A CROSS SECTION THEOREM
AND AN APPLICATION TO C*-ALGEBRAS

ROBERT R. KALLMAN! AND R. D. MAULDIN

AnsTRACT. The purpose of this note is to prove a cross section theorem for
certain equivalence relations on Borel subsets of a Polish space. This
theorem is then applied to show that cross sections always exist on
countably separated Borel subsets of the dual of a separable C*-algebra.

See Auslander-Moore [2], Bourbaki [3], Kuratowski [9], and Mackey [12]
for the main results and notation in Polish set theory used in this paper.
The main result of this note is the following theorem.

THEOREM 1. Let B be a Borel subset of the Polish space X. Let R be an
equivalence relation on B such that each R-equivalence class is both a Gy and
an F, in X, and such that the R-saturation of each relatively open subset of B is

Borel. Then the quotient Borel space B/ R is standard, and there is a Borel cross
section f: B/ R — B for R.

Notice that if the R-saturation of each relatively closed subset of B is Borel,
then the R-saturation of each relatively open subset of B is Borel, for each
relatively open subset of B is the countable union of relatively closed sets.

A number of preliminary lemumas are proved first.

LeMMA 2. Let (Y, d) be a separable metric space and let R be an equivalence
relation on Y such that the R-saturation of each open set is Borel. Then there is
a Borel set S whose intersection with each R-equivalence class which is complete
with respect to d is nonempty, and whose intersection with each R-equivalence
class is at most one point.

Proor. By the proofs (but not the statements) of Theorem 4, p. 206,
Bourbaki [3} and Lemme 2, p. 279, Dixmier [4], there exists a decreasing
sequence of Borel subsets of Y, say S, so that S, N R(y) # O, diameter(S,
NRON =0, and M ,5y(S, N RO = MG, N R N R(y)) for
eachy in Y. Let § = N ,,,5,. S is a Borel subset of Y, the intersection of S
with each complete R-equivalence class is nonempty, and the intersection of
S with each R-equivalence class is at most one point. Q.E.D.

LEMMA 3. Let Y be a Polish space and D a subset of Y which is both a Gg and
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an F,. Then there is an open set Vin Y so that D 1 V is nonempty and D N V
is closed in V.

PrOOF. We may assume that D = Y. Since D is a Gs, Y — D is a countable
union of closed sets. None of these closed sets has an interior, for D is dense
in Y. But D is a countable union of closed sets. The Baire category theorem
implies that one of these closed sets has an interior. Hence, there exists an
open set ¥ so that V' is contained in D. Q.E.D.

Lemma 4. Let X and R be as in Theorem 1. Then X/R is countably
separated.

PrOOF. Let V,, (m > 1) be a basis for the topology of X. Then the R(V,)
(m > 1) are Borel sets which separate the R-equivalence classes. To see this,
let @ and b be elements of X so that R (a) and R (b) are disjoint. If R(b) is not
contained in R (a), there exists a ¢ in R(b) and a positive integer m so that ¢
is in ¥, and ¥,, N R(a)= @. But then ¥V, N R(a) = @, and so R(V,) N
R(a) is empty. Hence, R (b) is contained in R(V,,) and R (@) is contained in
X — R(V,). So we may assume that R(b) is contained in R (a). It follows
from Lemma 3 that there is an integer m so that R(a) N V,, is nonempty and
R(@)n V,,=R(a)nV,, But then R(V,)n R(b) is empty. If not, there
exists a ¢ in R(b) N V,, CR(a)"V,, = R(a) N V,,. Hence, R(b) = R(c) =
R(a). Contradiction. Hence, R(a) is contained in R(V,) and R(b) is
contained in X — R(V, ). Q.E.D. |

ProOOF OF THEOREM 1. If ¥ is an open subset of X and U= BN V, R
defines an equivalence relation R, on U by R (b) = R(b) n U. The R,-
saturation of any open set is Borel. Now FV itself is a Polish space, and each
Ry -equivalence class is both a G; and an F, in V. Hence, by Lemma 2, there
is a Borel set S which intersects each Rj-equivalence class in at most one
point, and which intersects each R;-equivalence class which is closed in ¥ in
exactly one point. Let V,, (m > 1) be a basis for the topology of X. For each
V,. let S,, be a corresponding S, and let S = U m>19m S’ 18 a Borel subset
of X. S’ mtersects each R-equivalence class in at most countably many
points. Furthermore, S intersects each R-equivalence class in at least one
point by Lemma 3. X/R is countably separated, and therefore is Borel
isomorphic to an analytic subset of [0, 1] by Proposition 2.9, p. 8, of
Auslander-Moore [2]. Let g: S'— X/R be the natural surjective Borel
mapping. The graph of g, say C, is a Borel subset of §’ X [0, 1]. Horizontal
sections of C are at most countable. Hence, theorems of S. Braun and N.
Luzin (see 42.4.5, p. 378, and 42.5.3, p. 381, of Hahn [8]) show that the
horizontal projection of C, namely X /R, is standard and that there exists a
Borel subset $” of S’ so that g|S” is a bijection onto X /R. Let f = (g]S”)" .
S is a Borel mapping by Souslin’s theorem. Q.E.D.

See Dixmier [5] for most of the notation and results on C*-algebras used in
this note. The Borel structure on the dual of a C*-algebra is that generated by
the hull-kernel topology. The following corollary might be a useful tool in
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proving local versions of known theorems in C*-algebraseand group repre-
sentations (see, for instance, Moore’s appendix to Auslander and Kostant [1]).

COROLLARY 5. Let @ be a separable C*-algebra and let B be a Borel subset
of @ whose relative Borel structure separates points. Then B is standard, and
there is a Borel cross section f: B - Irr(@).

ProOF. Let p: # — kernel(#), @ — Prim(&), be the natural open mapping.
From the definition of the topology of &, U is open in @ if and only if p(U)
is open in Prim(®), in which case U = p ~1(p(U)). Now consider the set & of
all subsets B of @ such that B = p~Yp(B)). & is clearly closed under
countable unjons, and & is closed under complements since p is surjective.
Since & contains the open subsets of &, & therefore contains all Borel subsets
of @. Therefore, B is a Borel subset of @ if and only if p(B) is a Borel subset
of Prim(@). Hence, if B is a Borel subset of @, and if the relative Borel
structure on B separates points, then p is one-to-one on B, and B and p(B)
are Borel isomorphic. But Prim(&) is a standard Borel space by Theorem 2.4
of Effros [7]. Hence, p(B), and therefore B, are standard Borel spaces.

Let g: Irr(@) — @ be the natural continuous open mapping. As Prim(&) is
T, with a countable basis for its topology, each point of Prim(&@) is the
intersection of a closed set and a Gy, Hence, g7'(b) = (p ° q)"'(p(b)) is a G,
in Irr(@) for all b in B. Each ¢~ '(b) is also an F, by Lemma 2.7 and Lemma
4.1 of Effros [6]. Let R be the equivalence relation on g~ }(B) given by point
inverses under ¢. Fach R-equivalence class is both a G; and an F, in Irr(@).
The R-saturation of a relatively open subset of g~ '(B) is again relatively
open, and therefore Borel, since g|g ™ '(B) is open onto B. Hence, Theorem 1
and Souslin’s theorem show that g ~'(B)/R and B are Borel isomorphic, and
there is a cross section f: B — Irr(&). Q.E.D.

The following corollary has some applications. Consider the following
setup. Let X be a standard Borel space, ¥ a Polish space, and R an
equivalence relation on Y such that the R-saturation of open sets is Borel. R
gives rise to an equivalence relation R” on X X Y by R'(x,y)= {x} X
R{y). '

COROLLARY 6. Let B be a Borel subset of X X Y which is saturated with
respect to R’. Suppose that each R'-equivalence class contained in B is, viewed
as a subset of Y, both a Gy and an F,. Then B/ R’ is standard, and there exists
a Borel cross section f: B/R’ — B for R'.

ProoF. There exists a Polish space Z and a one-to-one Borel mapping p:
ZX. Letg: (z,9) > (pi),y), ZX ¥Y—>X X Y. Let R” = g"'(R’) and
B’ = g~ }(B). Each R "-equivalence class contained in B’ is both a G; and an
F, since each R’-equivalence class in B is, viewed as a subset of ¥, a G5 and
an F,, and since the vertical sections of Z X Y are closed. The R”-saturation
of an open set in Z X Y is Borel. It suffices to prove this for open rectangles.
Let U X V beopeninZ X Y, where U is openin Z and V' is open in Y. But
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R"(U x V)y=g ' (R(p(U) x V)) =g " (p(U) X R(V)),

which certainly is Borel in Z X Y. Hence, by Theorem 1, B’/ R" is standard,
and there exists a Borel cross section f': B’/ R” - B’. Choose a sequence B,
(n > 1) of R”-saturated Borel subsets of B’ which separate the R"-equiva-
lence classes. Then the g(B.) (n > 1) are R'-saturated Borel subsets of B
which separate the R’-equivalence classes. Hence, B/ R’ is countably sepa-
rated. Furthermore, g(f(B’/R")) is a Borel transversal for the R’-equiva-
lence classes of B. Let h: g(f(B’/R"))— B/R’ be the natural one-to-one
Borel mapping. Then B/R’ is standard by Souslin’s theorem, and f= A~
B/ R’ — B is a Borel cross section for R'. Q.E.D.

The following examples help to clarify the hypotheses of Theorem 1.

ExaMmpLE 7. Note that Theorem 1 may fail if each R-equivalence class is
only required to be an F, set, even if the R-saturation of each open set is open
~and B/R is metrizable. This follows from the fact that if 4 is an analytic
nonborelian subset of J, the irrational numbers, then there is a Borel subset B
of J X J such that the projection map restricted to B is open and projects B
onto 4. Also, each vertical section of B may be taken to be an F, subset of
(see Taimanov [11}).

ExamprLE 8. There is a Borel subset B of J X J such that each vertical
section of B is an F, subset of J, the projection = onto the first axis, restricted
to B, is open, w(B) = J, and yet there is no Borel cross section (in this case,
there is no Borel uniformization). Recall that if E is a subset of X X Y, then
a uniformization of E is a subset F of E such that E, +* ¢ if and only if F,
consists of exactly one point, where E, = [y|(x, y) is in E].

First, let M be a Borel subset of J X J such that #(M) = J, M has no
Borel uniformization, and each vertical section of M is closed. The existence
of such an M can be seen as follows. Let C, and C, be disjoint coanalytic
subsets of J which are not Borel separable (see Sierpinski [10] for the
existence of these C’s). Let 4, =J — C, and 4, = J — C,. 4, and A, are
analytic sets whose union is J. Let M, be a closed subset of J X J which
projects onto A4; (i = 1, 2). Let M be the Borel set which is the union of M,
and M,. If T were a Borel uniformization of M, then D = «#(I' N (M ; — M)
would be a Borel subset of J which contains C, and has empty intersection
with C,. Thus, M has no Borel uniformization. This argument for the
existence of M 1s due to D. Blackwell. _

Identify J with NV, Let h, ..., be a homeomorphism of J onto
J(,....m)=[zlzisinJand z,=n (1< i< k) andlet T, . ,:(x, 2)
= (X, by o, (2)) S XS T X Let B=UT, .. ,(M). Then B i1s a
Borel subset of J X J, #|B is open, n(B) = J, and each vertical section of B
is an F,. If T were a Borel uniformization for B, then C = U, T, (T n
T,(M)) = U, T (M)) would be a Borel uniformization of M. Here k and
n denote finite multi-indices and < is the usual lexicographic order.

Suppose that B is a Borel subset of a Polish space X, R is an equivalence
relation on B such that each equivalence class is a G, in X, and such that the
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saturation of relatively open sets is Borel. D. Miller has pointed out to the
authors that Lemmas 3 and 4 may be altered slightly to prove that B/R is
‘countably separated. Let ¥,, (m > 1) be as in Lemma 4. We claim that the
R(V,) (m > 1) separate the R-equivalence classes, Let @ and b be in X so
that R (@) and R (b) are disjoint. If R (b) is not contained in R_(Zj, proceed as
in Lemma 4. So suppose that R(b) is contained in m. By a symmetric
argument we may assume that R(a) is contained in m Thus, we may
assume that R (a)=R (b). But R(a), being a Gj, is comeager in R (a), and
R(b), being a G, is comeager in R (b). Hence, R(a) N R(b) is nonempty, a
contradiction. The following questions remain. Is B/R standard? Even if
B/R is standard, is there a cross section? The authors do not know the
answers to these questions even if R is an open equivalence relation and B/ R
is metrizable. Note that if the last question has an affirmative answer, then
there is a natural Borel cross section from Prim{&) — Irr{@).

BIBLIOGRAPHY

L. L. Auslander and B. Kostant, Polarization and unitary representations of selvable Lie groups,
Invent. Math. 14 (1971), 255354,

2. L. Auslander and C. C. Moore, Unitary representations of solpable Lie groups, Mem Amer.
Math. Soc., no. 62 (1966).

3. N. Bourbaki, General topology. 11, Hermann, Paris, 1966.

4. J. Dixmier, Dual et quasi-dual d’une algebre de Banach involutive, Trans. Amer. Math. Soc.
104 (1962), 278-283.

5. , Les C*-algebres et leurs representations, Gautliier-Viﬂars, Paris, 1969,
6. E. G. Effros, Transformation groups and C*-algebras, Ann. of Math. 81 (1965), 38-55.
7. , A decomposition theory for representations of C*-algebras, Trans. Amer. Math. Soc.

107 {1963), 83--106.
8. H. Hahn, Reelle Funktionen, Akad.-Verlag, Leipzig, 1932,
9. C. Kuratowski, Topology. I, Academic Press, New York, 1966.
10. W. Sierpinski, Sur deux complementaires analytiques non separables, Fund. Math. 17 (1931),
296-297.
11, A. D. Taimanov, On apen images of Borel sets, Mat. Sb. 37 (1955), 293--300.
12. G. W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957),
134-165.

DepARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32611



