Measurable Parametrizations and Selections

Douglas Cenzer; R. Daniel Mauldin
Transactions of the American Mathematical Society, Vol. 245 (Nov., 1978), 399-408.

Stable URL:
http://links jstor.org/sici?sici=0002-9947%28197811%29245%3C399%3 AMPAS%3E2.0.CO%3B2-4

Transactions of the American Mathematical Society is currently published by American Mathematical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/ams.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact jstor-info@umich.edu.

http://www.jstor.org/
Wed Feb 4 15:49:38 2004



TRANSACTIONS OF TH.
MERICAN MATHEMATICAL SOCIETY
Volurne 245, November 1978

MEASURABLE PARAMETRIZATIONS AND SELECTIONS
BY
DOUGLAS CENZER AND R. DANIEL MAULDIN

ABSTRACT. Let W be a Borel subset of I X I (where I = [0, 1]) such that, for
each x, W, = {y: (x,y) € W} is uncountable. It is shown that there is a
map, g, of I X I onto W such that (1) for each x, g(x, -) is a Borel
isomorphism of 7 onto W, and (2) both g and g~ 'are S(I X I)-measurable
maps. Here, if X is a topological space, S(X) is the smallest family
containing the open subsets of X which is closed under operation (A) and
complementation. Notice that S(X) is a subfamily of the universally or
absolutely measurable subsets of X. This result answers a problem of A. H.
Stone.

This result improves a theorem of Wesley and as a corollary a selection
theorem is obtained which extends the measurable selection theorem of von
Neumann.

We also show an analogous result holds if W is only assumed to be
analytic.

Let W be a Borel subset of I X I, where I is the unit interval, such that for
each x in I, W, = {y: (x,y) € W} is uncountable. The following para-
metrization problem arose from work of J. Choksi [2].

Is there a Borel isomorphism, g, of I X I onto W such that for each x,
g(x, - ) maps I onto W,?

Choksi [2, p. 115] observed that a positive solution to this problem would
greatly simplify some of his arguments. However, it is not necessarily true
that W has a Borel parametrization. In [6], the second author gives some
necessary and sufficient conditions for W to have a Borel parametrization.
But not all is lost, since A. H. Stone [10] points out that in order to simplify
Choksi’s arguments it is only necessary that g and g~ ! be universally (or
absolutely) measurable.

We show in Theorem 6 of this paper that there is such a map g. In fact,
both g and g~ ! are measurable with respect to a very easily described family
of universally measurable sets.

This particular family may be described as follows. Given a topological
space X, S(X) is the smallest family of subsets of X containing the open sets
and closed under complementation and operation (A) [5, p. 30]. It follows
from the properties of operation (A), that S(X) is also closed under countable
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400 DOUGLAS CENZER AND R. D. MAULDIN

unions [3, p. 107]. The study of this family was proposed by N. Lusin [5, p.
468]. O. Nikodym gave a method of constructing this family by alternating
the operation (A) and the complementation operator and showed in uncount-
able Polish spaces that there are sets of arbitrarily high class. Kantorovitch
and Livensohn showed that S(X) is a subfamily of AX(X), the family of all
subsets of X which are simultaneously PCA and CPCA sets [S, p. 468]. K.
Kunugui [4] in a very penetrating study showed that S(X) is a proper
subfamily of Aj(X) provided X is an uncountable Polish space. The sets in
S(X) are universally measurable; i.e., measurable with respect to the comple-
tion of every o-finite measure defined on the Borel subsets of X [§, p. 95]. Of
course, S(X) is in general a proper subfamily of the family of all universally
measurable sets.

Let us note that the existence of a parametrization, g, which is universally
measurable has been shown by E. Wesley [14]. Wesley’s arguments are of a
meta-mathematical nature in that forcing techniques are employed. On the
other hand, our arguments use only standard techniques of descriptive set
theory.

Earlier, Wesley [12] proved, also by forcing methods, the following theorem
and applied it to mathematical economics [13].

THEOREM. There is a function h from I X I into I such that

(D his £ ® L-measurable,

(2) for each x, h(x, - ) is a Borel isomorphism of I onto W.,, and
(3) for each y, h(-, y) is an £-measurable selector of W.

That A(-, y) is a selector of W means that for each x, h(x,y) € W,. Here £
denotes the family of Lebesgue measurable subsets of 1.
In this paper we strengthen this theorem of Wesley’s as follows

THEOREM 7. Let W be a Borel subset of I X I such that for each x, W, is
uncountable. Then there is a map h: I X I into I so that

(D) his an S(I X I) measurable map,

(2) for each x, h(x, - ) is a Borel isomorphism of I onto W, and

(3) for each y, h(-, y) is an S(I)-measurable selector of W.

Let us note that (3) follows from (1) and (2). This implies that each h(-,y)
is a universally measurable selector of W. Of course, Yankov [15] and von
Neumann [7] have proven that W has a selector which is %B (@(I))-measur-
able, where % (@([)) is the o-algebra generated by the analytic subsets of 1.
Since B (@(1)) is a proper subfamily of S(7), the individual selector obtained
by Yankov and von Neumann is “more describable” than the selectors h(-, p).
However, our selectors are still universally measurable, their graphs are
disjoint, and the graphs of the selectors A(, y) fill up W in a describable
fashion. It may be that 4 can be taken to be B(@( X I))-measurable, but
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this problem is unsolved by us at this time. Let us mention that a fairly
complete survey of measurable selection theorems has been given by D. H.
Wagner [11].

Our first theorem contains the technical work needed for our results. It is
the result of a careful study of the method used by von Neumann and
Yankov. Some definitions are necessary.

Seq will denote the set of all finite sequences of positive integers regarded

as a topological space with the discrete topology. If s = (sy, ..., s,) € Seq
and f = (1), ...,1,) € Seq, then ¢ is said to extend s (¢ 2 s), if m > n, and
=5, for every i, 1 <i <n. Also, s ¥t =(S, ..., 8, t, .-, 1,). J will

denote the space NV, the space of all infinite sequences of positive integers
with the product topology. Of course, J is the zero-dimensional Baire space
and may be regarded as the space of all irrational numbers between 0 and 1
via their continued fraction expansions. For any sequence u = (u;, 4,, . . .)
and any n, uln = (u;, . .., 4,). If s = (5, . . ., 5,) € Seq, then J(s) is defined
to be {(m, my,...) ENY:my=35,...,m, =s,}.

The symbol Q, will denote the space of all finite sequences of 0’s and 1’s
regarded as a topological space with the discrete topology. The letter C will
denote the Cantor set which we may regard as the space {0, 1}" with the
product topology. If ¢ =(q;,-.-,4,) € Q,, then C(q) is defined to be
{((tptyy .. . )ECity=¢qy, ..., 1, = q,}-

THEOREM 1. Let P be an analytic subset of I X J such that, for each x, P, is
a nonempty perfect subset of J. Then there is a one-to-one map F of I X C into
P so that

(1) Fis B (& X C))-measurable,

(2) F~'is B (&I X J))-measurable, and

(3) for each x in I, F(x, ) is a homeomorphism of C into {x} X P,.

Prookr. For each x in 7, let
T, = {s € Seq: P, N J (s) #J}.
Notice that since P, is closed,

o0
P.=N{o€J:iolneT]}

n=1
A map f from I X Q, into Seq will now be defined so that, for each x,
f(x, ) maps Q, into T, in a one-to-one way. Let & represent the empty
sequence, both in Q, and Seq. The map f is defined inductively. First, set
f(x,2) =&. Given f (x,r) = s, € T, let s be the shortest extension of s, such
that for some positive integers, m # n, both s * m and s * n are in T,. Let m,
be the least such and m, the next. Then set f(x, r * 0) = s * mgand f(x, r * 1)

=5 *m,.
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Thus, f maps I X @, into Seq. Let G be the graph of f (G = {(x, g, ©):
f(x, @) = t}). We claim that G is B (@)-measurablethat is (since Q, and Seq
are countable sets with the discrete topology), for each ¢ and ¢, G(q, 1 ={x:
Sf(x, g) = t} isin B (@(I)). This claim will be demonstrated later.

The function F can now be defined. Let £,(r) = f(x, t). Notice that for each
x €1 and 7 € C, N2, J(f(7|n)) contains a single element of P.. Define
F(7) to be this unique element of N J( f(r|n)) and let F(x, 1) =
(x, F (7).

It can be checked that F is a one-to-one map of I X C into P.

Let us suspend the proof for a moment and make some remarks which may
illuminate the preceding construction. For each x, T, is a subtree of Seq and,
because P, is closed, P, can be regarded as the set of branches of T,. The
map f, at each stage picks the two left-most extensions which come from the
previous stage in the definition of f. That there are at least two (incompar-
able) extensions of any node of 7T, follows from the fact that P, is dense in
itself. It should also be noted that 7, has no dead ends-that is, by the
definition of T, every node has a branch from P, passing through it.

Let us verify that Fis B (&(I X C))-measurable. Let ¥ be an open subset
of I. Then

FI(V XJ(s)) =(V xC)n {(x,7) €I X C: F(x, 1) € J(s)}.
Since F, (1) is the unique element of N %_,J( f(1|n)), F.(7) is in J (S) if and
only if there is some n so that f,(7|n) extends s. So,

FIv xJs) = xc)yn| U U ((x1):fr]n) = 1} |.
tDs N

Now, each set in the union on the right-hand side is in $ (@ X C)). To be
explicit:

{(x, 7): f(rlm) = 1}

U {(x, 7):7ln = gand f(q) = 1}

9€Q;
= U [{(x,n):1ln =g} n (G(g, ) X CO)].
9€Q;

Thus, in order to show that F (V' X J(s)) is in B(R( X C)), it suffices
to show that G(q, 7) is in B (&(1)). Recalling the inductive definition of the
map f, we can construct the graph G of f in stages as follows:

Gy = I X {gf} X {&} and, for each n,

Gn+l = Ui=0,1 U mg,m, €EN U qTEQ, U t’,t”ESeq{(x’ q, t): (x’ ql’ t’) € Gn’ t
extends #', t” * myand t” * m; € T,, my < m, and (Vk < m)t"+*keT -
(k=myork=m)landgq=¢q *i,t =1t"» m; and if s extends ¢’ and there
are integers a and b so that s * @ and s * b € T, then s extends t"}. Gy is
certainly in % (&) and, since T is analytic, G, € % (@) implies G,,, € B(Q).
It can be checked that the desired graph G = U,G, and is therefore
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% (@ (I))-measurable. Thus, Fis % (&(I X C))-measurable.
To see that F~'is % (@(I X J))-measurable, notice that for ¢ € Q,,
T(q) = {(x,y):y € J(f(a)} = Lg [(I x J(s)) N (G(g, 5) X J)].
sESeq

It follows from this last equation that 7(q) is in B (€I X J)).
Now, since

F(I X C) {(x,y): Ar € Cand {y} = Dl J(fx('rln))}

U ﬁ {(x,»):y € J(f(7|n))}

reCc n=1

we have

F(I X C)= ﬁ { U {(x):y EJ(fx(q))}}’

n=11g4e(0,1}"
and it follows that F(I X C)isin B (€ X J)).
Next, for g € @, and ¥ open in I,
F(V x C(q)) = {(x,y): x € Vandy € J(£,(g))} N F(I X C),

= (V' xJ)n {(x,y):y € J(f(g)} n F(I X C).

From this it follows that F(V X C(q)) is in B (@(/ X J)) and therefore F~!
is B (@(I X J))-measurable.
Finally, for each x in I,

F7(J(s))

(v 0 sty <09

U (= /(i) € J)).
So,

F7l(J(9)= U C(g).  whereK, = {q € 0y: f,(q) 2 s}
9EK;
Thus, F, is a one-to-one continuous map of C into P,. Of course, this implies
that F, is a homeomorphism.

This completes the proof of Theorem 1. []

The strategy for proving our main theorem calls for composing B (&)-
measurable maps such as F. Since these compositions might not be % (&)-
measurable, we consider the larger class of S-measurable functions, which are
closed under compositions, as shown by the following lemma.

LEMMA 2. Let g be a map of the topological space X into the topological space
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Y. If g~ (U) € S(X) for every open subset U of Y, then g~\(E) € S(X) for
every E € S(Y).

PrOOF. Let H = {E: g~ !(E) € S(X)). It is easy to check that H is closed
under complementation and operation (A). Since H contains the open subsets
of Y, S(YYCH [

Another observation is necessary.

LEMMA 3. If X and Y are Polish spaces, M is an analytic subset of X X Y
and the subset K of X X Y is defined by letting each K, be the dense-in-itself
kernel of M, [3, p. 136, then K is analytic.

PROOF. Let T be the subset of Y* consisting of all sequences (y,)®., such

that the set {y,: n € N} is dense in itself. Then T is a G; subset of Y. Let
Z={(x,(y) EX XY“ (y,) €T and (Vn)x,y,) € M}. Then Z is an

analytic subset of X X Y. Since
K= {(xy): @p)AU))[(x, () € Zandy = y,]},
the set K is analytic. []

THEOREM 4. Let M be an analytic subset of 1 X J such that M, is an

uncountable closed set for every x. Then there is a one-to-one map g of I X I
onto M such that

(1) g and g~ " are S(I X I)-measurable and
(2) for each x, g(x, - ) is a Borel isomorphism of I onto M,.

PrOOF. Let P = {(x,y): y is a cluster point of M, }. Then P C M and,
according to Lemma 3, P is an analytic subset of / X J such that each P, is
nonempty and perfect.

Let F be a map having the properties described in Theorem 1. Let 8 be a
Borel isomorphism of 7 onto C and let k(x, y) = F(x, 8(»)), for each (x, y) €
I X I. Clearly, k is an S(I X I)-isomorphism of I X I onto F(I X C) C M.

We will now give a Schroder-Bernstein type argument. Let R = k(I X I),
So=M—Rand T, = (I X I) — M. Thus,

IXI=RUS,UT,
=TLuSu(ThusS)u---u(T,uS)u---uUD,
where T, = k"(T,), S, = k"(Sp) and D = N = k?(R). Also,
M=RUS,
=Su(buS)u:---u(T,uS)u---uD
=(ThuS)u(T,uS)u---U(T,,;,UuS)uU---uUD.
Set H=D U U 2,S,and G = U 2,7, and define

(z) = z, ifz € H,
82 =1 k(z), ifzea.
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It can be easily checked that g is a one-to-one map of I/ X I onto M and that,
for each x, g(x, - ) is a Borel isomorphism of / onto M,.
If U is an open subset of I X I, then

g (W) =g (UnH)ug(UnG)=(UnH)U k™ '(Un G).
It follows from Lemma 1 that the maps k" and k" are S(/?)-measurable for
each n, so that the sets S, T, H and G are in the family S(Z2). Thus, g~'(U)
is in S(I?). Similarly, (g~")~'(U) = g(U) = g(U n H)u g(U N G) = (U
N H)U k(U N G), so g~ ! is S(I%)-measurable.

LEMMA 5. Let W be a Borel subset of I X I. Then there is a closed subset M
of I X J and a Borel isomorphism { of M onto W such that, for each x, Y(x, )
maps M, onto W._.

ProOF. There exist a closed subset F of J and ¢ = (¢,, ¢,) a one-to-one
continuous map of F onto W [S, pp. 441, 447). Let M = {(¢,(»), y): y € F}
and let y = ¢ o m,. Since =,| M is one-to-one, this is a Borel isomorphism and
we are done.

The following theorem is a direct consequence of results (4) and (5).

THEOREM 6. Let W be a Borel subset of I X I such that, for each x,
W, = {y: (x,y) € W} is uncountable. Then there is a one-to-one map g of
I X I onto W such that:

(1) for each x, g(x, - ) is a Borel isomorphism of I onto W, and

(2) both g and g~ " are S(I X I)-measurable.

Our strengthened version of Wesley’s theorem is now an easy corollary.

THEOREM 7. Let W be a Borel subset of I X I such that, for each x in I, W,
is uncountable. Then there is a map h from I X I into I such that:

(D) his S(I X I)-measurable,

(2) for each x, h(x, - ) is a Borel isomorphism of I onto W, and

(3) for each y, h(-, y) is an S(I)-measurable selector of W.

PRrOOF. Let the map g be given by Theorem 6 and let h = 7, © g.

Let us remark that the proof of our theorem could have been greatly
shortened if the following were true: if W is a Borel subset of I X I such that
each W, is uncountable, then W contains a Borel set B such that each B, is a
nonempty perfect subset of I. However, this is not true, as the following
example shows.

ExaMpLE. Let C; and C, be disjoint coanalytic subsets of J which cannot
be separated by Borel sets. Let A, = I — C,, i = 1, 2. Let g; be a continuous
map of J onto 4, such that g~ !(¢) is uncountable for each t € 4,, i = 1, 2.
Let W= W, U W,, where

W, ={(g(0),1):t€J} fori=1,2.
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Then W is a Borel subset of I X I and each W, is uncountable. Now, if W
were to contain a Borel set B such that each B, is nonempty and perfect (and
therefore compact), then according to a theorem of Novikov [8], there would
be a Borel set I" which uniformizes B. But, then 7,(W, N T) would be a Borel
set separating C, from C,.

On the other hand, the nontheorem discussed above has the following true
approximation:

If W is a Borel subset of I X I such that each W, is uncountable, then W
contains a Borel set B such that, for all random x, B, is a nonempty perfect
set. Here we use the word random in the sense of recursion theory-that is, a
real x is said to be random if the countable ordinal w; (the least ordinal not
recursive in x) is equal to the least nonrecursive ordinal wweh-Kleene The get
of random reals is Borel and was shown to have Lebesgue measure 1 by Sacks
[9]; see [1] for further details. The proof of Theorem 1 can be modified for the
above set B to obtain a Borel map F with the desired properties satisfied for
all random x; then the techniques of Lemma 4 yield directly a Borel map A
for the set W having the desired properties of Theorem 5 for all random x.
For nonrandom x, the map A can be filled in arbitrarily so that A(x, - ) is a
Borel isomorphism of I onto W, -the resulting map will still be Lebesgue
measurable.

This shorter proof is in the spirit of Wesley’s original argument, although
the above can be done without reference to forcing or set theory, which are
essential to Wesley’s proof. Neither Wesley’s approach nor the approach
outlined above seem to give the precise describability of the map A as
S-measurable obtained in Theorem 5.

Finally, let us note that Theorem 6 can be generalized to analytic sets. First
we need an improvement of Theorem 1. Since the argument is in many
respects similar to Theorem 1, we shall outline the argument and not go into
details.

THEOREM 8. Let A be an analytic subset of I X J such that for each x, A, is
uncountable. Then there is a one-to-one map F of I X J into A such that

() Fis BRI X C))-measurable,

2 F~lis B (@ X J))-measurable,

(3) for each x, F(x, - ) is a homeomorphism of C into {x} X A,.

PROOF. Let { E(s): s € Seq} be a Souslin scheme such that
A4=U M E(an).
o€J n=1

We also assume E(s) D E(¢), if ¢ extends s, the sets E(s) are closed and of
diameter < 1/length(s) + 1. For each s € Seq, set
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asy= U N E(tln) CE(s).

teJ(s) n=1
For each x in I, let
T, = {s € Seq: (4(s)) is uncountable }
and set
T=U{{x}XT:x€I}
Since
T= U{U(s) X {s}: s € Seq},
where U(s) = {x: (A(s)), is uncountable}, it follows that T is an analytic
subset of I X Seq.

A map f from I X Q, into Seq will now be inductively defined so that for
each x, f(x, - ) maps Q, into T,. First, set f(x,2) =@. Given f(x,r) = s, €
T., let (s,, 5;) be the first pair in the lexicographical ordering of Seq X Seq so
that s, and s, extend s,, s, and s, are in 7, and (E(so) N E(sy)), =g. (At this
point, we consider Seq to have the well order defined by s <t if (I)
length(s) < length(?) or (2) length(s) = length(#) and s; < #, where i the first
coordinate in which s and ¢ differ.) It can be checked that such a pair exists.
Set f(x, r * 0) = spand f(x, r * 1) = s,.

It can be shown that the graph G of f in I X Q, X Seq is B (@)-
measurable.

Define F,(7) to be the unique element (N, E (f,(7|n))), for each (x, 7)
€ I X Candlet F(x, 1) = (x, F (7).

The proof that the map F meets the three requirements of the theorem is
similar to that given in Theorem 1. []

Using Theorem 8 together with a Schroder-Bernstein type argument we
obtain the following theorem.

THEOREM 9. Let A be an analytic subset of I X I such that for each x, A, is
uncountable. Then there is a one-to-one map g of I X I onto A such that

(1) for each x, g(x, - ) is a B (Q(I))-measurable isomorphism of I onto A,.

(2) both g and g~ " are S(I X I)-measurable.

REFERENCES

1. D. Cenzer and R. D. Mauldin, Inductive definability, measure and category (to appear).

2. J. R. Choksi, Measurable transformations on compact groups, Trans. Amer. Math. Soc. 184
(1973), 101-124.

3. F. Hausdorff, Set theory, Chelsea, New York, 1964.

4. K. Kunugui, Sur un theoreme d’existence dans la theorie des ensembles projectifs, Fund.
Math. 29 (1937), 169-181.

5. K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
6. R. D. Mauldin, Borel parameterizations (preprint).
7. J. von Neumann, On rings of operators; reduction theory, Ann. of Math. 30 (1949), 401-485.



408 DOUGLAS CENZER AND R. D. MAULDIN

8. P. S. Novikov, Sur les projections de certains ensembles mesurables B, Dokl. Akad. Nauk.
SSSR (N.S.) 23 (1939), 864-865.
9. G. E. Sacks, Measure-theoretic uniformity, Trans. Amer. Math. Soc, 142 (1969), 381-420.
10. A. H. Stone, Measure theory, Lecture Notes in Math., vol. 541, Springer-Verlag, Berlin and
New York, 1976, pp. 43-48.

11. D. H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optimization 15
(1977), 859-903.

12. E. Wesley, Extensions of the measurable choice theorem by means of forcing, Israel J. Math.
14 (1973), 104-114.

13. » Borel preference orders in markets with a continuum of traders, J. Math. Econom. 3
(1976), 155-165.
14. _____, On the existence of absolutely measurable selection Junctions (preprint).

15. W. Yankov, Sur I’uniformisation des ensembles A4, Dokl. Akad. Nauk SSSR (N.S.) 30
(1941), 597-598.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32611

DEPARTMENT OF MATHEMATICS, NORTH TEXAS STATE UNIVERSITY, DENTON, TExAs 76203



