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ABSTRACT. Let X and Y be uncountable Polish spaces and B a Borel subset
of X X Y such that for each x, B, is uncountable. A Borel parametrization
of B is a Borel isomorphism, g, of X X E onto B where E is a Borel subset
of Y such that for each x, g(x, - ) maps E onto B, = {y: (x,y) € B}. Itis
shown that B has a Borel parametrization if and only if B contains a Borel
set M such that for each x, M, is a nonempty compact perfect set, or,
equivalently, there is an atomless conditional probability distribution, p, so
that for each x, p(x, B,) > 0. It is also shown that if Y is dense-in-itself and
B, is not meager, for each x, then B has a Borel parametrization.

Let G be a Borel subset of the product X X Y of two Polish spaces. A
Borel parametrization of B is a Borel isomorphism g of X X E, where E is a
Borel subset of Y onto B such that for each x, g(x, - ) maps E onto B, = {y:
(x,y) € B}. Of course, if B has a parametrization, then all the sets, B,, must
have the same cardinality. If X is countable, then this cardinality condition
on the sets B, is necessary and sufficient for B to have a Borel
parametrization. For in case X is countable, fix a Borel subset E of Y of the
correct cardinality and fix, for each x in X, a Borel isomorphism 6, of E onto
B, and then define g by g(x, y) = 6,.(»). It will be assumed throughout this
paper that X and Y are uncountable Polish spaces. It is easy to see that when
the sets B, are uncountable, one can require E = Y.

It is an easy corollary of a theorem of Lusin that if each B, is countably
infinite or if each B, has cardinality n, some fixed integer n, then B has a
Borel parametrization. Let us note that Choksi [4] in his investigation of
measurable transformations on compact groups phrased the parametrization
problem as follows.

Let B be a Borel subset of X X Y with each B, uncountable. Does B have
a Borel parametrization?

It was noted by Stone [13] that for Choksi’s investigation, Borel parametri-
zations were not really necessary. In fact, only measurable parametrizations
are needed. The author and D. Cenzer have shown that such parametrizations
exist [3].

The purpose of this paper is to investigate the existence of Borel para-
metrizations under the assumption that each B, is uncountable. Various
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224 R. D. MAULDIN

necessary and sufficient conditions are determined in order that a Borel
parametrization exist. One simple formulation is the following theorem.

THEOREM. A Borel subset B of X X Y with each B, uncountable has a Borel
parametrization if and only if B contains a Borel set M such that for each x, M,
is a nonempty compact perfect set or equivalently there is a conditional measure
distribution, p, such that for each x, u(x, - ) is atomless and p(x, B,) > 0.

It is also shown that if Y is dense-in-itself and each B, is not meager in Y,
then B has a Borel parametrization.

L. A sufficient condition. Our first goal is to obtain a sufficient condition for
the existence of a Borel parametrization.

THEOREM 1.1. Let X and Y beuncountable Polish spaces and B a Borel subset
of X X Y such that each B, is a nonempty compact perfect set. Then there is a
Borel subset M of B such that each M, is a nonempty perfect set, and a Borel
parametrization k of X X Y onto M.

PrOOF. Let { ¥ (n)}-, be a countable base for the topology of Y consisting
of open balls of diameter less than 1. For each pair of integers (n, m) such
that cl(V(n)) N cl(V(m)) = J, let E(n, m) = I ,((X X V(n)) N B) N (X
X V(m)) N B). It follows from the results of Arsenin [1] and Kunugui [5]
that E(n, m) is a Borel set. Since the sets E(n, m) fill up X one can find a
sequence {S,};=,; of disjoint Borel sets and a map, #, of N, the natural
numbers, into N X N such that (1) U S, = X and (2) for each ¢, S, C E(8(¢))
= E(8,(2), 6(1)).

Set

M(0)) = LEJN cl,((S, X V(8,(1))) N B).

Here we use the following notation. If E C X X Y, then cl (E) = {(x, y):
(x,y) is a cluster point of {x} X E,}. It follows from the results of Arsenin
and Kunugui that if E is a Borel subset of X X Y and each E, is both a K
set and a G; set, then cl,(E) is a Borel set. Of course, a K, set is a set which
can be expressed as the union of countably many compact sets. Thus, M({0))
is a Borel set. Similarly,

M) = U el ((S, X V(6(1)) N B)

teEN
is a Borel set.

Notice that M(<0)) and M({1)) are subsets of B and for each x, M({0)),
and M({1}), are disjoint nonempty compact perfect sets with diameter less
than 1.

Continuing by induction, one finds that there is a family

{Me,...,e,): ¢=0or 1 and n is a positive integer)
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such that for each <e,,..., ¢,
() M(e,y, ..., e,)is a Borel set,

(2) for each x, (M({e,, . . ., e,))), is a nonempty compact perfect set with
diameter less than 27",

@B if <e,...,e)#* e, ..., e, then

Mey, ..., ) N Mg, ..., e») =8,
@ ife=0o0rl,
M(ey,...,ee)) C M({ey, ..., e,).
For each n, set

T,= U {M(ey,...,e,)):e=00r1}

and set

0
M=) T,
n=1

Clearly, M is a Borel set, M C B and each M, is a nonempty perfect set.
For each e = {¢,}7_, € {0, 1}" and x € X, set f(x, ) = (x, y), where

0=( 0 M., )

Clearly, f is a one-to-one map of X X C, where C = {0, 1}", onto M and
for each x, f(x, - ) maps C onto M,. Also, setting

C(<i1,:..,i,,>)={eEC:ep=ip,1 <p<n}

X

we have
X X Cliyyvvvyigy) =Moo yiy)) N M.

But this implies f~! is a Borel map of M onto X X C. According to a
theorem of Lusin and Souslin [6, p. 489), f is a Borel isomorphism. Let A be a
Borel isomorphism of Y onto C and set k(x, y) = f(x, h(y)). Clearly, k is a
Borel parametrization of M.

THEOREM 1.2. Let X and Y be uncountable Polish spaces, B a Borel subset of
X XY and M a Borel set lying in X X Y such that there is a Borel
parametrization, k, of X X Y onto M. Then B has a Borel parametrization.

PROOF. A Schoeder-Bernstein type argument is given for this theorem. This
argument is also used in [3].
Set S=B — Mand T, = X X Y — B. Thus,

XXY=MuUS,UT,
=ToUSu(TyuS)u---u(T,uS,)u:---UD,
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where T, = k"(Ty), S, = T"(Sy) and D = N, k?(B). We also have
B=MUS,
=Su((TbuS)u---u(T,us,)u---uUb
=(T,uS)u(TbuS)u---uUu(T,,;,uS,)u---UD.
Set H= D U (N0S,) and G = N 2,7, and define

(%), if(x,y) €EH,
k(x,y), if(x,y)€€G.

It can easily be checked that g is a one-to-one map of X X Y onto B. Also,
since all the sets S,, 7, and D are Borel sets, g is a Borel isomorphism.
Finally, since g(x,-) maps Y onto B,, g is a Borel parametrization of B.
Q.E.D.

As an immediate corollary of Theorems 1.1 and 1.2, we have the following
theorem.

g(x,y) =

THEOREM 1.3. If B is a Borel subset of X X Y and B contains a Borel set M
such that each M, is a nonempty compact perfect set, then B has a Borel
parametrization.

Let us note that Theorem 1.3 improves a theorem of Larman [7], since the
existence of a parametrization of B is a stronger statement that the existence
of 2% disjoint uniformizations.

I1. Borel sets with large sections. In this section, it is shown that if B is a
Borel subset of X X Y such that each B, is uncountable, then B has a Borel
parametrization if and only if each section of B is large in a quantitative
sense. The instrument for measuring the quantitative size of the sections of a
set is the conditional measure distribution. With the aid of this instrument a
descriptive characterization of those Borel sets B having a Borel parametri-
zation is given. It is simply that B contains a Borel set M each section of
which is a nonempty compact perfect set. All this is formulated in Theorem
24.

It is also shown in Theorem 2.8 that B has a Borel parametrization if each
section of B is large in a qualitative sense: each B, is not meager. This seems
slightly unusual in that measure and category are in some sense dual
properties [9].

A conditional measure distribution on X X %®(Y) is a map p from X X
% (Y) into the nonnegative real numbers such that (1) for each x, u(x, -) is a
measure on B (Y) and (2) for each E in B (Y), u(-, E) is a Borel measurable
function on X. The standard Borel field on Y is denoted by B (Y).

A useful fact concerning these distributions is the following theorem.
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THEOREM 2.1. Let p be a conditional measure distribution on X X B (Y). If
B is a Borel subset of X X Y, then f(x) = w(x, B,) is a Borel measurable
function on X and

V()C,E) = [L(X,E N Bx)
is a conditional measure distribution on X X B (Y).

PrROOF. Let W be the family of all Borel subsets of X X Y for which the
theorem holds.

If B is a Borel set of the form § X T and p is a conditional measure
distribution, f(x) = u(x, B,) = p(x, (S X T),) = p(x, T)xs, where xs is the
characteristic function of the Borel set S. Thus, f is Borel measurable. Clearly,
for each x, »(x,-) is a measure on B(Y), where »(x, E) = p(x, E N B)).
Thus, W contains all Borel sets of the form § X T.

It can be easily checked that W is closed under monotone limits and finite
disjoint unions. It follows that W is the family of all Borel subsets of X X Y.
Q.E.D.

THEOREM 2.2. Let p. be a conditional measure distribution on X X B (Y) and
let B be a Borel subset of X X Y. Then for each 0,0 < 8 < 1, there is a Borel
subset M of X X Y such that M C B, and for every x, M, is a compact set and
p(x, M,) > u(x, B,).

PROOF. Let ¢ be an embedding of Y into H, the Hilbert cube. Define ji on
X X B(H) by ji(x, E) = p(x, o~ '(E)). Then ji is a conditional measure
distribution on X X % (H) and (id X ¢)(B) = B is a Borel subset of X X H.
Thus, in order to prove the theorem it suffices to prove it in the case that p is
defined on X X B (H).

Let W be the family of all Borel subsets of X X H for which the
conclusion of the theorem holds for all conditional measure distributions.

Let B, and B, belong to W, let . be a conditional measure distribution and
let 0 < 8 < 1. Set

wm(x, E)=p(x, EN By) and py(x, E) = p(x, E N (B, — By),)-
According to Theorem 2.1, u, and p, are conditional measure distributions.
Let M, and M, be Borel sets with compact sections so that M; C B; and
w(x, M) > Op(x, B;), fori = 1,2. Set M = M, U M,. Clearly M is a Borel
set with compact sections. Also,
p(x, M;) = p(x, (M N B)),) + p(x, (M N (B, = BY),)

> p(x, (M, N By),) + p(x, (MyN (B, — B)).)
> p(x, Myy) + po(x, My,)

> fu(x, By,) + Opu(x, (B, — By),)

> Ou(x, (B, U By),).
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From this it follows that ¥ is closed under finite unions. We will now show
that W is a monotone family.

First, suppose {S,} is an increasing sequence from W and S = U S,. For
each n, let K, be a Borel set with compact sections so that K, C S, and
n(x, K,) > V0 -u(x, S,,). For each n, let M, = U {K,: p < n}. For each n,
let T, = {x: u(x, M,,) > Ou(x, S,)}. According to Theorem 2.1, the map
h(x) = p(x, M,,) — Bu(x, S,) is a Borel measurable map of X into R. Thus,
T, is a Borel set for each n. Let M be the Borel subset of X X H such that
M, = M,,, where n is the first integer so that x € 7,. The set M has the
required properties and S € W.

Now, suppose S, is a decreasing sequence from W and S = N S,.

Let A map X X B (H) into the real numbers by

p(x, S, N B)/u(x, S,), ifpu(x,S,) >0,
A(x, B) = .
0, ifp(x,S,)=0.
Then A is a conditional measure distribution on X X % (H). For each n, let
K, be a Borel set with compact sections so that K, C S, and A(x, K,,,) >
6,\(x, S,,), where 8, =1 — (1 — )/2". Let M = N K,. Then M has com-
pact sections and M C S. Also, if p(x, S,) > 0

Ax,M)>1->(1-86,)=08.

Thus, for all x, u(x, M,) > 6u(x, S,). The set M has the required properties
and S € W.

Finally, since W clearly contains the sets of the form 4 X K, where 4 is
Borel in X and K is compact, W is the family of all Borel subsets of X X H.
Q.E.D.

THEOREM 2.3. Let X and Y be Polish spaces, let . be a conditional measure
distribution on X X B (Y) such that for each x, u(x, - ) is an atomless nontrivial
measure, and let B be a Borel subset of X X Y such that for each x in X,
p(x, B,) > 0. For each 8,0 < 8 < 1, there is Borel subset M of B such that for
each x, p(x, M,) > Ou(x, B,) and M, is a compact perfect set. Moreover, B
has a Borel parametrization.

PrOOF. Let # be a number between 0 and 1. According to Theorem 2.2
there is a Borel subset K of B such that for each x, K, is compact and
p(x, K,) > Ou(x, B,). Let M = {(x,y): if V is a neighborhood of y, then
w(x, K, N V) > 0}. Clearly, M C K and for each x, M, is a compact perfect
set such that u(x, M,) = p(x, K)).

To see that M is a Borel set, let {V,}_, be a base for the topology of Y
and let 7, = {x: p(x, K, N V,) = 0}. According to Theorem 2.1, T, is a
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Borel set. Also,
[o o]
Xxy)-M= (T, xXV,).
n=1

The fact that B has a Borel parametrization now follows from Theorem 1.3.
Q.E.D.

THEOREM 2.4. Let X and Y be uncountable Polish spaces and let B be a Borel

subset of X X Y such that for each x, B, is uncountable. The following
statements are equivalent

1. B has a Borel parametrization.

2. There is a conditional probability distribution p on X X B (Y) such that
for each x, W(x, B,) = 1 and for each x, p(x, -) is atomless.

3. B contains a Borel set M such that for each x, M, is a nonempty compact
perfect set.

PROOF. Assume statement 1 holds and let g be a one-to-one Borel map of
X X Y onto B which parametrizes B. Let f be a Borel isomorphism of 7, the
unit interval, onto Y. Set

w(x, E) = A(f~'((g7'(B n (X X E))),))

for each x in X and E in B(Y), where A is Lebesgue measure on /.

Clearly, for each x, p(x, - ) is an atomless probability measure on ®(Y)
such that u(x, B,) = 1. From the definition of p and from Theorem 2.1 we
see that for each E in B (Y), u(-, E) is a Borel measurable function. Thus,
statement 1 implies statement 2.

Theorem 2.3 shows that statement 2 implies statement 3. Theorem 1.3
shows that statement 3 implies statement 1. Q.E.D.

Blackwell and Ryll-Nardzewski [2] showed that under the hypothesis of
Theorem 2.3, B has a Borel uniformization. In other words, there is a Borel
measurable map f of X into Y whose graph is a subset of B. Actually, B may
be filled up by such graphs as the next theorem shows.

THEOREM 2.5. Assume that the subset B of X X Y has a Borel
parametrization. Then B is filled up by 2% disjoint Borel uniformizations.

PROOF. Let g1 X X Y — B be a Borel parametrization of B. For each
y €7, let f(x)=1y(g(x,»)). Then the graphs of the functions f, are
disjoint Borel uniformizations.

There are results similar to those just obtained where category is taken as
an indicator of largeness instead of measure. However, to prove that if each
section of B is not meager, then B contains a Borel set M such that each M,
is a nonempty compact perfect set seems to require some more machinery.
Let us make the following notation.
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Seq denotes the set of all finite sequence of positive integers: Seq =
U2 N%. {0, 1}* denotes the set of all finite sequences of zeros and ones. If
s=(k,...,k)ESeqand n € N, thens *n = (k, ..., k,, n). If s € Seq,
then Ih(s) denotes the length of the sequence s.

If BCX X Yand U C Y, then B} = {x: B* n U is comeager in U}. If
B is Borel and U is open, B}, is a Borel set [15].

We will need the following theorem of H. Sarbadhikari [11].

THEOREM 2.6. Let X and Y be Polish spaces and B a Borel subset of X X Y.
There is a sequence { Z, }%_, of Borel subsets of X X Y such that

(@ NZ,cCB,

(b) given any nonempty open set W in Y, any k and any € > 0, there is a
Borel set F, F C Z, N (X X W) such that for all x, F, is closed, diam(F,) < ¢
and if x € B}, then F, is not meager.

THEOREM 2.7. Let Y be a dense-in-itself Polish space, B a Borel subset of
X XY such that for each x, B, is comeager in Y and {Z,}_, a sequence of
Borel sets so that Theorem 2.6 holds. Then there is a family {D(s): s € Seq} of
Borel subsets of X, a family {V(s, e): s € Seq, e € {0, 1}* and Ih(s) = lh(e)}
of open subsets of Y, and a sequence { M,,} of Borel subsets of X X Y such that

@) D(s) N D(t) = D, ifs,t € N"and s # t;

(i) D(s)= U {D(s *n):n € N}and X = U {D(n)): n € N};

(iii) for each x € D(s), (M N B), N V(s, €) is comeager in V(s, €), for
each e € {0, 1},

AV V(s, )NV (s, &)=3, ife # ¢';

(v) diam(V (s, €)) < 27,

Vi) V(s *m,exi)C V(s, e);

(vi) if x € D(s), then My, is a closed set lying in U{V(s e): e €
{0 l}lh(s)}

(i) M,,, C M, C Z,.

Proor. Let U(0) and U(1) be nonempty disjoint open subsets of Y. Let F(0)
and F(1) be Borel subsets of X X Y such that fori = 0 or 1,
F(i) C Z, n (X X Y(i))

and for each x, F(i), is closed and not meager. The existence of these sets is
guaranteed by Theorem 2.6. For each pair (p,, p;) € N? such that cl(¥(p;))
C U(i), and diam(¥(p,)) < 27!, fori =0 or 1, let

H((po» 1)) = (F(i) N B)uo N (F()) N B) Y,

Since the Borel sets H((py, p,)) cover X, there is a sequence {D({n)): n € N}
of pairwise disjoint Borel sets and a map #: N — N? so that for each n,
D(n)) c H(f(n)). For each n, let V({n), (i) = V(p,), i =0 or 1, where
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0(n) = (pg, p,)- Finally, set
M, = U{D(n)) x V({n), {i)) N F(i):n € N,i=0,1}.

This completes the construction for n = 1.

The construction process for n = 2 is similar to that for the first stage
except that there is one additional ingredient. This will now be indicated. Fix
n € Nandi = 0or 1. Let F({n), {i)) be a Borel set such that

F((n), <i)) € Z n (X X V({n), <i)))

and for each x, F({n), i), is closed and not meager. Thus, for each
x € D(Kn)), (F{n), <i)) N (M, N B), is not meager in V({n), {i}). Since Y
is dense-in-itself, for each x € D({n)), one can find basic open sets V(g;) so
that diam ¥(g) <272, ¥(g) C V({n), <)), x € (F{n, i) n My N B)qy
Jj=0o0r1,and V(gy) N ¥V(q,) = J. The remainder of the construction at the
second stage is similar to that of the first stage. Finally, the construction at
the stages greater than 2 is similar to that of stage 2. Q.E.D.

THEOREM 2.8. Under the hypothesis of Theorem 2.7, B contains a Borel set M
so that for each x, M, is a nonempty compact perfect set.

PrROOF. Set M = N M,. Q.E.D.

THEOREM 2.9. Let Y be a dense-in-itself Polish space and B a Borel subset of
X X Y such that for each x, B, is not meager. Then B contains a Borel set M
such that each M, is a nonempty compact perfect set. Moreover, B has a Borel
parametrization.

PrOOF. Let {¥,}%_, be a base for the topology of Y. Set E, = By and if
n > 1, set
E,= B3 — U By,
" m<n

For each n set
H=X-E)XV,U((E,XV,)n B).

According to Theorem 2.8, there is a Borel set M, C H,, such that for each x,
M, is a nonempty compact perfect set. Now, set

M= (M, (E, X V,)).
n=1

Clearly, M is a Borel set and each section of M is a nonempty compact
perfect set. Also, it follows from Theorem 1.3 that B has a Borel parametri-
zation. Q.E.D.

H. Sarbadhikari [11] generalized a result of R. Vaught [15] by showing that
if B is a Borel subset of X X Y and for each x, B, is not meager, then B has a
Borel uniformization. We have the following theorem.
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THEOREM 2.10. Under the hypothesis of Theorem 2.9, B is filled up by 2%
disjoint Borel uniformizations.

III. Examples. The purpose of this section is to present some examples
which show that the existence of a Borel parametrization is a fairly stringent
condition.

ExAMPLE 3.1. There is a Borel subset B of I X I such that for each x in 1,
B, is an uncountable G; set and yet B does not have a Borel uniformization,
much less a Borel parametrization. In fact, there is no analytic set 4 such that
A C B and for each x, 4, is a nonempty closed set.

PROOF. Let C, and C, be disjoint coanalytic subsets of 7 which cannot be
separated by a Borel set [12]. Let B, (B,) be a Borel subset of I X I such that
the X-projection of B, (B,) is I — C, (I — C,) and such that each X-section
of B, (B,) is an uncountable Gj set [8].

It is well known that B does not have a Borel uniformization.

Now, assume 4 is analytic, 4 C B and for each x, 4, is a nonempty closed
set. Let E = (I X I) — B. Then E and 4 are disjoint analytic sets. According
to a theorem of Saint-Raymond [10], there is a Borel set H such that 4 C H,
H N E = and each H, is compact. However, this implies H C B and H
(and therefore B) has a Borel uniformization. This contradiction completes
the proof of the theorem.

REMARK. The preceding example answers in the negative a question raised
by Tanaka [14]. This example also shows that the results of this paper are
sharp. .

EXAMPLE 3.2. There is a closed subset B of I X I such that for each x in 1,
B, is a closed uncountable set and yet B does not have a Borel
parametrization. In particular, there is no Borel set M so that M C B and for
each x, M, is a nonempty perfect set.

PRrOOF. Let 4, and 4, be analytic subsets of / such that 4, U 4, = I and
yet there do not exist Borel sets X, and K, so that K; C 4, and K, U K, = I.
Let B, be a closed subset of I X [0, 1/3] so that B,, is uncountable if and
only if x € 4;. Let B, be a closed subset of I X [2/3, 1] so that B, is
uncountable if and only if x € 4,. Let B = B, U B,. The existence of such
sets is shown in [12]. Assume that the Borel set B has a Borel parametrization
g, 81 X I— B.Let

E = {x:N(27'(B),) > 1/3)
and
Ey = {x:N(27'(8),) > 1/3},

where A denotes Lebesgue measure. Since g ~!(B,) and g ~'(B,) are Borel sets,
it follows from Theorem 2.1, that E, and E, are Borel sets. However, since g
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is a parametrization of B, E, C 4,, E, C A, and E, U E, = I. This con-
tradiction establishes the example.

It should be remarked that D. G. Larman [7] has shown that if B is a Borel
subset of X X Y such that each B, is uncountable and both a G; and a K,
subset of Y, then B has &, disjoint uniformizations. The problem of the
existence of 2% disjoint uniformizations is still open.

ExaMPLE 3.3. There are uncountable Polish spaces X and Y and a Borel
subset B of X X Y such that for each x, B, is uncountable and not meager in
Y and yet B does not have a Borel parametrization.

Take X to be I and Y to be [0, 1/2] X {1}. Let H be a Borel subset of
I X [0, 1/2] such that each section of H is uncountable and such that H does
not have a Borel parametrization. Take B = H U (X X {1}).

ExaMmpLE 3.4. There are uncountable Polish spaces X and Y and a Borel
subset B of X X Y such that for each x, B, is comeager in Y and yet B does
not have a Borel parametrization.

Take X to be I and take Y to be C U T where C is the standard Cantor
middle third set in the unit interval and T is the set of midpoints of the
complementary open intervals in / — C. Let B = (X X T) U H, where H is
a Borel subset of X X C such that each section of H is uncountable and yet
H does not have a Borel uniformization. If B did have a Borel parametriza-
tion, then there would be a Borel set M lying in B with each M, nonempty
compact perfect set. But, M would be a subset of H and H would have a
Borel uniformization. )
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