplished for o = 1. The proof then proceeds by transfinite
induction on a. The induction step requires that the continuous
. mappings H, constructed for sets A, be nicely “stitched together” into
mappings which will serve for U 4, and N A4,.

Difficulties arise both in assuring the continuity of the stitched function H
and in controlling the derived set order of the images H(x). These difficulties
are primarily due to two unfortunate facts : (1) The intersection map from
2% x 2¥ into 2% is not continuous; (2) The derived set operator D is not a
lattice homomorphism on the lattice of closed subsets of X — — D(F n G)
does not always equal D(F) n D(G).

To overcome these difficulties, we describe in section five a sublattice A" of
the space of closed subsets of 2" where the behavior of various operators is
more cooperative. In particular, both the union and intersection maps will
be continuous lattice homomorphisms, the derived set operator D will be a
lattice homomorphism and the derived set order map will be a lattice
homomorphism from 4" into ®,. In addition, a stitching operator from
AN into A will be defined which is continuous and which commutes
with D. In effect, the stitching operator builds sets of higher derived set
order and the operator D serves to unstitch the set constructed. In section
six, we use this machinery to obtain lower bounds on the Borel classes of the
operators D°
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BOREL CLASS OF DERIVED SET OPERATOR 359

In section four, a slightly different stitching operator with similar properties
is used to obtain better lower bounds on the Borel classes of the finitely
iterated derived set operators D". The needed machinery is developed in
section three.

Some open problems are stated in section seven.

It should be mentioned that the derived set operator has been studied
recently as an important example of derivation[2, 3], as an inductive
operator [1, p. 61] and as a classical operator [4, 11]. It has also played a
useful role in selection theory [12].

We would like to thank the referee for carefully reading and correcting the
original manuscript.

1. The Borel class of the derived set operator

Let (X, p) be an uncountable compact metric space. The space 2¥ of
closed subsets of X, provided with the exponential topology [2, p. 45] has a
subbase of open sets of two types, for any open V < X :

C(V)={F:FcV}
and V) ={F:FAV#g)}.

Note that each C(V) is of the form | J,I(V,) and also each I(V) is of the
form | ),C(V,). It is easily seen that the space 2* is also compact and
metrizable.

The Borel class of a set or mapping may be defined as follows. Open sets
are of additive class zero or ) 3; closed sets are of multiplicative class zero or
H?. For any ordinal o, a set is of additive class « or Zf,, , if it is a countable
union of sets of Borel class < o; similarly, a set is of multiplicative class a or
[12+. if it is a countable intersection of sets of class <a. For limit
ordinals A, a set is Y ¢ if it is ) o for some o < A. This differs from modern
usage, where Y5 = our Y 1.,. Our notation is designed to agree with the
definition of a map of class a. A mapping H is of Borel class a if H™!(V) is

0., for any open set V. A set or mapping is Borel class exactly a if it is of
class o but not of any class < a.

The derived set operator D maps 2* into 2* and is defined by

D(F)=F = {x: xeCl(F — {x}).
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360 D. CENZER AND D. MAULDIN

Note that D(F)is also { x: F n V isinfinite for any open V containing x}. In
this section we recall Kuratowski’s theorem [5] that the operator D is of
Borel class exactly two.

This means that (1) for any open M < 2%, D~Y(M) is a G, set and (2) for
some open M < 2X, D™Y(M) is not an F, set.
To prove part (1), it suffices to consider only subbasic open sets.

LemMA 1.1. — ForanyopenV = X,{ F:F NV isfinite } is an F, subset of 2*.

Proof. — Since { F: F n V is fmite } = |, { F: [F A V| < m}, it is sufficient
to show that {F: |[FnV|>m} is open for each m. Suppose now that
|Fo V| = m; then are disjoint open subsets V, ..., V,, of V such that
FonV,# & for each i. Let M be the open set I(V))nI(V,))n ... nI(V,);
then Foe M < { F: |F n V| > m}, proving that the latter set is open. [

Now fix an open subset V of X and, for each n, let
U,={x:p(x, X —V)<lI/n} and let

V, ={x plx, X — V)>I/n}.
Then

D NC(V)={F:F cV}=\),{F:FnU,is finite}
and is an F_ set by Lemma 1.1.
DM(V)={F-FnV+£g) = (Un { F: F "V, is infinite }

and is therefore a G, set.

This shows that D is of Borel class 2; we next show that D is not of Borel
class one.

First of all, notice that { F} ={F: Fc &} ={F: FAnX = &} is both
open and closed. If D were of Borel class 1 then D~ !({ & } ) would have to be
both F,and G;. Now D™ }({ & }) = { F: Fisfinite } and is therefore an F, set
by Lemma 1.1. Also, D™*({ & }) is dense (each nonempty C(V) and I(V)
clearly contain finite sets).

Now suppose that X is perfect, that is, D(X) = X. Then
2X — D"Y{&}) = { F: F is infinite }

is also dense (each I(V) contains X and each C(V) contains some closed ball);
thissetis G;. If D™ () were also G, then we would have disjoint dense G;
sets, which is impossible in a compact space.
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BOREL CLASS OF DERIVED SET OPERATOR 361

Finally, any uncountable space X = PuS for some perfect P -and
countable S. The argument above leads now to disjoint dense G; sets in the
closed subspace 2F, which is again impossible.

This completes the proof of the following.

" TueorEM 1.2. — For any uncountable, compact metric space X, the derived
set operator is of Borel class exactly two.

The a'th iterate D* of the derived set operator D may be defined
for all ordinals a by letting D**}(F)= D(D¥F)) for all o and
DMF)=n{DYF):a <A} for limit ordinalsA. (Of course D°(F)
= F.) One direction of Theorem 1.2 has a natural extension to all the
iterates of D.

THEOREM 1.3. — For any finite n and any limit ordinal A:
(a) D" is of Borel class 2n;

(b) D" is of class A + 1;

(c) D**"isof class A + 2n + 1.

Proof. — For n = 1, this is simply part (1) of Theorem 1.2. The remainder
of the proof proceeds by transfinite induction. There are two cases.

(Successor): Let U be an open subset of 2X. For any ordinal o,
(D)~} (U) = (D)~ YD~ (V).

By the (n = 1) case, D~ *(U) = (J, [ )m V(n, m) for some open sets V(n, m).
Then (D**')"}(U) = o (m(D*) " '(V(n, m)). Now if a =n and D" is of _
Borel class 2n, then each (D)~ }(V(n, m)) is of Borel class 2n,so (D"* )~ }(U)is
of Borel class 2(n + 1). Since U was arbitrary, the operator D"*! is of Borel
class 2(n + 1), which completes the proof of part (a). The prof of part (c) is
similarly obtained when a = A + n.

(Limit): Let A be a countable limit ordinal. By the induction hypothesis,
we may assume that, for all a < A, D* is of Borel class < A. Recall that
DYK) = n{D%K): « <L}, so that for any closed subset K of X and
any open subset U of 2¥, K e(D*)"}(U) if and only if n { DXK): a <AL} e U.
To show that D* is of Borel class A + 1, it clearly suffices to show that
(DY~ Y(I(V)) and (D*)”}(C(V)) are both 7., for any open subset V
of X. Now by compactness, n{D¥K): a <A}eC(V) if and only if
D¥K)c V for some a <A. So, (DY) YC(V)) = v {(DY) HC(V)): a < l}
and is of additive Borel classA. Let V = U M,, where each M,
closed.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



362 D. CENZER AND D. MAULDIN -

Then
Ke(D) (I(V)) « @n) DNK)n M, # &
- @3n)Va<A) DYK)n M, # .

The second equivalence follows from the compactness of X. Restating, we
have

DYV = Un Na<a (D)™ HAM,).

Thus, (D)~Y(I(V)) is of additive Borel class A + 1. Therefore, D* is a
mapping of class A + 1.

The remainder of this paper is devoted primarily to finding lower for the
Borel classes of the mappings D°.

2. The mappings D* are of unboundel Borel class

In this section, we prove that when X is the Polish space 2" there is no
countable ordinal B such that each mapping D* is of Borel class B.

LEmMaA 2.1. — (Sierpinski-Mazurkiewicz) For any analytic subset A of a
Polish space X, there is a closed subset M of X x 2V such that, for all x,x€ A if
and only if M, is uncountable. (M,={y: (x, y)eM}) O

Let A be an analytic of a Polish space X and let the closed subset M of
X x 2V be given by Lemma 2.1. Define the upper semi-continuous map
from X into the space of closed subsets of 2N by Y(x) = M, [6,p. 58]. Since
any closed set F is countable if and only if D¥F) = & for some countable
ordinal o, we now have:

*) X —A4=wca, VD) ({S}).

LeMMA 2.2. — The decomposition (*) satisfies the Boundedness Principle,
that is, for any analytic subset E of X — A, there is a countable ordinal B such
that Ec ¢y~ '(D¥)~Y({ D }).

Proof. — Let T = (E x 2Y)n M. Then T is analytic and, for all x, either
T.= or T,=M, and xeX — A, so that T, is closed and countable.
Thus for each x, D¥T,) = & for some countable ordinal B,, that is, T, is
scattered. Now by a theorem of the second author (Theorem L of [10]),
there is a countable ordinal B such that D¥(T,) = ¢J for all xe X.
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THEOREM 2.3. — There is no countable ordinal B such that each mapping D* is
of Borel class B.

Proof. — Suppose by way of contradiction that the Borel classes of the
mappings D* were bounded by the countable ordinal . Let A be an
analytic subset of X = 2V x 2" which is universal for the analytic subsets of
2", Then the sets Y~} (D*)~({F}) in the decomposition (*) of X — 4
would all be of Borel class § + 1. But this would now imply, since 4 is
universal, that every Borel subset of 2¥ is of Borel class B + 1, which is of
course false. (This argument is given in Theorem 3 of [10]).

3. The first stitching operator

In this section, we study the action of the derived set operator D on the
space X of closed subsets of 2¥. A needed characterization of the set of
continuous maps from an arbitrary space into ) is given. A countable
subset S of 2" is defined and the action of D on X" N P(S) is described, where
P(S) is the family of subsets of S. A continuous stitching operator ® is
defined for sequences of sets from P(S) and it is shown how the derived set
order. of the resulting stitched set may be determined from the orders of the
components. (The derived set order o(K) of a scattered set K is the least
ordinal a such that D**!(K) = &).

Recall that the space 2" has a countable basis of clopen sets of the form
B(s) = {x: (Vi< k) x(i)=e;}, where s=(ep, €, ..., €_,) is a finite
sequence of Os and 1s.

Let V be an open subset of 2%; then V = U { B(s,): ne N } for some sequence
{s,; neN}. Recall that the space %" has a subbase of sets of the two forms
CV)y={F.FcV} and I(V)={F. FnV # @&}. Now it follows from
compactness that

(3.1 C(V) = U {C(B(sg) U B(sy) U ... uUB(s,): neN }.
Of coursé it will always be true that
(3.2) I(V) = v {I(B(s,): neN }.

Thus in fact & has a subbase of sets of the form I(V) and C(V), where V is
clopen. Also, since the sets C(V) and I(2¥ — V) are complements, these
subbasic open sets are actually clopen.
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364 D. CENZER AND D. MAULDIN

Now let ¥ be a clopen subset of 2" and let
2Y — ¥V = B(s;) U B(sp) U ... U B(s,).
Since F = V if and only if FA(2¥ — V) = &, we have C(V) = ¥ — 12V
— V). Thatis,
(3.3) A — C(V)=1(B(sy))V ... U I(B(sp))-
Equations (3.1, 2 and 3) can now be combined to yield

LeEMMA 34. — Let H map the topological space X into X". Then H is
continuous if and only if H ~ *(I(B(s))) is clopen for every finite sequence s of “ 0”’s
and “17s.

For any (finite or infinite) sequence x of “0”’s and *“ 1’s, let { my, moy + m,
+ 1,my + my + m, + 2, ...} enumerate { n: x(n) = 1}; then x will be coded
by the sequence Qn(x) = {(mgy, my, m,, ... ). (Slanted brackets “( ... »”
will always indicate such a code.) The coded sequence

u={u0), ul), ...)
is said to be a subsequence of v = {v(0), v(1), ... ) if there is an increa-

sing function f mapping the domain of u into the domain of v such that
u(n) = v(f(n)) for all n; this is written ¥ < v.

Define the countable subset S of 2V to he
{x: 3m)(Yn > m) x(n) = 0}.

Then for x € 2V, On(x) is finite if and only if x€ S.  An element of S will usually
be identified with its code. If x(n) = O for all n, then Qn(x) = {); x is also
denoted by 0. For any s = {mgy, my, ..., m,_, > and

t={ng, Ny, ...,m_ o detsxt=st={mg, ...,M_y,Ng, ..., M_1);
the length I[(S)=k. For and F =S and any se€S, let F[s] = {t: steF}.
It should be noted that the subsequence ordering < on S does agree with the
usual Kleene-Brouwer order.

The action of the derived set operator on )" N P(S) is described by the
following.

LEMMa 3.5. — For any closed subset F of 2" which is included in S,any s,te S
and any countable ordinal o:

(@) seD(F) < (Ym)3n > mF[s{n)] # &,

(b) ste D*(F) « te D¥(F[s]).
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BOREL CLASS OF DERIVED SET OPERATOR 365

Proof. — Part (a) just restates the definition of the derived set in terms
of 2V. Part (b)is proved inductionon a. Ifa = 0 oris a limit ordinal, (b) is
obvious. Now suppose that (b) holds for «. Then

steD**! — (VYm)(3n > m) DXF)[st{n)] # &
< (Ym)@3n > m) (D(F[s])[t<{n)] # &
« te D**Y(F[s)).

The first and last equivalences come from part (a); the middle equivalence is
by the induction hypothesis.

Foreachne N u { — 1}, there is a canonical subset C, of S having derived
set order n: C, = {seS: I(s) <n}. It can be seen that, for each n, C, is
closed, D(C, . ) = C,and o(C,) = n. (These last two follow from Lemma 3.7
below.) Also, U{C, neN} =S;S of course is not closed, since it is dense
in 2", '

Notice that, for each n, C,.; ={{(m)ssmeN and seC,}u{0}.
We define the first stitching operator with this in mind.

DEerINITION 3.6. — For any sequence F=(F,, F,, ...) of sets from
H APES),OH={0}u{{(n)s:seF,and neN].

LEMMA 3.7. — For any sequence F = (F,, F,, .. .)ofsetsfrbm)t’ N P(S)and
any natural number k:

®(D**1(F,), D**I(F)), ...) if (Ym)@3n > m) DXF,) # & ;

k+1 ) —
D" (®(F)) = { ®(D** 1(F,), D¥*(F,), ...) — {0} otherwise.

Proof. — Let F = ®(F) and note that F[{n)] = F, for all . We need to
prove that {n)te D***(F) if and only if te D***(F,) and that 0e D**}(F) if
and only if infinitely many D*(F,) are nonempty. The first equivalence
follows from Lemma 3.5(b), since

(n>teD**(F) < 0e D** {(F[(n>t])
0eD**\(F,[1])
t e D**1(F)).

Restating, we now have

DMF)[<{n}] = DXF,).
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366 D. CENZER AND D. MAULDIN

The second equivalence now follows from Lemma 3.5(a), since

0&D**!(F) = D(DXF)) < (Y¥m)(3n > m) DXF)[{n)] # &
o (Ym)@n>m) DNF) # . O

It follows from this lemma that if each F, has finite derived set order and if
FocF,cF,c ..., then

o(®(Fy, Fy, ...) =sup{o(F,) + 1l:neN}.

This fact and the Lemma above could be extended into the transfinite;
however, we are only interested in the finite case.

The continuity of the first stitching operator is given by

Lemma 3.8. — Let (Hy, H,, ...) be a sequence of continuous functions
mapping a topological space X into the space of closed subsets of 2 such that
each H,(x) = S. Then the function H, defined by

H(x) = ®(Ho(x), Hy(x), . ..)),
is also continuous.
Proof. — Recall from Lemma 3.4 that H is continuous if and only if

H™(I(B(s))) is clopen for any finite sequence s of Os and 1s. Thus we may
assume that each H, '(I(B(s))) is clopen. There are two cases.

(i) If s = 0" for some n, then H™}(I(B(s))) = X.
(ii) If s = 071t for some n and ¢, then

H™'(I(B(s))) = Hy '(I(B(1))).

It follows that H is continuous.

4. D" is not of Borel class n

Recall from the proof of Theorem 1.2 that for any uncountable compact
metric space X, the family D~ !({ & } ) of finite subsets of X isan F,butnota
G; subset of the space 2X of closed subsets of X. If X is the Cantor set 2",
then D™'({ F})nS = C,, where S and C, are defined above in section
three. In this section, we show that D~ '({ & }) (and C,) are universal F,,
sets, that is, for any F, subset B of N¥, there is a continuous function H
mapping N into & such that B=H D" '({&})) — B is said to be
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BOREL CLASS OF DERIVED SET OPERATOR 367

reducible to D™*({ & }). Similarly, we show that every set of additive class
k + 1 (if k is even) or multiplicative class k + 1 (if k is odd) is reducible to
DY)~ Y{Z}). Itwillfollow from this result that D*** cannot be of Borel
class k + 1.

ProrosITION 4.1. — For any F, subset B of N, there is.a continuous
function H mapping N¥ into X such that, for all x, x € B if and only if H(x) is
finite; furthermore, each H(x) = C,.

Proof. — Suppose that xe B « (Im)(Vn) R,, ,(x), with each R,, , clopen; we
assume without loss of generality that each R,,, = R+, Let

H(x) = {{2™3": 1R, (x) and (Vi < m)R,, {x) }.

It is clear that H(x) = C, and that, for each m, at most one { 23" ) belong
to H(x). Now suppose first that xeB and choose m such that
(Vn)R,, ,(x). Then for any p > m,no (273" ) can belong to H(x). It follows
that H(x) contains at most m element and is therefore finite. Suppose now
that x¢ B; for each m, let n(m) be the least n such that 71 R, ,,(x) Then
H(x) = {2™3"™: me N ] and is infinite.

It remains to be seen that H is continuous. Recall from Lemma 3.4
that H is continuous provided that each H~*(I(B(s))) is clopen. There are
three cases. If s =07 for some p, then H ™ '(I(B((s))) = NV. If s =0r1,
where p =2"3", then H (I(B(s))) = (RmoNRp1N..."R,,-1)— R
Otherwise, H Y(I(B(s))) = &. O

Restating the conclusion of Proposition 4.1, we have

B=H"'D"'({D}).

Now if D were of Borel class one, then, since { & } is clopen, B would have to
beboth F,and G;. However, it is well know that there exist subsets B of N¥
which are F,but not G;(see KuraTowski and MostowsklI [9], p. 425). This
is an alternative proof that D is not of Borel class one. More generally, we
need the following from [9].

PRrOPOSITION 4.2, — For any countable ordinal o, there exists a subset of N¥
which is of additive Borel class a but not of multiplicative class a. [

THEOREM 4.3. — For any natural number k and any subset A of N® which is
Y0., (if k is even) or [, (if k is odd), there is a continuous function H
mapping NV into the space of closed subsets of 2V such that, for all x,

(@) H(x) € Cy4 s
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368 D. CENZER AND D. MAULDIN

(b) xe A if and only if D**{(H(x)) = &
(c) x¢ A if and only if D***(H(x)) = {0}.
Proof. — For k = 0, this is just a restatement of Proposition 4.1. The proof

now proceeds by induction on k. Suppose therefore that the result holds for
k — 1 and that either

(i) kiseven and 4 = | J,A,, where each 4, c 4,,, and is []{,; or

(ii) kisoddand 4 = ﬂ,, A,,whereeach 4, > A,,,andis)y,,. Ineither
case, we have

xed o {n:x¢A,} is finite.

By the induction hypothesis, there are continuous maps H, such that each
H,(x) = C,, and

x€ A, « DXH,(x) = &
x¢ A, «» DXH,(x)) = {0}.

and

Now let H(x) = ®(Hy(x), H, (x), ...)) for all xeN". It follows from
Definition 3.6 that H(x) = C,.,; this implies that D***(H(x)) is either {0}
or J.

Suppose now that xe 4. Then { n: x ¢ 4, } is finite, so that D¥(H (x)) # &
for only finitely many n. It follows from Lemma 3.7 that

D**'H(x) =N, &, D, ...) —{0} = 2.

Suppose next that x¢ A. Then infinitely many D"(H,,(x)) # J, so by
Lemma 3.7

D**'H(x) = ™D, &, &, ...)={0}.
Finally, Lemma 3.8 implies that the map H is continuous. [J

COROLLARY 4.4 — For all finite k > 0, the iterated derived set operator D*
is not of Borel class k.

Proof. — Suppose that k is odd and let A4 be a subset of N¥ whichis ) 7.,
but not []?+,, as given by Proposition 42. By Theorem 4.3, there is a
continuous H such that

A=H DY (D}

If D* were of Borel class k, then A would have to be both Y., and
[10+,- This contradiction establishes the fact that D* is not of Borel
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class k. If k is even, the proof is the same except for replacing A with
N — A, which is []{., but not 7, ,.

Unfortunately, the methods of sections three and four cannot be directly
extended to the transfinite. The proof that D® is not of Borel class o comes
in section six and depends on techniques developed in section five.

5. Normal sets

In this section, the family .#° of normal subsets of 2" is defined and
studied. It is shown that 4 is a sublattice of under union and intersection
and that the derived set order map o is a lattice homomorphism from A"
onto ®,. A stitching operator 0 is defined for sequences of normal sets and
it is shown how the derived set order of the resulting stitched set may be
determined from the orders of the components. The sequence of canonical
sets C, of derived set order n is extended into the transfinite. A
characterization of the set of continuous maps from an arbitrary space
into 4 is given and is used to show that the union, intersection and stitching
operations are all continuous over A".

DEFINITION 5.1. — A subset F of 2" is said to be normal provided that F is
closed, F = S and for all s, t€S and all ordinals a:

(1) whenever s <t and t € D*(F), then se D*(F);

(2) whenever se D***(F), then (3m)(¥n > m) s {n ) € D*(F).

The sets C, defined in section three are all normal. Note that if F is
normal, then D%F) is normal for all « and 0 e D*F)(F).

LeMMA 5.2. — If F and G are normal, then F U G and F n G are also normal;
in addition, o(F U G) = max (o(F), o(G)) and o(F n G) = min (o(F), o(G)).

Proof. — Suppose that F and G are normal. Then, in fact, for each
ordinal o, we can show:

D*F U G) = D%F)u DYG) and
D%F n G) = D¥F) ~ D¥G).

The lemma follows easily from these equalities, which are proven by induction
on a. As usual, the argument is obvious when a = 0 or a is a limit ordinal.
Consider next the case « = 1. Now for any sets F and G in any topological
space, D(F u G) = D(F) u D(G) and D(F n G) = D(F)n D(G). Suppose now
that se D(F)n D(G). Since F and G are normal, there exist m; and m,
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such that n > m, implies s(n)eF and n > m, implies s(n)>eG. Let
m = max(m,, m,); then n>m implies s(nd>eFNG. It follows that
se D(F n G).

Finally, consider the successor case. Suppose the desired equalities hold
for the ordinal a. Then

D**Y(F n G) = D(D*(F n G))
= D(DYF)nD%G))  (bytheinduction hypothesis)
=D**Y(F)nD**Y(G) (by case a = 1).

The union argument here is similar. []

The second stitching operator acts on the infinite sequence
F=(F,, Fy, F,, ...) of subsets of S according to

DEFINITION 5.3. — &(F) = {xe2¥.(Vpe N)(VseS)(K p)s < On(x)
- seF,)}.
(It is immediate that ©(F) = ®(F) for all F)

Note that 0€6(F) for any F, that {m)»e®(F) if and only if 0eF,, and
that (m, n>e®(F) if and only if (n)eF, and both {(m)> and {(n)
are in 6F). In general, 6(F) is closed under subsequences and, if
{mg, ..., m_, >e0(F), then O€F,, for all i < k.

It is easy to see that, for all n, &(C,, C,, ...))=C,+;- Now let
C,=6(Cy, Cy, C,, ...)); then

Co)={<m°, ...,m,‘_1>2(Vi<k)k—i—lgmi}.

It will follow from Proposition 5.8 below that C, has derived set order w.

We will also show in Proposition 5.8 that if £is a sequence of normal sets,
then 8(F) is also normal. We begin with the following.

LEMMaA 5.4. — For any sequence F = (F,, F,, ...) of sets from X" n P(S),
'8(F) also belongs to X'~ P(S).

Proof. — O(F) = (\a(ses—r, {x: 1({n>s < Qn(x))}; since, for any ¢,
[x: t < Qn(x)} is open, 8(F) is the intersection of closed sets and is therefore
closed, even if the F,s are not.

To see that &(F) = S, suppose by way of contradiction that xe®(F)
and QOn(x)={my, my,m,, ...> is infinite. Then for all Kk,
(my,my, ..., mYeF,; now since F, is closed, we have
(Qn)~Y({my, my, my, ... )>)eF, . But this contradicts F,, = S. [

TOME 110 — 1982 — N° 4



BOREL CLASS OF DERIVED SET OPERATOR 371

The usefulness of the operator 0 lies in its connection with the properties
that the sequence (Fy, F,, ...) possesses “in the limit”. This is indicated by
the following.

LEMMA 5.5 — Let F =(F,, F,, ...) be a sequence from X n P(s) and
suppose that only finitely many F, are nonempty.

Then &(F) is finite, that is, DOF) = &.

Proof. — Suppose that F, is empty for all n>m. Then, for any
s={my, my, ..., m_,>e6(F),eachm; < m(sinceOeF,,). Itfollowsfrom
Lemma 3.5(a) that D(&(F) = &. [

The next lemma gives us control over 8(F) for more complicated sequences
of normal sets.

LEMMA 5.6. — Let F=(F,, F,, ...) be a sequence of normal sets such
that infinitely many F, are nonempty. Then D(&(F)) = &D(F)), where
D(F) = (D(Fo), D(Fy), ...).

Proof. — There are two directions.
(<): Suppose te D(6(F)). Then by Lemma 3.5

(Ym)@3n > mB(F)[t{n)>] # &.

Now by the definition of 8 and its closure under subsequences, there are
infinitely many n such that

(Vp)(VseS) ({ pYs <ti{n) = seF)).

Now for any such n, any p and any seS, (p)s<t implies
{pys{n) <t{n), which implies s(n)eF,. It follows that

(Vp)(Vse8S) ({ p>s <t — seD(F))).

Thus t e 8(D(F)).

(>): Suppose te®D(F). First of all, since infinitely many F, are
nonempty, infinitely many {(n>e®&@F), so that 0e D(®(F)). Thus we may
assume that t # 0. Now by Definition 5.3,

(Yp)(VseS) ({ p>s <t — seD(F))).
Then by (2) of Definition 5.1, we obtain
(Yp)(VseS)Bm)(Vn >m) (( pys <t = s{n)eF)).
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Since there are only finitely many subsequences ¢ p ) s of t, we can take the
maximum of the required “m” and obtain

(3}m)(Vn > m)(Vp)(VseS) (( pds<t = s{ndeF)).

Now fix n, m, p and se S and suppose that {p)>s < t{n). There are two
cases: (This is where ¢ # 0 is used.) -

(1) s=s5'(n) and {p)s’ <t, in which case s=s"{(n)eF, follows
directly.

(2) {p>s < t, in which case s{n)€F,, so that se F, by normality. We
have now shown

@m)(¥n > m)(Vp)(VseS) ((p)s <t{n) — seF)).
By Definition 5.3, this implies
@m)(vn > m) t (n)e6(F)
Finally, by Lemma 3.5, this implies that te D(&(F)). [J

Lemma 5.7. — Let F=(Fy, F,, ...) be a sequence of normal sets
and let y=1lim,., sup,>,(0(F,) + 1). Then for all ordinals o <7Y:
D*6(F)) = 8(D*(F)). Furthermore, D"*}(&(F)) = &.

Proof. — The proof is by induction on a. There are three cases.

(@=1) y=>1 implies that infinitely many F, are nonempty; thus
Lemma 5.6 applies.

(@ + 1): Suppose that D%8(F)) = &(D*(F)) and that o + 1 < y.

Then infinitely many D%(F,) are nonempty, so by Lemma 5.6

8(D(D(F) = DO(D(FY)),

which equals D**(8(£)) by the induction hypothesis.

(limit): Suppose that A is a limit ordinal < y and that the equality holds for
all a < A. There are two directions.

(o): Suppose te®(D*F)). Now for all a <A, D¥F) > DNF), so that
te®(D*(F)). Then, by the induction hypothesis, t e DX8(F)) for all « < A. It
follows that t € DX6(F)).

(c): Suppose te DX6(F)). Then for all a < A, te D*6(F)) by the induction
hypothesis. By Definition 5.3, this means

(Va < \)(Vp)(Vs€S) ((p)s <t — se D¥F,).
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But then
(Vp)(VseS) ({p>s <t — seDNF))).

It follows that t e 8(DX(F)).

Finally, notice that only finitely many o(F,) > v, so that only finitely many
D'(F,) # &. ByLemma 5.5, 8(D"(F))is finite. But we have just shown that
8(D'(F)) = DY(6(F)). It follows that D**1(8(F)) = J as desired. []

ProPOSITION 5.8. — Let F = (F,, F,, ...) bei a sequence of normal sets and
let y = lim,_, ., sup,,», (0(F,) + 1). Then 6(F) is normal and o(6(F)) = .

Proof. — By Definition 5.3, two things are required for 8(F) to be normal:
for all , te S and all ordinals a:

(1) whenever r < t and te D¥6(F)), then re D*(F));

(2) whenever e D**(6(F)), then (3m)(Yn > m) t { n ) € DO(F)).

By Lemma 5.7, it suffices to prove these for a = 0.

(1) Suppose r < te®(F). By Definition 5.3, we have

(Vp)(VseS) ({ p>s<t — seF)).

But { p)>s < r implies { p)>s < t, so the same statement is true with “r” in
place of “t”. Against by Definition 5.3, r e 6(F).

(2) Suppose teD(6(F)). It follows from Lemma 5.5 that infinitely
many F, are nonempty. Then, by Lemma 5.6, te&(D(F)). The desired
conclusion now follows as in the proof of the second inclusion (o) of
Lemma 5.6. [J

We can now extend the family of canonical sets C, of derived set order n
into the transfinite. Recall that C, = 6((C,, C,, C,, ...)). Now fix for
each countable limit ordinal A > © an increasing sequence { a,: ne N } with
sup {a,; neN} =X and each a, > ®. The sets C, can now be defined
uniformly by

DEFINITION 5.9. — (a) C_; = &,

(b) for any o, Cpuy = 8(Cy, Cy, Gy - .21

(c) for any limit ordinal A, C, = 68(C,,,
the fixed sequence corresponding to A.

Caps Coy - - .)) where (g, y, .. .)is
The exact composition of the sets C, depends on the particular family of
sequences (o, @;, ...). However, the important properties of these sets do

not so depend. The following is an easy application of Proposition 5.8.
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ProposiTioN 5.10. — For all countable ordinals o, C, is normal and
olCh=a O

We next consider the continuity of mappings into A4".

LeMMA 5.11. — Let H map the topological space X into the family A" of
normal subsets of 2V. Then H is continuous if and only if, for all teS,
{x: teH(x)} is clopen.

Proof. — Recall from Lemma 3.4 that H is continuous if and only if
H™Y(I(B(s))) is clopen for every finite sequence s of “0”s and “1”s. Let
t=(tosty, ..., tx-1,0,0,...) be a typical element of S and let
s=(to, t1, ..., tx—1)- We claim that, for any normal set F,

teF & FnB(s) # QJ.

The direction (—) is immediate, since te B(s). For the other direction,
suppose re F N B(s); then t <r, so teF by normality. It follows that
{F:teF} =1I(B(s) and therefore {x:teH(x)} = H '(I(B(s). Thus the
family of sets of the form {x: te H(x)] and the family of sets of the form
H ™ Y(I(B(s)) are identical, which completes the proof. [J

For any compact metric space X, Kuratowski showed that the union map
from 2X x 2X into 2 is continuous [6; p. 166] and that the intersection map
is upper semicontinuous [6; p. 180].

LeEMMA 5.12. — The intersection map from & x A into A is continuous.

Proof. — By Lemma 5.11, it suffices to show that {(F, G):te FnG] is
clopenforallteS. Butthissetequals({F:teF] x /)N (A x {F:teF})
and is clopen by Lemma 5.11. [J

LeMMa 5.13. — The stitching operator 8 from AN into A is continuous.

Proof. — By Lemma 5.11, it suffices to show that
{F=(Fy, Fy, ... te®(F)}

is clopen. But, by Definition 5.3, this set is the finite intersection over those
peN and seS such that { p>s <t of the clopen sets { F:s€F,}.

Some remarks are probably in orders as to the necessity of different
methods of proof for the finite and infinite iterations of the derived set
operator.

First of all, we can show that the results of section four cannot be obtained
using normal sets. Infact, as we will now demonstrate, even Proposition 4.1
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fails if we require H to map into the family of normal sets. To see this,
consider S = {x: (3m)(Vn >m) x(n) =0} as a subset of N¥ and suppose
that H maps N" continuously into 4" such that xe S if and only if H(x) is
finite. Now x, = 0€S, so H(x,) is finite; choose p, so that { p, ) is not in
H(xo). Then H(xo) = 2¥ — {{ po > }; by continuity, there is some n, such
that B, = B(0™) « H™Y(C(2" — {{ po »})); let x, = {ny». Suppose now
that we have constructed x,=<{ng, n,,....,n_,;> and found
Po < Py < ... < px—, such that

B(0™10™1 ... 0™~ c H"HCR2" — {{Po < P1Ds -+ s {Pu=1 7 })-

Once again x, € S, so that H(x,) is finite; choose p, > p,_, such that { p, > is
not in H(x,). By continuity, there is some n, such that B(0"10™1 ... 0"™)
=B, c H YC@" = {(Po><{P1) ---»{m>}).  Finally, let x
= lim,_, ., (x;); by construction x is notin S and therefore H(x) is infinite and
sononempty. Since H(x)is normal, it follows that 0 e D(H(x) and that all but
finitely many { p > belong to H(x). On the other hand, for all k, x € B, and
therefore { p, > is not in H(x). This contradiction establishes the original
claim.

Here is an illustration of the difficulties which arise if one tries to apply the
methods of sections three and four to infinite iterations of the derived set
operator. Let A, A,, ... be an increasing sequence of subsets of N¥ and
let F=(F,, F,, F 2, .. .) be a sequence of closed subsets of 2" such that, for
all n, xe A, if an only if o(F,) = k and o(F,) = o otherwise. Then

k+1, if (VYn)xeA,
o®F) = o+ 1, if (Ym(@n>m)x¢A,
, otherwise.
Thus, if xe U { 4,: ne N}, then o(®(F)) could be either k or w. This and
other dichotomies prevent the easy extension of Theorem 4.3 into the

transfinite. Thus we are led to the family of normal sets and the methods of
this section.

6. The universality of the mapping D®; the infinite case
In this section, we extend results (4.3) and (4.4) to infinite iterations of the
derived set operator. This requires that only normal sets be used in the

range of the continuous function H. As noted in section five, this leads to a
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weaker result for the finite levels. However, some improvements are also
gained.

THEOREM 6.1. — For any natural number k, any ordinal B > k and any
subset A of NV which is Y0 or []?, there is a continuous function H
mapping N¥ into the space of closed subsets of 2V such that, for all x,

(@) H(x) = Cy;

(b) H(x) is normal;

(c) xe A if and only if o(H(x)) = k — 1;

(d) x¢ A if and only if o(H(x)) = B.

Proof. — The proof is by induction on k. There are two cases. (k = 0)
Given a clopen set A and an ordinal a, let

{Cp if xeAd;
H(x) = :
T if x¢A.

H has the desired properties by Proposition 5.10: H is continuous since, for
any family V of closed subsets of 2V, H (V) is either &, A4, N¥ — A or NV,

(k + 1). Suppose that the result holds for k and that either

(i) A=J,A,, where each 4, < A4,,, and is [}, or

(i) 4 =(),A, where each 4, > A4,,, and is ).

In either event, we have

xeAd e {n x¢A,} isfinite.

There are two sub-cases.

(B a successor). In this sub-case, there are continuous maps H, such that
each H,(x) is normal and a subset of Cg_, and such that o(H(x)) = k — 1 if
xe€A,and o(H,(x)) =B —1if x¢ A,. Let H be defined by

*) H(x) = O((Ho(x), Hy(x), Hy(x), ...).

H is continuous .by Proposition 5.13; each H(x) is included in C; by
Definition 5.9 and is normal by Proposition 5.8. Suppose now that xe A.
Then { n: x¢ A4, } is finite, so that o(H,(x)) = k — 1 for all but finitely many n.
It follows that lim,. . sup,>, (0(H.(x)) + 1) =k. Thus o(H(x)) = k by
Proposition 5.8. Suppose on the other hand that x¢ A. It follows that
lim,_, o, SUPm>a (0(H,(x)) + 1) = B, so that o(H(x)) = B.

(B a limit) First of all, let (o, @;, .. .) be the fixed sequence of ordinals with
supremum f. Fora, < k,let H(x) = Jforall x. Foreacha, > k, thereis
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a continuous map H, such that each H,(x) is normal and included in C,, and
such that o(H,(x)) = k if xe A, and o(H,(x)) =a, if x¢ A,. Once again
the map H is defined by (*). For x € 4, the argumentisthesame. For x¢ 4,
it follows that o(H,(x)) = a, for all but finitely many n. Thus o(H(x))
=sup (o, +1)=B O

We turn now to the infinite analogue of the preceding theorem, which
returns to the alternating form of Theorem 4.3.

THEOREM 6.2. — For any countable limit ordinal A, any natural number k, any
countable ordinal B > A + k and any subset A of N¥ whichis Y 9., (ifk is
even) or [ [Y+i+1 (ifkisodd),thereis a continuous function H mapping N" into
the space of closed subsets of 2V such that, for all x,

(a) H(x) = Cy,

(b) H(x) is normal;

(c) xe A if and only if o(H(x)) < A + k;

(d) x¢ A4 if and only if o(H(x)) = B.

Proof. — The proofis by inductionon A + k. There are three cases: k = 0
and L = o, k =0 and A > o and k a successor. The proof of the successor
case is virtually identical with the proof of that case in Theorem 6.1. The
details are left to the reader. We now present the proofs of the other two
cases.

(A = o). Suppose now that 4 is Ef,ﬂ and that p > ©. Then, without
loss of generality, A = ( ), 4,, where, for each n, A4, is [I?and 4, < 4,.,.
As in Theorem 6.1, there are two subcases.

Suppose first that B is a successor. Then by Theorem 6.1 there are
continuous maps H, such that each H,(x) is normal and a subset of C,_, and
such that
n—1 if xeAd,

H,(x)) =
olH{x) {5—1 if x¢A,

For each n, let
I(x) = ﬂms,, H,(x)
and let
H(x) = 6((1o(x), 1,(x), . ..)).

It follows from results (5.12) and (5.13) that H is continuous. Each H(x) is
included in Cy by Definition 5.9 and is normal by results (5.2) and (5.8).
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Suppose now that xeA and let m be the least integer such that
x€A,,. Then, using Lemma 5.2, o(I,(x)) =m — 1foralln > m. It follows
from Proposition 5.8 that o(H(x)) = m < o.

Suppose on the other hand that x¢ A. Then, again using Lemma 5.2,
o(I,(x)) = B — 1 for all n, so that o(H(x)) = B.

Now suppose that B is a limit and let (B, B,, . . .) be the fixed sequence of
ordinals with supremum B; recall that each B, > @. Let H, be given by the
successor argument so that
if m is least such that xe 4,,.

H -{"’
o) = B, +1 ifx¢A

Let H(x) = 0((Hy(x), H,(x), ...)). Asabove, H is continuous and each H(x)
is a normal subset of Cg.  For x € 4, o(H,(x)) = m for all but finitely many n,
where m is least such that xe A4,,; thus o(H(x)) =m + 1. For x¢ A, each
o(H,(x)) = B, + 1,sothat o(H(x)) = B. This completes the proof for the case
* = o).

(A > ®). Suppose that B > A > , that 4is } 5. ,, and that the theorem is
true for all A’ + k < A. Let (o, @4, ...) be the fixed sequence of ordinals
with supremum A. Then, without loss of generality, 4 = ), A4,, where each
A, is Y0 .y (if o, is even) or ]2+, (f @, is odd). Again there are two
subcases. When B is a successor, the proof is the same as for A = ®, except
that “n — 1” becomes “a,”, “m — 1” becomes “a,,” and “o(H(x)) = m < ®”
becomes “o(H(x)) = a,, < A”.

Suppose now that Bis a limitand let (B, B,, . . .)be the fixed sequence with
supremum B. Since B > A, there is some k such that B, > a, for all
n>k. Forn<kletH,(x)= Jforall x. Forn > k,let H, be given by the
successor argument so that

Oy if m is least such that xe 4,

Hx) =
o) {B,,+l if x¢ A.

Once again H(x) = 6((Ho(x), H,(x), . ..)), H is continuous and each H(x)is a
normal subset of C5. For xe A, let m be least such that xe 4, Then
o(H (x)) = a,, for all but finitely many n, so that o(H(x)) = a,, + | <A. For
x¢ A, each o(H,x)) =B,+ 1, so that o(H(x)) =sup (B, + 2) =B. This
completes the proof of Theorem 6.2. [J

COROLLARY 6.3. — For any ordinal o > 0, the iterated derived set operator D*
is not of Borel class 4.
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Proof. — For finite o, this is given by Corollary 4.4. For infinite a, let
o = A + k, where A is a limit and k is finite and let = o + 1. Suppose k is
even and let 4 be a subset of N¥ which is ) 7., but not []2, ,, as given by
Proposition 4.2. By Theorem 6.2, there is a continuous H such that

A =HY(D)" 1 Q).

The rest of the proof follows that of Corollary 4.4.
Combining this result with Theorem 1.3, we have the following.

COROLLARY 6.4. — For all limit ordinals A, the iterated derived set operator D
is of Borel class exactly A + 1.

7. Some open questions

We would like to leave the reader with two problems connected with the
above results.

ProBLEM 1. — (Kuratowski). What is the exact class of the iterated
derived set operator D* when o > 1 and is not a limit?

PROBLEM 2. — Isthere a Borel operator D on the space of closed subsets of 2V
such that

(1) D(F) = F for all F;

(2) for each F, there is a countable ordinal o such that D***(F) = D%F);
(3) for each countable «, there is an F such that D**(F) # D*(F);

(4) the iterated operators D* are of bounded Borel class?

Note that (2) follows from (1).

Added in proof. We have recently refined the methods of this paper to
show that D" is of Borel class exactly 2" and that D**" is of class exactly
A+2"+ 1.
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