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PROCEEDINGS OF THE 
A M E R I C A N  M A T H E M A T I C A L  SOCIETY 
Volume 59. Number 2 .  September 1976 

THE NONEXISTENCE OF CERTAIN INVARIANT MEASURES 

ABSTRACT.It is shown that there does not exist an uncountable group G and 
a nontrivial, o-finite, countably additive measure defined on all subsets of G 
which is left-invariant. 

The purpose of this note is to resolve a point left unclear in a recent paper 
of F. Terpe [ I ]  and its review [2].In [ I ] ,F. Terpe shows that the existence of a 
certain "maximal" integral is equivalent to the existence of a nontrival 
countably additive a-finite measure m, defined on all subsets of the interval 
I = [O, 1 )  and invariant under translation mod 1. In his review [2]of this 
paper, J. C. Oxtoby points out that the proof given there for the nonexistence 
of such a measure tacitly presupposes that the a-field 2' x 2' of subsets of 
I x I generated by generalized rectangles is invariant under the shear map S ,  
where S ( x ,  y )  = ( x  + y ,  y )  and addition is mod 1, and that by a theorem of 
Iwanik [3]this instance of Weil's measurability condition is satisfied if and 
only if all subsets of I X I belong to 2' x 2'. Thus, Terpe's reasoning 
actually established the nonexistence of m, only under the hypothesis 
21x1 = 2I X 2'. Finally, Oxtoby points out in his review that 2"' = 2' x 2' 

is implied by CH, but that CH makes the group argument unnecessary. 
Oxtoby ends his review by stating that the situation is unclear without CH. 

We give a short argument below to show that no such hypothesis is needed. 

THEOREM.Suppose G is an uncountable group and p is a a-finite countably 
additive left-invariant measure defined on all subsets of G. Then p is trivial. 

PROOF. Let M be a subgroup of G of cardinality N,. Let R be the family of 
all right cosets of M and let A be a subset of G which intersects each set in R 
in exactly one point. 

Let X = { m A: m E M ). Then X is a family of N, disjoint sets covering G 
and-if H I  and H, belong to X ,  then H ,  is a left translate of H I .  

Let {K,),", , be a sequence of sets of finite measure covering G. For each n,  
the sets of the form Kn n H ,  where H E X form a decomposition of Kn and 
therefore there are not uncountably many H's with p(K, n H) > 0. 

Thus, there is a set H, in 3C with p(Kn n No) = 0 for each n. Therefore, 
p ( H )  = 0 for all H E 3C.This implies that N, is a real-valued measurable 
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cardinal. But, assuming the axiom of choice (which we are in this paper), it is 
known that N, is not measurable [4]. 
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