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CONTINUOUS ONE-TO-ONE PARAMETRIZATIONS

BY
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" RESUME. — Soient X et Y des espaces polonais. Soit F une multiapplication mesurable de X
dans ¥ tel que (1) Gr{F), le graphe de F est borelien, et {(2) pour tout x, F(x) est une partie dense
en elle-méme G; de Y. Probléme 1. Y a-t-il un isomorphisme borelien_ fde X x NV sur Gr(F) tel
que pour tout x, / (x, .)est une fonction continue biunivoque de N” sur F(x) ? Nous avons une
réponse affirmative si ¥ est 'espace des nombres réels. Probléme 2. Si, pour tout x, F(x) est 0-
dimensionnel et toute partie compacte a un intérieur vide, y a-t-il un isomorphisme borélien 1 de
X x N sur Gr(F) tel que pour tout x, f (x, .} est un homéomorphisme de NV sur F(x) ? Nous
avorns une réponse affirmative si Y est O-dimensionnel.

ABSTRACT. — Let X and Y be Polish spaces. Let F be a measurable multifunction from X
into Y such that (1) the graph of F is Borel, (2) for each x, F{x) is a dense-in-itself G, subsét of
Y. Problem1. Istherea Borelisomorphism f of X x NV onto Gr (F)so that for each x,f {(x, .)
is a continuous one-to-one map of N onto F(x) 7 We obtain an affirmative answer in case Y is
thereals. Problem 2. Ifforeach x, F(x) is 0-dimensional and has no compact relatively open
subset is there a Borel isomorphism f of X x NV onto Gr(F) so that for each x, f(x, .) is a
homeomorphism of NV onto F(x)? We obtain an affirmative answer in case Y itself is O-
dimensional,

Let each of X and Y be a Polish space (=a separable topological space
which admits a complete metric compatible with the topology). The Cantor
set will be denoted by C and the set of irrationals by £. These spaces will be
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436 R. D. MAULDIN AND H. SARBADHIKARI

considered as {0, 1}" and N" respectively, both with the product
topology. A multifunction from X into Y is a map F with domain X and
range a subset of the family of non-empty subsets of ¥. A multifunction F is
called measurable provided that for each open subset U of Y-

{xeX  FX)nU#0}

is a Borel subset of X. By the graph of F, Gr(F), is meant {(x,
y)eX x Y :yeF(x)}. By a Borel graph (= uniformization) in X x ¥, we
mean a Borel subset I of X x Y such that foreach xin X, T,={y : (x, y)el’ ]
consists of at most one point. By a Borel selector for a multifunction F we
mean a Borel graph contained in Gr (F) (Note: This is usually called a partial
selector for F). This paper concerns the following problem raised by
Srivastava in [5] and some related ones.

PrOBLEM 1. — Let F be a measurable multifunction from X into ¥ so that
Gr (F)is a Borel set and for each x in X, F(x) is a dense-in-itself G subset of
Y. Isthere a Borel measurable map f from X x  onto Gr (F) such that for
each x, f(x, .)is a one-to-one continuous map of { x } x  onto {x}xF(x)?

We will provide an affirmative answer to this problem in case Y is R, the
space of all real numbers. The general problem remains open. Our
arguments seem to depend heavily on the fact that R is one-dimensional (in
the topological sense). For example it appears that our arguments do not
directly extend to the case when Y is R%.

We shall make the following conventions.

Set Seq={N*:k=1, 2, 3, ...}. If s={sy, ..., s €Seq, then
h(s)=k and if ieN, sxi={s;,..,8,ip. I {dy,....d,>e{0,1}%,
then:

CKdy, .., d,0)={ceC olp=Cdy, ..., d,> }

We shall also make one further convention which is actually an abuse of
notation. From this point onif f is amap from X x Z onto B€ X x ¥, when
we say f(x, .) maps Z onto B, we will actually mean that f maps {x} x Z
onto {x} X B,. : :

Our first Theorem is a ‘‘parametrized” version of the characterization of
those subsets of C which are homeomorphic to X.

THEOREM 1. — Let X be a Polish space and C the Cantor set. Let
F X — C be a measurable multifunction such that (1) for all x, F (x) is a dense-
in-itself G5 subset of C which has no compact, relatively open subsets and (2)
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PARAMETRIZATIONS 437

Gr(F) is Borel. Then there is a Borel isomorphism f from X x % onto Gr (F)
such that for all x, f(x, .} is a homeomorphism of X onto F(x).

Proof. — Let G=Gr(F). By[2], weknow there is a decreasing sequence of
Borel subsets of X x C, { G, } . ; each of which has open X -sections such that
M G,=G. Foreach positive integer k, let { ¥*(n) };=, be an enumeration of
the clopen basis:

{C(<d1= v dk+p>) : <d15 '~-:dk+p>e{0= 1}k+Pand p-'>’0}

insuch a way thatif (d,, ..., dy, . properly extends {d;, ..., dx+, > then
C({dy, ..., dgwnmy)islisted before C({dy, ..., dys, ). Thus,foreachk,
n, and m, if m<n, then either V*(n)< V*(m) or V*(n)n V¥(m)=9.

We will define, for each s€Seq, a function f; : X —= N such that

(1} f, is Borel measurable;

(2) if th(s)=k and x is in X, V*(f(x)) N G.#D;

(3) for each k and x,

G.c U{V(fi(x)): Lh(s)=k} <G

(@) if Ih(s)=k=1h(r), s#r, and xeX, then V*(f(x)) n V*(f,(x)=Q
and for each positive integer 1, V* "1 (f,,.. (x)} = V*(f; (x)).

Assuming the functions f, have been given, define f: X x Z - Gr (F) by
setting f(x, o)==(x, y) where:

=NV fonx)  k=1,2,3, ... }.

It can be checked that the function f satisfies the conclusion of Theorem 1.
Now, we proceed to construct the function f; by induction (recursion).
Let

Di={x:¥m ¥y, ..., pn) RIU... L VP

<G, and V1 {(p)n G, #D, ...,
V' (pu) 0 G # QI Es[VH) n (V p) v v V() =0,
V()< G,,, and Vi(s)n G, #0}.

In other words xe D} if and only if G, cannot be covered by fmiteiji many
basic clopen sets from {V*(m): m=1} each of which is contained in
G,.- Noticethat \J{D}:n21}=X. (Ifnot, then there would be some x
so that for each n, 6, <K,=G,,, where K, is a finite union of clopen
sets. This would imply N K ,=G, and G, would be a compact subset of C.)
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438 R. D, MAULDIN AND H. SARBADHIKARI

Since we will make a number of similar constructions, we will check in
detail that each set D) is a Borel set. We have
X —-Di=\JUB(m, py, ..., Pm), Where for each (m, p;, ..., pn)

B(I’Yl,pl, :pm):m{B(ma Pi1s Pas - -5 Pmo S):SEN},

where for each (m, py, pa, -+ -5 Pm» S) ¢

(Vr1 (pl)u - Vi (pm))anx

and:

XEB(M, Pis -« s P Sj(—-) Vi(pl}me#Qa DR Vi(pm)me¢®a
and

either (1) [i<m and V' (p,) n V1 (s)# Q]
or V' (s)&G,, or V() G,=0Q.
Let E(j)={x: V'(j)©G,,}. We have
X—=E(j)=mn, (X x C)=G,In(X xV)).
Thus, X — E(j) is the projection of a Borel subset of X x C each of whose

sections is compact. Therefore, E(j) is a Borel set [2]. Since F is
measurable, F(j)={x : V' {(j}n G,# O} is a Borel set. Thus,

B(m: Pis -0 v pma S) mE(pl)m ’ ﬁE(Pm)mF(m)an(ps)s
if there is some i<m so that V' (p;) n ¥ (s)#® and

B(ms pis A pmn S)
=[E(p;)n. . .0 E(@,)nFlp)n.. .0 F{p,)] ¢
A{x: V! ()EG, WX —F ()],

otherwise. Ineithercase B(m, py, ..., Pm 5)isa Borelset. Thus,each set
D, is a Borel set.
Let

D, =D and  D,=Dpl-U{DL :m<n}, if n>1.
Let
H,=U{(D,xC)nG,:neN}.
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PARAMETRIZATIONS 439

We now proceed to define f,,, form=1,2,3, ..., byinductiononm. For
each n, let - '
. T'(n)={x : V'{n)<H,, and nynG,#9}.

Let : ’
T(1)=T"1) and Tm=T ()~ J{T (m) : m<n}, ifn>1L

Set f;,y(x)=nifand onlyif xe T(n). Nowsuppose f ., has been defined for
all k<m. Set

Thm, n)={x: VIS H ,—\J{ V" (Juy(x)) : k<m}

and
Vi) nG.# /@]
Let
Tim, 1)=T"{(m, 1)
and

T(m, n)=T"(m, n)—~\J{ T (m, p) : p<n}, if n>L

Note that \J {7 (m, n) : n21}=X and each T(m, n) is a Borel set. Set
Semy (x)=n if and only if xe T(m, n). By recursion, there is a sequence
{femy : meN }, satisfying conditions (1)-(4) when appropriate.

Let us note that one can see that for each x,

G, K, =U{ V" (fim(x)) 1 meN}

as follows. Suppose 8eG_—~K .. Let k be the first positive integer so that
deV'(k)and V'(k)cH,,. Since { f ., (x)}s-, is an increasing sequence,
- there is some m 50 that fi, -5 (x) <k < fouy (x). Now because of the manner
in which V1(k) is listed, V* (k) V* (fo;5(x))=@ for j<m. This would
imply that f.., (x)<k.

Now suppose 1 <k, mis a positive integer, and for all s & Seq with . [a{s) <k
and for all i <m; f, and f;,; have been defined so that the conditions (1)-(4) are
satisfied when appropriate. Let seSeq with lh(s)=k—1. Let

Als)=U,{x folx)=n}x Vetin)}.
Thus, 4 (s) is a Borel subset of X x C with open sections. Let

Ki(sy={x:¥m Y{p;, ..., pu) (V*(py) V- - V() S(A () O Grgn 1)

i

and V)G #D, ..., Vip) G #0]
= (3T u. . UV =0, V() S(A) N Grapr)s
and, V()N G, #0D}.
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44{) R. D. MAULDIN AND H. SARBADHIKARI

Again, since (4 (s) N G), is not compact for any x, \U D} (s)=X. Let

D, (s)=DL(s)~U{DL(s) :m<n}.

Let
G(S: k)MUn(Dn(S)X C)ﬂ Gk-i—n—i ﬁA(S)
Then
GAAG)ISG(s, k)SG, N Als).
Let.

Bl (s, m, n)={x : V¥(n)<=(G (5, k)),
—U{V*(firi(x)) s i<m and V*(n)n G, # 0 }.
Let:
B(s, m, n)=B'(s, m, n)—\J {B* (s, m, j) : j<n}.

Notice that \U B(s, m, n)=X and each set B{s, m, n) is a Borel set. Set
firi(x)=nif and only if xe B(s, m, n). It can be checked that the maps f,
and f,,, where lh(s)<k and i<m, satisfy the conditions (1)-(4) when
appropriate. Thus, by recursion, there is a family of maps f, where se Seq
which satisfy (1)-(4).

QED.

Before proceeding with futher results, we would like to point out an
obvious generalization of Theorem 1. We do not know the answer to the
following problem.

ProBieM 2. — Let X and Y be Polish spaces and F a measurable
multifunction from X into ¥ such that (1) for all x, F(x)is a O-dimensignai
dense-in-itself G subset of ¥ which has no compact relatively open subset and
(2) Gr(F)is Borel. Is there a Borel isomorphism f from X x ¥ onto Gr (F)
such that for all x, f (x, .) is a homeomorphism of £ onto F{x)?

We note that Theorem 1 provides a positive solution to this problem if ¥ is
itself O-dimensional simply because ¥ is homeomorphic to a subset of C.

COROLLARY 2. — Let G be a Borel subset of X x X with non-empty open
sections. Then there is a Borel isomorphism [ of X x X onto G such that for
each x, f (x, .) is a homeomorphism onto G,.
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Proof. — Let F(x)=G, We only need to show that F is
measurable. This corollary will then follow from Theorem 1. Let U bea
non-empty open subset of Z. Let { Op} ey be a countable dense subset of
U. Foreach n, ny(Gn (X x {c,}))=M, is a Borel subset of X since my is
one-to-one when restricted to Gn X x {o,}. Since

(x : FX)nU#Q}=U{M, :neN},

F is measurable,.
Q.ED.

COROLLARY 3. — Let F 1 X — X be a measurable multifunction whose values
" are dense-in-themselves Gy sets.  Let { I, }&., be a countable family of Borel
selectors for F such that for all x, F(x)S\U{ T, : neN}. Then thereisa
Borel isomorphism f: X xZ - Gr(F)—UT,..

Proof. — Let H(x)=F (x)— U T,,. Foreachx, H(x)isa dense-in-itself G
subset of £. Notice that H (x) has no compact relatively open subsets. So,

this corollary will follow from Theorem 1 provided H is measurable. Let U
be a non-empty open subset of &. Notice that:

{x:H(x)mUv‘:@}={x:F(x)mU;r&(Z)}=U{x:I“,,me;éQ)}.

Since {x : I',,n U#®} is a Borel set, H is measurable.
: QED.

LEMMA 4. — If BE Y is one-to-one continuous image of Z and p &B — B, then
B\U{p} is a one-to-one continuous image of L.

Proof. — Let{p, };‘,"m , be a sequence of distinct elements of B converging to
p. For each n, let U, be an open set in Y such that p,e U, and if m#n,
—[7,, AU, = and diam (U,)<2"". For each n, let c,=f"*(p,) and let ¥,
be a clopen' set such that o,eV, and V,& “HU,). Let
Vo=%—\V, Note that we can (and do) choose the V,’s so that
V,#@. Also,notethat ¥, is open forifnot, let { Xy } beasequencein X — Vg
converging to some xeV,. Note that {x,}& U {V,:n<m}, for any
n. Hence, without loss of generality, let x, € V,, withm, <m, <... Then
f(x,)eU,, so that f(x,) converges to p. Since f is continuous, f(x,)
converges to f(x)eB. Contradiction.

Thus, ¥,, n=0, 1, 2, ... are homeomorphic to Z. Now let Mo, Ha»
s + - -5 By, H3, U, « - . be rational numbers with p,, T\/E and [y, 4 iﬁ.

BULLETIN DES SCIENCES MATHEMATIQUES



442 R. D. MAULDIN AND H. SARBADHIKARI

Let Wy={ceX:o<p, or p;<o}. At this point we are considering the
points of ¥ as irrational numbers via their standard continued fraction
expansion. For  n>0, let W,={ceZip,, ,<o<W;,  oOr
Hops1<O<My,.;}. For each n, W, is homeomorphic to X and hence to
. V.. Let ¢, be a homeomorphism of W, onto V,. Define ¢ on X by:

i 74
(P(0):{f(@n(0)) it oe,

p if o=./2

It can be checked that ¢ is a one-to-one continuous map of Zonto Bu {p}.
QED.

Our next Theorem is a parametrized version of Lemma 4.

THEOREM 5. — Let X and Y be Polish spaces, let B be a Borel subset of X x Y

and I" a Borel graph such that for all x,if { y } =T, then y eﬁx —B.. Further
let f be a Borel isomorphism of X x Z onto B such that for each x, f(x, .)isa
continuous one-to-one map of £ onto B,. Then there is a Borel isomorphism h
of X x L onto B u I' such that for each x, h(x, .)isa continuous one-to-one map
of X onto (BuT),.

Proof. - Without loss of generality, we can (and do) take
{x:T,#Q)}=Z. Letg be the Borel measurable map of X into ¥ whose
graph is I'. It is easy to construct Borel measurable functions g, : X = Y
such that for all x and n and m, g,(x) € B,, and g, {x)#g,,(x), n=m and such
that {g,(x)]7 | converges pointwise to g(x). We constiuct a sequence
{U, 1%, of disjoint Borel subsets of B.such that for all n,g,(x)e U,, is open
in B, and diam(U,}<2"" and U,, " U, =@ if n#m. The method of
construction is standard and we omit it. Foreach », let C, be a Borel subset
of = {U,) with clopen sections such that for all x, T— (U ), #0. Let
Co=XxZT—(wC,). By Corollary 1, there is a Borel isomorphism /1, of
X x X onto C, such that for all x, A, (x, .) is a homeomorphism of { x JixZ
onto C

nx-

Now, imitating the proof of Lemma 4, we get the desired result.
QE.D.

THEOREM 6 (The main Theorem). — Let X be a Polish space and F a G,
valued measurable multifunction into R such that for each x, F (x) is dense-in-
itself and sich that Gr(F) is Borel. Then there is a Borel isomorphism f of
X x X onto Gr(F) such that for each x, f(x, .)is a one-to-one continuous map
of X onto F(x).
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Proof. — Let G, =Gr(F)—\J { X x {r} : risrational}. Let{ T,}o.qbe
a family of pairwise disjoint Borel graphs contained in G, such that for all x,
(6. U{(T,),:neN}. The existence of such a family of graphs
follows from the results of Srivastava [4]. Let
G=G,—\U{T,:neN}. According to Corollary 2, there is a Borel
isomorphism g of X x3 onto G such that for all x, g(x,.) is a
" homeomorphism of X onto G,. ‘

Let {H,};2, be a sequence of pairwise disjoint, uncountable, dense-1n-
itself, Borel subsets of ¥ such that each H,is densein Zand \J H,=X. Then
there exist ome-to-one continuous functions f, on X such that
H,=f,(£)UR,, where each R, is countable and f,(Z)NR,=9 [1]. Let
{R,={p, neN},

Let {I',}©., enumerate the following countable family of partial Borel

graphs lwhich are contained in Gr (F):
(T, neN}u{gX x{p,}y:neN} U{Xx{r;nGr(F):ris rational }.

Define o, on XxX by a,(x, o)=g(x, f,(c)). Then «, is a Borel
isomorphism of X x X into Gr(F) such that for each x, o,(x, .} Is a
continuous one-to-one map of {x} x X into {x}x F,. Also, notice that
o, ({x} x L) is dense-in-itself and dense in {x } % F(x) for all x. Thus, if
T,.={y}, then ye (e, (X x£)),—(¢,(X xX)),. According to Theorem 5,
there is a Borel isomorphism s, of X x X into Gr (F) such that for each x, {, 1is
a one-to-one continuous map of { x } x ¥ onto {x} (0, (X xZyuT,),.

Now, define f on X x = by setting f (x, ¢)=¥,(x, o*), where 5 {1)=rnand
o*(n)=c(n+1),for all m. The map f meets all our requirements since the
family of sets { y,, (X xX)}i are pairwise disjoint.

QED.

We should like to point out that as a corollary of Lemma 4, we obtain the
following theorem. This theorem is credited by KURATOWSKI tO SIERPINSKI
([1], p. 477). However, the paper of Sierpinski [3] referred to by KurATOWSK:
proves the theorem only for subsets of R. Surely this theorem is known
but we do not know of any proof in the literature.

THEOREM 7. — Let B be a Borel subset of a Polish space X. Then B is a
continuous one-to-one image of X if and only if each point of B is a condensation
point of B.
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Proof. — Clearly, if B is a continuous one-to-one image of X, then every
point of B is a condensation point of B.

Next, suppose each point of B is a condensation point of B. Let M be a
closed subset of X and f a continuous one-to-one map of M onto B. Let K
be the dense-in-itself kernel of M and let D be a countable dense subset of
K. Thus, K—D is homeomorphic to 2. So, we have B=E U F, where
E ~ F=Q, F is countable and infinite, and a continuous one-to-one map g of
> onto E. Partition X into Borel sets J,, n=1, 2, 3, ... where each J, is
condensed-in-itsellf and dense in X. For each n, set J =K,w D, where
K,nD,=0, D, is countable and K, is a continuous one-to-one image of
Z. For each n, let B,=g(K,). Each set B, is a continuous one-to-one
image of £ and B, is dense in B. Let {p, : ne N} be an enumeration of.
B—\J{B,:n=1,2,...}. According to Lemma 4, there is a continuous
one-to-one map of £ onto B,u {p,}. Since the union of countably many
disjoint copies of X is homeomorphm to X, there is a continuous one-to-one

map of X onto

U{B,wi{p,}:n=1,2,3...}=B.

Q.ED.
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