CONTINUOUS ONE-TO-ONE PARAMETRIZATIONS

BY

R. DANIEL MAULDIN (*) AND H. SARBADHIKARI

[North Texas State University, Denton]

RÉSUMÉ. — Soient X et Y des espaces polonais. Soit F une multiapplication mesurable de X dans Y tel que (1) Gr(F), le graphe de F est borelien, et (2) pour tout x, F(x) est une partie dense en elle-même G_δ de Y. Problème 1. Y a-t-il un isomorphisme borelien f de $X \times N^N$ sur Gr(F) tel que pour tout x, f(x), est une fonction continue biunivoque de N^N sur F(x)? Nous avons une réponse affirmative si Y est l'espace des nombres réels. Problème 2. Si, pour tout x, F(x) est 0-dimensionnel et toute partie compacte a un intérieur vide, Y0 at Y1 un isomorphisme borélien Y2. Nous avons une réponse affirmative si Y3 est 0-dimensionnel.

ABSTRACT. — Let X and Y be Polish spaces. Let F be a measurable multifunction from X into Y such that (1) the graph of F is Borel, (2) for each x, F(x) is a dense-in-itself G_8 subset of Y. Problem 1. Is there a Borel isomorphism f of $X \times N^N$ onto Gr(F) so that for each x, f(x, .) is a continuous one-to-one map of N^N onto F(x)? We obtain an affirmative answer in case Y is the reals. Problem 2. If for each x, F(x) is 0-dimensional and has no compact relatively open subset is there a Borel isomorphism f of $X \times N^N$ onto Gr(F) so that for each x, f(x, .) is a homeomorphism of N^N onto F(x)? We obtain an affirmative answer in case Y itself is 0-dimensional.

Let each of X and Y be a Polish space (=a separable topological space which admits a complete metric compatible with the topology). The Cantor set will be denoted by C and the set of irrationals by Σ . These spaces will be

^(*) Supported by N.S.F. grant MCS 78-04375 and by a Faculty Research Grant from North Texas State University.

Texte présenté par G. Choquet, reçu le 5 mai 1980, révisé le 23 février 1981.

Subject classifications AMS (MOS) 1980, Primary 28 A 20, 54 HO 5; Secondary 04 A 15.

Key Phrases: Multifunction, Borel isomorphism, 0-dimensional, dense-in-itself G_{δ} , homeomorphism.

R. Daniel MAULDIN and H. SARBADHIKARI, Department of Mathematics, North Texas State University, Denton, TX 76203 (États-Unis).

considered as $\{0,1\}^N$ and N^N respectively, both with the product topology. A multifunction from X into Y is a map F with domain X and range a subset of the family of non-empty subsets of Y. A multifunction F is called measurable provided that for each open subset U of Y:

$$\{x \in X : F(x) \cap U \neq \emptyset\}$$

is a Borel subset of X. By the graph of F, Gr(F), is meant $\{(x, y) \in X \times Y : y \in F(x)\}$. By a Borel graph (= uniformization) in $X \times Y$, we mean a Borel subset Γ of $X \times Y$ such that for each x in X, $\Gamma_x \equiv \{y : (x, y) \in \Gamma\}$ consists of at most one point. By a Borel selector for a multifunction F we mean a Borel graph contained in Gr(F) (Note: This is usually called a partial selector for F). This paper concerns the following problem raised by Srivastava in [5] and some related ones.

PROBLEM 1. — Let F be a measurable multifunction from X into Y so that Gr(F) is a Borel set and for each x in X, F(x) is a dense-in-itself G_δ subset of Y. Is there a Borel measurable map f from $X \times \Sigma$ onto Gr(F) such that for each x, f(x, .) is a one-to-one continuous map of $\{x\} \times \Sigma$ onto $\{x\} \times F(x)$?

We will provide an affirmative answer to this problem in case Y is R, the space of all real numbers. The general problem remains open. Our arguments seem to depend heavily on the fact that R is one-dimensional (in the topological sense). For example it appears that our arguments do not directly extend to the case when Y is R^2 .

We shall make the following conventions.

Set Seq = $\bigcup \{ N^k : k=1, 2, 3, \dots \}$. If $s = \langle s_1, \dots, s_k \rangle \in \text{Seq}$, then lh(s) = k and if $i \in \mathbb{N}$, $s \star i \equiv \langle s_1, \dots, s_k, i \rangle$. If $\langle d_1, \dots, d_p \rangle \in \{0, 1\}^p$, then:

$$C(\langle d_1, \ldots, d_p \rangle) \equiv \{ \sigma \in C : \sigma | p = \langle d_1, \ldots, d_p \rangle \}.$$

We shall also make one further convention which is actually an abuse of notation. From this point on if f is a map from $X \times Z$ onto $B \subseteq X \times Y$, when we say f(x, .) maps Z onto B_x we will actually mean that f maps $\{x\} \times Z$ onto $\{x\} \times B_x$.

Our first Theorem is a "parametrized" version of the characterization of those subsets of C which are homeomorphic to Σ .

THEOREM 1. — Let X be a Polish space and C the Cantor set. Let $F: X \to C$ be a measurable multifunction such that (1) for all x, F(x) is a dense-in-itself G_{δ} subset of C which has no compact, relatively open subsets and (2)

 $\operatorname{Gr}(F)$ is Borel. Then there is a Borel isomorphism f from $X \times \Sigma$ onto $\operatorname{Gr}(F)$ such that for all x, f(x, .) is a homeomorphism of Σ onto F(x).

Proof. — Let G = Gr(F). By [2], we know there is a decreasing sequence of Borel subsets of $X \times C$, $\{G_n\}_{n=1}^{\infty}$ each of which has open X-sections such that $\bigcap G_n = G$. For each positive integer k, let $\{V^k(n)\}_{n=1}^{\infty}$ be an enumeration of the clopen basis:

$$\{C(\langle d_1, \ldots, d_{k+p} \rangle) : \langle d_1, \ldots, d_{k+p} \rangle \in \{0, 1\}^{k+p} \text{ and } p \geqslant 0\}$$

in such a way that if $\langle d_1, \ldots, d_{k+n} \rangle$ properly extends $\langle d_1, \ldots, d_{k+m} \rangle$ then $C(\langle d_1, \ldots, d_{k+m} \rangle)$ is listed before $C(\langle d_1, \ldots, d_{k+n} \rangle)$. Thus, for each k, n, and m, if m < n, then either $V^k(n) \subseteq V^k(m)$ or $V^k(n) \cap V^k(m) = \emptyset$.

We will define, for each $s \in \text{Seq}$, a function $f_s : X \to N$ such that

- (1) f_s is Borel measurable;
- (2) if lh(s) = k and x is in X, $V^k(f_s(x)) \cap G_x \neq \emptyset$;
- (3) for each k and x,

$$G_x \subseteq \bigcup \{V^k(f_s(x)) : 1h(s) = k\} \subseteq G_{kx};$$

(4) if lh(s) = k = 1 h(r), $s \neq r$, and $x \in X$, then $V^k(f_s(x)) \cap V^k(f_r(x)) = \emptyset$ and for each positive integer i, $V^{k+1}(f_{s+i}(x)) \subseteq V^k(f_s(x))$.

Assuming the functions f_s have been given, define $f: X \times \Sigma \to Gr(F)$ by setting $f(x, \sigma) = (x, y)$ where:

$$\{y\} = \bigcap \{V^k(f_{\sigma|k}(x)) : k=1, 2, 3, \ldots\}.$$

It can be checked that the function f satisfies the conclusion of Theorem 1. Now, we proceed to construct the function f_s by induction (recursion). Let

In other words $x \in D_n^1$ if and only if G_x cannot be covered by finitely many basic clopen sets from $\{V^1(m): m \ge 1\}$ each of which is contained in G_{nx} . Notice that $\bigcup \{D_n^1: n \ge 1\} = X$. (If not, then there would be some x so that for each n, $G_x \subset K_n \subset G_{nx}$, where K_n is a finite union of clopen sets. This would imply $\bigcap K_n = G_x$ and G_x would be a compact subset of C.)

Since we will make a number of similar constructions, we will check in D_n^1 IS Borel set. We each set a $X-D_n^1=\bigcup B(m,\,p_1,\,\ldots,\,p_m)$, where for each $(m,\,p_1,\,\ldots,\,p_m)$

$$B(m, p_1, \ldots, p_m) = \bigcap \{B(m, p_1, p_2, \ldots, p_m, s) : s \in N\},\$$

where for each $(m, p_1, p_2, \ldots, p_m, s)$:

where for each
$$(m, p_1, p_2, \ldots, p_m, s)$$
:
$$\begin{cases}
 (V^1(p_1) \cup \ldots \cup V^1(p_m)) \subseteq G_{nx} \\
 \text{and:} \\
 V^1(p_1) \cap G_x \neq \emptyset, \ldots, V^1(p_m) \cap G_x \neq \emptyset, \\
 \text{and} \\
 \text{either } (\Xi i) \ [i \leqslant m \text{ and } V^1(p_i) \cap V^1(s) \neq \emptyset] \\
 \text{or } V^1(s) \not\subseteq G_{nx} \quad \text{or } V^1(s) \cap G_x = \emptyset.
 \end{cases}$$

Let
$$E(j) = \{x : V^1(j) \subseteq G_{nx}\}$$
. We have
$$X - E(j) = \pi_1 ([(X \times C) - G_n] \cap (X \times V)).$$

Thus, X - E(j) is the projection of a Borel subset of $X \times C$ each of whose sections is compact. Therefore, E(j) is a Borel set [2]. Since F is measurable, $F(j) = \{x : V^1(j) \cap G_x \neq \emptyset\}$ is a Borel set. Thus,

$$B(m, p_1, \ldots, p_m, s) = E(p_1) \cap \ldots \cap E(p_m) \cap F(p_1) \cap \ldots \cap F(p_s),$$

if there is some $i \leq m$ so that $V^{1}(p_{i}) \cap V^{1}(s) \neq \emptyset$ and

$$B(m, p_1, ..., p_m, s)$$

$$= [E(p_1) \cap ... \cap E(p_m) \cap F(p_1) \cap ... \cap F(p_m)] \qquad (X - F(s))],$$

otherwise. In either case $B(m, p_1, \ldots, p_m, s)$ is a Borel set. Thus, each set D_n^1 is a Borel set.

Let

$$D_1 = D_1^1$$
 and $D_n = D_n^1 - \bigcup \{D_m^1 : m < n\}, \text{ if } n > 1.$

Let

$$H_1 = \bigcup \{ (D_n \times C) \cap G_n : n \in N \}.$$

2° série – tome 105 – 1981 – n° 4

We now proceed to define $f_{\langle m \rangle}$ for $m = 1, 2, 3, \ldots$, by induction on m. For each n, let

 $T^{1}(n) = \{ x : V^{1}(n) \subset H_{1x} \text{ and } V^{1}(n) \cap G_{x} \neq \emptyset \}.$

Let

$$T(1) = T^{1}(1)$$
 and $T(n) = T^{1}(n) - \bigcup \{ T^{1}(m) : m < n \}, \text{ if } n > 1.$

Set $f_{\langle 1 \rangle}(x) = n$ if and only if $x \in T(n)$. Now suppose $f_{\langle k \rangle}$ has been defined for all k < m. Set

$$T^{1}(m, n) = \{x : V^{1}(n) \subseteq H_{1x} - \bigcup \{V^{1}(f_{\langle k \rangle}(x)) : k < m\}$$

and

$$V^1(n) \cap G_x \neq /\not O$$
.

Let

$$T(m, 1) = T^1(m, 1)$$

and

$$T(m, n) = T^{1}(m, n) - \bigcup \{ T^{1}(m, p) : p < n \}, \quad \text{if} \quad n > 1.$$

Note that $\bigcup \{T(m, n) : n \ge 1\} = X$ and each T(m, n) is a Borel set. Set $f_{\langle m \rangle}(x) = n$ if and only if $x \in T(m, n)$. By recursion, there is a sequence $\{f_{\langle m \rangle} : m \in N\}$, satisfying conditions (1)-(4) when appropriate.

Let us note that one can see that for each x,

$$G_x \subset K_x = \bigcup \{ V^1(f_{\langle m \rangle}(x)) : m \in N \}$$

as follows. Suppose $\delta \in G_x - K_x$. Let k be the first positive integer so that $\delta \in V^1(k)$ and $V^1(k) \subset H_{1x}$. Since $\{f_{\langle m \rangle}(x)\}_{m=1}^{\infty}$ is an increasing sequence, there is some m so that $f_{\langle m-1 \rangle}(x) < k < f_{\langle m \rangle}(x)$. Now because of the manner in which $V^1(k)$ is listed, $V^1(k) \cap V^1(f_{\langle j \rangle}(x)) = \emptyset$ for j < m. This would imply that $f_{\langle m \rangle}(x) \leq k$.

Now suppose 1 < k, m is a positive integer, and for all $s \in \text{Seq}$ with .lh(s) < k and for all i < m; f_s and $f_{s \star i}$ have been defined so that the conditions (1)-(4) are satisfied when appropriate. Let $s \in \text{Seq}$ with .lh(s) = k - 1. Let

$$A(s) = \bigcup_{n} \{ x : f_s(x) = n \} \times V^{k-1}(n) \}.$$

Thus, A(s) is a Borel subset of $X \times C$ with open sections. Let

$$K_n^1(s) = \{x : \forall m \ \forall (p_1, \ldots, p_m) ([V^k(p_1) \cup \ldots \cup V^k(p_m) \subseteq (A(s) \cap G_{k+n-1})_x\}$$

and
$$V^k(p_1) \cap G_x \neq \emptyset, \ldots, V^k(p_m) \cap G_x \neq \emptyset$$

$$\Rightarrow (\exists t)[V^k(t) \cap (V^k(p_1) \cup \ldots \cup V^k(p_m) = \emptyset, V^k(t) \subseteq (A(s) \cap G_{k+n-1})_x$$
and
$$V^k(t) \cap G_x \neq \emptyset])\}.$$

Again, since $(A(s) \cap G)_x$ is not compact for any $x, \bigcup D_n^1(s) = X$. Let

$$D_n(s) = D_n^1(s) - \bigcup \{D_m^1(s) : m < n\}.$$

Let

$$G(s, k) = \bigcup_{n} (D_n(s) \times C) \cap G_{k+n-1} \cap A(s).$$

Then

$$G \cap A(s) \subseteq G(s, k) \subseteq G_k \cap A(s)$$
.

Let.

$$B^{1}(s, m, n) = \{ x : V^{k}(n) \subseteq (G(s, k))_{x} - \bigcup \{ V^{k}(f_{s \star i}(x)) : i < m \text{ and } V^{k}(n) \cap G_{x} \neq \emptyset \}.$$

Let:

$$B(s, m, n) = B^{1}(s, m, n) - \bigcup \{B^{1}(s, m, j) : j < n\}.$$

Notice that $\bigcup B(s, m, n) = X$ and each set B(s, m, n) is a Borel set. Set $f_{s \star i}(x) = n$ if and only if $x \in B(s, m, n)$. It can be checked that the maps f_s and $f_{s \star i}$ where lh(s) < k and $i \le m$, satisfy the conditions (1)-(4) when appropriate. Thus, by recursion, there is a family of maps f_s where $s \in \text{Seq}$ which satisfy (1)-(4).

Q.E.D.

Before proceeding with futher results, we would like to point out an obvious generalization of Theorem 1. We do not know the answer to the following problem.

PROBLEM 2. — Let X and Y be Polish spaces and F a measurable multifunction from X into Y such that (1) for all x, F(x) is a 0-dimensional dense-in-itself G_{δ} subset of Y which has no compact relatively open subset and (2) Gr(F) is Borel. Is there a Borel isomorphism f from $X \times \Sigma$ onto Gr(F) such that for all x, f(x), is a homeomorphism of Σ onto F(x)?

We note that Theorem 1 provides a positive solution to this problem if Y is itself 0-dimensional simply because Y is homeomorphic to a subset of C.

COROLLARY 2. — Let G be a Borel subset of $X \times \Sigma$ with non-empty open sections. Then there is a Borel isomorphism f of $X \times \Sigma$ onto G such that for each x, f(x, .) is a homeomorphism onto G_x .

Proof. — Let $F(x) = G_x$. We only need to show that F is measurable. This corollary will then follow from Theorem 1. Let U be a non-empty open subset of Σ . Let $\{\sigma_n\}_{n=1}^{\infty}$ be a countable dense subset of U. For each n, $\pi_X(G \cap (X \times \{\sigma_n\})) = M_n$ is a Borel subset of X since π_X is one-to-one when restricted to $G \cap X \times \{\sigma_n\}$. Since

$$\{x: F(x) \cap U \neq \emptyset\} = \bigcup \{M_n: n \in N\},$$

F is measurable.

Q.E.D.

COROLLARY 3. — Let $F: X \to \Sigma$ be a measurable multifunction whose values are dense-in-themselves G_δ sets. Let $\{\Gamma_n\}_{n=1}^\infty$ be a countable family of Borel selectors for F such that for all $x, F(x) \subseteq \overline{\bigcup \{\Gamma_{nx} : n \in N\}}$. Then there is a Borel isomorphism $f: X \times \Sigma \to \operatorname{Gr}(F) - \bigcup \Gamma_{nx}$.

Proof. — Let $H(x) = F(x) - \bigcup \Gamma_{nx}$. For each x, H(x) is a dense-in-itself G_{δ} subset of Σ . Notice that H(x) has no compact relatively open subsets. So, this corollary will follow from Theorem 1 provided H is measurable. Let U be a non-empty open subset of Σ . Notice that:

$$\{x: H(x) \cap U \neq \emptyset\} = \{x: F(x) \cap U \neq \emptyset\} = \bigcup \{x: \Gamma_{nx} \cap U \neq \emptyset\}.$$

Since $\{x : \Gamma_{nx} \cap U \neq \emptyset\}$ is a Borel set, H is measurable.

Q.E.D.

LEMMA 4. — If $B \subseteq Y$ is one-to-one continuous image of Σ and $p \in \overline{B} - B$, then $B \cup \{p\}$ is a one-to-one continuous image of Σ .

Proof. — Let $\{p_n\}_{n=1}^{\infty}$ be a sequence of distinct elements of B converging to p. For each n, let U_n be an open set in Y such that $p_n \in U_n$ and if $m \neq n$, $\overline{U}_n \cap \overline{U}_m = \emptyset$ and diam $(U_n) < 2^{-n}$. For each n, let $\sigma_n = f^{-1}(p_n)$ and let V_n be a clopen set such that $\sigma_n \in V_n$ and $V_n \subseteq f^{-1}(U_n)$. Let $V_0 = \Sigma - \bigcup V_n$. Note that we can (and do) choose the V_n 's so that $V_0 \neq \emptyset$. Also, note that V_0 is open for if not, let $\{x_n\}$ be a sequence in $\Sigma - V_0$ converging to some $x \in V_0$. Note that $\{x_n\} \not\subseteq \bigcup \{V_n : n \leq m\}$, for any n. Hence, without loss of generality, let $x_n \in V_{m_n}$ with $m_1 < m_2 < \ldots$ Then $f(x_n) \in U_{m_n}$ so that $f(x_n)$ converges to p. Since f is continuous, $f(x_n)$ converges to $f(x) \in B$. Contradiction.

Thus, V_n , $n=0, 1, 2, \ldots$ are homeomorphic to Σ . Now let μ_0 , μ_2 , μ_4 , ...; μ_1 , μ_3 , μ_5 , ... be rational numbers with $\mu_{2n} \uparrow \sqrt{2}$ and $\mu_{2n+1} \downarrow \sqrt{2}$.

Let $W_0 = \{ \sigma \in \Sigma : \sigma < \mu_0 \text{ or } \mu_1 < \sigma \}$. At this point we are considering the points of Σ as irrational numbers via their standard continued fraction expansion. For n > 0, let $W_n = \{ \sigma \in \Sigma : \mu_{2n-2} < \sigma < \mu_{2n} \text{ or } \mu_{2n+1} < \sigma < \mu_{2n-1} \}$. For each n, W_n is homeomorphic to Σ and hence to V_n . Let φ_n be a homeomorphism of W_n onto V_n . Define φ on Σ by:

$$\varphi(\sigma) = \begin{cases} f(\varphi_n(\sigma)) & \text{if } \sigma \in W_n, \\ p & \text{if } \sigma = \sqrt{2}. \end{cases}$$

It can be checked that φ is a one-to-one continuous map of Σ onto $B \cup \{p\}$. Q.E.D.

Our next Theorem is a parametrized version of Lemma 4.

Theorem 5. — Let X and Y be Polish spaces, let B be a Borel subset of $X \times Y$ and Γ a Borel graph such that for all x, if $\{y\} = \Gamma_x$, then $y \in \overline{B}_x - B_x$. Further let f be a Borel isomorphism of $X \times \Sigma$ onto B such that for each x, $f(x, \cdot)$ is a continuous one-to-one map of Σ onto B_x . Then there is a Borel isomorphism h of $X \times \Sigma$ onto $B \cup \Gamma$ such that for each x, $h(x, \cdot)$ is a continuous one-to-one map of Σ onto $(B \cup \Gamma)_x$.

Proof. — Without loss of generality, we can (and do) take $\{x: \Gamma_x \neq \emptyset\} = Z$. Let g be the Borel measurable map of X into Y whose graph is Γ . It is easy to construct Borel measurable functions $g_n: X \to Y$ such that for all x and n and m, $g_n(x) \in B_x$, and $g_n(x) \neq g_m(x)$, $n \neq m$ and such that $\{g_n(x)\}_{n=1}^\infty$ converges pointwise to g(x). We construct a sequence $\{U_n\}_{n=1}^\infty$ of disjoint Borel subsets of B such that for all $n, g_n(x) \in U_{nx}$ is open in B_x and diam $(U_{nx}) < 2^{-n}$ and $\overline{U_{nx}} \cap \overline{U_{mx}} = \emptyset$ if $n \neq m$. The method of construction is standard and we omit it. For each n, let C_n be a Borel subset of $f^{-1}(U_n)$ with clopen sections such that for all $x, \Sigma - (\cup C_n)_x \neq \emptyset$. Let $C_0 = X \times \Sigma - (\cup C_n)$. By Corollary 1, there is a Borel isomorphism h_n of $X \times \Sigma$ onto C_n such that for all $x, h_n(x, \cdot)$ is a homeomorphism of $\{x\}_{\ell} \times \Sigma$ onto C_n .

Now, imitating the proof of Lemma 4, we get the desired result.

Q.E.D.

THEOREM 6 (The main Theorem). — Let X be a Polish space and F a G_{δ} valued measurable multifunction into R such that for each x, F(x) is dense-initself and such that Gr(F) is Borel. Then there is a Borel isomorphism f of $X \times \Sigma$ onto Gr(F) such that for each x, f(x, .) is a one-to-one continuous map of Σ onto F(x).

Proof. – Let $G_1 = \operatorname{Gr}(F) - \bigcup \{X \times \{r\} : r \text{ is rational}\}$. Let $\{T_n\}_{n=1}^{\infty}$ be a family of pairwise disjoint Borel graphs contained in G_1 such that for all x, $(G_1)_x \subseteq \overline{\bigcup \{(T_n)_x : n \in N\}}$. The existence of such a family of graphs follows from the results of Srivastava [4]. Let $G = G_1 - \bigcup \{T_n : n \in N\}$. According to Corollary 2, there is a Borel isomorphism g of $X \times \Sigma$ onto G such that for all x, g(x, .) is a homeomorphism of Σ onto G_x .

Let $\{H_n\}_{n=1}^{\infty}$ be a sequence of pairwise disjoint, uncountable, dense-initself, Borel subsets of Σ such that each H_n is dense in Σ and $\bigcup H_n = \Sigma$. Then there exist one-to-one continuous functions f_n on Σ such that $H_n = f_n(\Sigma) \cup R_n$, where each R_n is countable and $f_n(\Sigma) \cap R_n = \emptyset$ [1]. Let $\bigcup R_n = \{p_n : n \in N\}$.

Let $\{\Gamma_n\}_{n=1}^{\infty}$ enumerate the following countable family of partial Borel graphs which are contained in Gr(F):

$$\{T_n : n \in N\} \cup \{g(X \times \{p_n\}) : n \in N\} \cup \{X \times \{r\} \cap Gr(F) : r \text{ is rational}\}.$$

Define α_n on $X \times \Sigma$ by $\alpha_n(x, \sigma) = g(x, f_n(\sigma))$. Then α_n is a Borel isomorphism of $X \times \Sigma$ into Gr(F) such that for each $x, \alpha_n(x, \cdot)$ is a continuous one-to-one map of $\{x\} \times \Sigma$ into $\{x\} \times F_x$. Also, notice that $\alpha_n(\{x\} \times \Sigma)$ is dense-in-itself and dense in $\{x\} \times F(x)$ for all x. Thus, if $\Gamma_{nx} = \{y\}$, then $y \in \overline{(\varphi_n(X \times \Sigma))_x} - (\varphi_n(X \times \Sigma))_x$. According to Theorem 5, there is a Borel isomorphism ψ_n of $X \times \Sigma$ into Gr(F) such that for each x, ψ_n is a one-to-one continuous map of $\{x\} \times \Sigma$ onto $\{x\} \times (\alpha_n(X \times \Sigma) \cup \Gamma_n)_x$.

Now, define f on $X \times \Sigma$ by setting $f(x, \sigma) = \psi_n(x, \sigma^*)$, where $\sigma(1) = n$ and $\sigma^*(n) = \sigma(n+1)$, for all m. The map f meets all our requirements since the family of sets $\{\psi_n(X \times \Sigma)\}_{n=1}^{\infty}$ are pairwise disjoint.

Q.E.D.

We should like to point out that as a corollary of Lemma 4, we obtain the following theorem. This theorem is credited by Kuratowski to Sierpinski ([1], p. 477). However, the paper of Sierpinski [3] referred to by Kuratowski proves the theorem only for subsets of R. Surely this theorem is known but we do not know of any proof in the literature.

THEOREM 7. — Let B be a Borel subset of a Polish space X. Then B is a continuous one-to-one image of Σ if and only if each point of B is a condensation point of B.

Proof. – Clearly, if B is a continuous one-to-one image of Σ , then every point of B is a condensation point of B.

Next, suppose each point of B is a condensation point of B. Let M be a closed subset of Σ and f a continuous one-to-one map of M onto B. Let K be the dense-in-itself kernel of M and let D be a countable dense subset of K. Thus, K-D is homeomorphic to Σ . So, we have $B=E\cup F$, where $E\cap F=\emptyset$, F is countable and infinite, and a continuous one-to-one map g of Σ onto E. Partition Σ into Borel sets J_n , $n=1, 2, 3, \ldots$ where each J_n is condensed-in-itself and dense in Σ . For each n, set $J_n=K_n\cup D_n$ where $K_n\cap D_n=\emptyset$, D_n is countable and K_n is a continuous one-to-one image of Σ . For each n, let $B_n=g(K_n)$. Each set B_n is a continuous one-to-one image of Σ and B_n is dense in B. Let $\{p_n:n\in N\}$ be an enumeration of $B-\bigcup\{B_n:n=1,2,\ldots\}$. According to Lemma 4, there is a continuous one-to-one map of Σ onto $B_n\cup\{p_n\}$. Since the union of countably many disjoint copies of Σ is homeomorphic to Σ , there is a continuous one-to-one map of Σ onto

$$\bigcup \{B_n \cup \{p_n\} : n=1, 2, 3, \ldots\} = B.$$

Q.E.D.

RÉFÉRENCES

- [1] KURATOWSKI (K.). Topology, vol. I, New York, Academic Press, 1966.
- [2] Saint-Raymond (J.). Boréliens à coupes K_{σ} , Bull. Soc. math. France, t. 104, 1976, p. 389-400.
- [3] SIERPINSKI (W.). Sur les images continues et biunivoques de l'ensemble de tous les nombres irrationnels, *Mathematica*, vol. 1, 1929, p. 18-21.
- [4] SRIVASTAVA (S. M.). Selection Theorems for G_δ-valued multi-functions, Trans. Amer. math. Soc., vol. 254, 1979, p. 283-293.
- [5] WAGNER (D. H.). Survey of measurable selection theorems: An update Measure Theory Oberwolfach 1979, Proceedings, Lecture Notes in Mathematics, vol. 794, New York, Springer-Verlag, 1980, p. 189.