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Abstract. We determine the constructive dimension of points in random

translates of the Cantor set. The Cantor set “cancels randomness” in the sense

that some of its members, when added to Martin-Löf random reals, identify a
point with lower constructive dimension than the random itself. In particular,

we find the Hausdorff dimension of the set of points in a Cantor set translate

with a given constructive dimension.

1. Fractals and random reals

We explore an essential interaction between algorithmic randomness, classical
fractal geometry, and additive number theory. In this paper, we consider the di-
mension of the intersection of a given set with a translate of another given set. We
shall concern ourselves not only with classical Hausdorff measures and dimension
but also the effective analogs of these concepts.

More specifically, let C denote the standard middle third Cantor set [7, 18], and
for each number α let

(1.1) E=α = {x : cdimH{x} = α}

consist of all real numbers with constructive dimension α. We answer a question
posed to us by Doug Hardin by proving the following theorem:

Theorem 1.1. If 1− log 2/ log 3 ≤ α ≤ 1 and r is a Martin-Löf random real, then
the Hausdorff dimension of

(1.2) (C + r) ∩ E=α
is α−(1− log 2/ log 3). Moreover the Hausdorff measure of this set in its dimension
is positive.

From this result we obtain a simple relation between the effective and classical
Hausdorff dimensions of (1.2); the difference is exactly 1 minus the dimension of
the Cantor set. We conclude that many points in the Cantor set additively cancel
randomness.

We discuss some of the notions involved in this paper. Intuitively, a real is
“random” if it does not inherit any special properties by belonging to an effective
null class. We say a number is Martin-Löf random [3, 13] if it “passes” all Martin-
Löf tests. A Martin-Löf test is a uniformly computably enumerable (c.e.) sequence
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[3] of open sets {Um}m∈N with λ(Um) ≤ 2−m, where λ denotes Lebesgue measure
[18]. A number x passes such a test if x 6∈ ∩mUm.

The Kolmogorov complexity of a string σ, denoted K(σ), is the length (in this
paper we will measure length in ternary units) of the shortest program (under a
fixed universal machine) which outputs σ [9]. For a real number x, x � n de-
notes the first n digits in a ternary expansion of x. Martin-Löf random reals have
high initial segment complexity [3]; indeed every Martin-Löf random real r satisfies
limnK(r � n)/n = 1. This fact conforms with our intuition that random objects
do not compress much.

We introduce a couple of classical dimension notions. Let E ⊆ Rn. The diameter
of E, denoted |E|, is the maximum distance between any two points in E. We will
use card for cardinality. A cover G for a set E is a collection of sets whose union
contains E, and G is a δ-mesh cover if the diameter of each member G is at most δ.
For a number β ≥ 0, the β-dimensional Hausdorff measure of E, written Hβ(E),

is given by limδ→0Hβδ (E) where

(1.3) Hβδ (E) = inf

{∑
G∈G
|G|β : G is a countable δ-mesh cover of E

}
.

The Hausdorff dimension of a set E, denoted dimH(E), is the unique number α
where the α-dimensional Hausdorff measure of E transitions from being negligible
to being infinitely large; if β < α, then Hβ(E) =∞ and if β > α, then Hβ(E) = 0
[7, 18]. Let Sδ(E) denote the smallest number of sets of diameter at most δ which
can cover E. The upper box-counting dimension [7] of E is defined as

dimB(E) = lim sup
δ→0

logSδ(E)

− log δ
.

The effective (or constructive) β-dimensional Hausdorff measure of a set E,
cHβ(Ek), is defined exactly in the same way as Hausdorff measure with the restric-
tion that the covers be uniformly c.e. open sets [3, Definition 13.3.3]. This yields
the corresponding notion of the effective (or constructive) Hausdorff dimension of
a set E, cdimHE. Lutz [11] showed

(1.4) cdimHE = sup{cdimH{x} : x ∈ E},

and from work of Mayordomo [15](≤) and Levin [8](≥) (also see [3]) we have for
any real number x,

(1.5) cdimH{x} = lim inf
n→∞

K(x � n)

n
.

Mayordomo and Levin prove their results in {0, 1}N, but the results carry over to
the reals. We define the constructive dimension of a point x to be the effective
Hausdorff dimension of the singleton {x}. A further effective dimension notion, the
effective packing dimension [1, 3] satisfies

• cdimP{x} = lim sup
n→∞

K(x�n)
n , and

• cdimP C = dimH C.
Let us first note some simple bounds on the complexity of a point in the translated
Cantor set C + r = {y : (∃x ∈ C) [y = x+ r]}.
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Theorem 1.2. Let x ∈ C and let r be a Martin-Löf random real. Then

1− dimH C ≤ cdimH{x+ r} ≤ 1.

Proof. Given x and r, there is a constant c such that for all n,

K[(x+ r) � n] +K(x � n) + c ≥ K(r � n).

Thus,

1 ≥ cdimH{x+ r} = lim inf
n→∞

K[(x+ r) � n]

n

≥ lim inf
n→∞

K(r � n)

n
− lim sup

n→∞

K(x � n)

n

≥ 1− cdimP{x} ≥ 1− cdimP C = 1− dimH C. �

In Section 2, we will indicate how some points cancel randomness. We show that
for every r there exists an x such that the constructive dimension of x+r is as close
to the lower bound as one likes. Later we will show that for each r and number α
within the correct bounds, not only does there exist some x ∈ C so that x+ r has
constructive dimension α, but we will determine the Hausdorff dimension of the
set of all x’s with constructive dimension α. At this point let us give a heuristic
argument indicating what the Hausdorff dimension of this set might be.

Fix a number 1− dimH C < α < 1, and following the notation in (1.1), let

E≤α = {x : cdimH{x} ≤ α}.

From [11] (see also [2]), we know that the effective Hausdorff dimension of E≤α
satisfies cdimH E≤α = dimH E≤α = α. Since the upper box counting dimension of C
satisfies dimB C = dimH C [7, Example 3.3], we have dimH(C × E≤α) = dimH C + α
[7, Corollary 7.4]. Define f : R2 7→ R2 by

(1.6) f(x, y) = (y − x, y).

Then f is a bi-Lipschitz map and therefore preserves Hausdorff dimension [7, Corol-
lary 2.4]. So, letting B = f−1(C×E≤α), we have dimHB = dimH C+α. The vertical
fiber of B at x, or set of points y such that (x, y) ∈ B, is

(1.7) Bx = (C + x) ∩ E≤α.

Let γ > dimH C + α. By the Fubini type inequality for Hausdorff measures [6,
Theorem 5.12],[14, Theorem 7.7], there is a positive constant b such that

0 = Hγ(B) ≥ b
∫
Hγ−1(Bx) dH1(x) = b

∫
Hγ−1(Bx) dx.

So for Lebesgue measure a.e. x, Hγ−1[(C + x) ∩ E≤α] = 0. Therefore, for Lebesgue
measure a.e. x,

dimH[(C + x) ∩ E≤α] ≤ α− (1− dimH C).
We would like to turn this inequality into an equality for every Martin-Löf random
real x, but even showing that inequality holds for all Martin-Löf randoms is a
problem. This is because, in general, if one has a non-negative Borel measurable
function f and

∫
f(x) dx = 0, then f(x) = 0 for Lebesgue measure almost every x,

but there may be Martin-Löf random x’s for which f(x) > 0. In Section 4 of this
paper, we more carefully analyze our particular situation to obtain the conjectured
upper bound.
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2. Some points cancel randomness

We begin with a simple example illustrating how points in the Cantor set can
counteract randomness. Let us briefly review some facts about the standard middle-
third Cantor set.

(1) We may express any x ∈ [0, 1] as a ternary expansion:

x = .x1x2x3 . . . =

∞∑
n=1

xn
3n

where each xn ∈ {0, 1, 2}. The Cantor set C consists of those x for which
the xn’s are all 0 or 2, and the half-size Cantor set 1

2C consists of those x
for which the xn’s are all 0 or 1.

(2) Any number in the interval [0, 2] can be written as a sum of two elements
of the Cantor set. Indeed 1

2C + 1
2C = [0, 1] because the coordinates of any

ternary decimal can be written as 0 + 0, 0 + 1, or 1 + 1.
(3) The Hausdorff dimension and effective Hausdorff dimension of the Cantor

set agree (see [6, Theorem 1.4] and [16, Section 1.7.1]):

dimH C = cdimH C =
log 2

log 3
≈ 0.6309.

All the usual notions of dimension: Hausdorff, packing, upper and lower
Minkowski or box counting, agree on C [7].

Since the Cantor set contains the point 0, it is immediate that C + r contains
points of constructive dimension 1 whenever r is Martin-Löf random. We now
present a simple construction which identifies some points with lower constructive
dimension.

2.1. A point within 2/3 of optimal. Let r ∈ [0, 1] be a real with ternary ex-
pansion .r1r2 . . . . Choose t = .t1t2 . . . ∈ C as follows. Let

tn =

{
0 if rn ∈ {1, 2},
2 otherwise.

Then

rn + tn =


2 if rn = 0,

1 if rn = 1,

2 if rn = 2.

Since (0, 1
3 ,

2
3 ) is the limiting frequency probability vector for this sequence, the

constructive dimension of this sequence is dominated by the effective Hausdorff
dimension of the set of all sequences with this limiting frequency vector. By [11,
Lemma 7.3], we have

cdimH{r + t} ≤ entropy

(
0,

1

3
,

2

3

)
= −1

3
log3

1

3
− 2

3
log3

2

3
= 1− 2

3
· dimH C.

This shows that for every r, there exists some point in C + r whose constructive
dimension is at most 1−(2/3) dimH C. Next we construct points whose constructive
dimensions approach the 1− dimH C limit given in Theorem 1.2.
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2.2. Building blocks: achieving near the limit. We consider a more refined
example. Recall that 1

2C is the set of all ternary decimals in [0, 1] made from 0’s and

1’s (and no 2’s), and take 1
2E3 to be the set of ternary decimals in [0, 1] generated

from concatenated blocks in

B3 = {000, 002, 021, 110, 112}.

So in particular 1
2C is generated by concatenating the blocks

(2.1) C3 = {000, 001, 010, 011, 100, 101, 110, 111}.

By exhaustion, any ternary block of length 3 can be written as the sum of a member
of C3 plus a member of B3 (e.g. 020 = 002 + 011). Therefore 1

2C + 1
2E3 = [0, 1],

and furthermore, as we shall see in (2.3),

cdimHE3 ≤
log 5

log 27
≈ 0.4883.

The following are examples of optimal complementary block sets for each length
(in terms of size and even allowing for negative numbers in the sets Bi). These
blocks are not unique: for each length k, there is more than one smallest block set
which can be added to the length k analogue of (2.1) in order to achieve all ternary
numbers up to length k.

B1 = {0, 1},
B2 = {00, 02, 11},
B3 = {000, 002, 021, 110, 112},
B4 = {0000, 0002, 0011, 0200, 0202, 0211, 1100, 1102, 1111},
B5 = {00000, 00002, 00021, 00112, 00210, 01221, 02012,

02110, 02201, 10212, 11010, 11101, 11120, 11122}.

Note that B4 is just the product B2 ×B2 and is still optimal. We wonder whether
products can be optimal for larger indices as well.

A set E ⊆ R is called computably closed if there exists a computable predicate
R such that x ∈ E ⇐⇒ (∀n) R(x � n). We shall use the following combinatorial
lemma of Lorentz to prove that there exist sufficiently small complementary blocks
for each length whose members can be concatenated to achieve computably closed
sets with low effective Hausdorff dimension (Theorem 2.1).

Lorentz’s Lemma ([10]). There exists a constant c such that for any integer k, if
A ⊆ [0, k) is a set of integers with cardA ≥ ` ≥ 2, then there exists a set of integers

B ⊆ (−k, k) such that A+B ⊇ [0, k) with cardB ≤ ck log `
` .

Although Lorentz’s Lemma as such does not appear explicitly in Lorentz’s origi-
nal paper, as mentioned in [5], his argument in [10, Theorem 1] proves the statement
above.

Theorem 2.1. There exists a uniform sequence of computably closed sets E1, E2, . . .
such that

(i) 1
2C + 1

2En = [0, 1] for all n, and
(ii) limn→∞ cdimHEn = 1− dimH C.



6 RANDALL DOUGHERTY, JACK LUTZ, R. DANIEL MAULDIN, AND JASON TEUTSCH

Proof. For k > 0, let

Ik = {i : 0 ≤ i < 3k},
and let

Ck = {i : 0 ≤ i < 3k and i has only 0’s and 1’s in its ternary expansion}

=


k−1∑
j=0

δj3
j : δj ∈ {0, 1}

 .

By Lorentz’s Lemma (applied to Ck), there exists a set Bk ⊆ (−3k, 3k) with

(2.2) Ik ⊆ Ck +Bk

satisfying

cardBk ≤ c′ · 3k ·
log
(
2k
)

2k
= c′k log 2

(
3

2

)k
= ck

(
3

2

)k
,

where c′ is the constant from Lorentz’s Lemma and c = c′ log 2. Set

1

2
C =

{ ∞∑
n=1

an
3kn

: an ∈ Ck

}
and

1

2
Ek =

{ ∞∑
n=1

bn
3kn

: bn ∈ Bk

}
.

Let x ∈ [0, 1] have ternary expansion

0.x1x2x3 . . . =

∞∑
n=1

k∑
j=1

x(n−1)k+j

3(n−1)k+j
=

∞∑
n=1

k−1∑
s=0

xnk−s
3nk−s

=

∞∑
n=1

1

3nk

(
k−1∑
s=0

xnk−s3
s

)
.

By (2.2), there exist sequences {an} with members in Ck and {bn} from Bk such
that for all n ≥ 1,

k−1∑
s=0

xnk−s3
s = an + bn,

and therefore

x =

∞∑
n=1

an
3kn

+

∞∑
n=0

bn
3kn
∈ 1

2
C +

1

2
Ek,

which proves part (i).
Define

γk =
log(cardBk)

log 3k
≤ 1− log 2

log 3
+

log c+ log k

k log 3
.

To prove part (ii), we first note that cdimH(Ek) ≤ γk. For every n > 0, we can
uniformly cover Ek with (cardBk)n intervals of size 3 · 3−kn. Indeed, there are
cardBk choices for each of the first n blocks in any member of Ek, and a closed
interval of length 3 · 3−kn covers all possible extensions of each such prefix. Each
Ek is a computably closed set and we have:

(2.3) cHγk(Ek) ≤ lim
n→∞

(cardBk)
n · 3γk · (3−kn)γk ≤ 3γk .

So, lim supk→∞ dimHEk ≤ 1 − dimH C. Also, we have γk ≥ dimB(Ek). Again,
applying the fact the Lipschitz map (x, y) 7→ x + y doesn’t increase dimension [7,
Corollary 2.4] together with a bound on the dimension of a product set in terms of
the dimension of its factors ([7, Product formula 7.3]) we have

(2.4) 1 = dimH(C+Ek) ≤ dimH(C×Ek) ≤ dimB C+dimHEk = dimH C+dimHEk.
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The leftmost equality of (2.4) follows from part (i) and the rightmost equality
follows from [7, Example 3.3]. Thus part (ii) holds. �

From the construction of the set Ek one would think that dimHEk = γk and 0 <
Hγk(Ek) < ∞. These statements are true if the similarity maps, say {S1, ..., Sn}
that one might naturally use to generate the self-similar set Ek satisfy the open
set condition, i.e., there is a bounded non-empty open set U such that for each i, j
with 1 ≤ i, j ≤ n we have Si(U) ⊂ U and if i 6= j, then Si(U) ∩ Sj(U) = ∅ (see
[6]). However, it is not clear that the similarity maps that one might naturally use
do satisfy the open set condition. In fact, there are possible cases (e.g., when Bk
contains two consecutive numbers and two numbers that differ by 3k) where we
would get dimHEk < γk.

We obtain immediately from Theorem 2.1 the following:

Corollary 2.2. For every real r ∈ [0, 2] and every ε > 0, there exists a point in
C + r whose constructive dimension is less than 1− dimH C + ε.

Proof. Let En be as in Theorem 2.1 with n large enough so that cdimHEn <
1 − dimH C + ε, and let r ∈ [0, 2]. Then r′ = 2 − r ∈ [0, 2], and there are points
x ∈ C and y ∈ En such that x+ y = 2− r. Thus x+ r ∈ 2− En; hence

cdimH{x+ r} ≤ cdimH(−En + 2) = cdimHEn < 1− dimH C + ε

as desired. �

As we shall see in Section 3, we can even achieve a closed set E of effective
Hausdorff dimension 1− dimH C satisfying 1

2C + 1
2E = [0, 1].

3. Lower bound

In Section 2 we demonstrated the existence of points in the Cantor set which can-
cel randomness; we now show there are many such points. Instead of searching for
individual points with small dimension, we now characterize the Hausdorff dimen-
sion (and effective Hausdorff dimension) of all such points. We use Lorentz’s Lemma
again to upgrade Theorem 2.1 and Corollary 2.2. Our upgrade proceeds in two
phases. The second phase occurs later in Section 5 as it relies on the upper bound
results from Section 4. Our procedure is the same as that used in [5].

Definition 3.1. The density of a set A = {k1 < k2 < k3 < . . .} ⊆ N is defined to
be

density(A) = lim
n→∞

card(A ∩ {1, 2, . . . , n})
n

,

provided this limit exists.

We note that density(A) = limn→∞
n
kn

. Below A[n] will denote the length n

prefix of A’s characteristic function and bxc is the integer part of x.

Theorem 3.2. Let 1− dimH C ≤ α ≤ 1 and let r ∈ [0, 1]. Then

dimH [(C + r) ∩ E≤α] ≥ α− 1 + dimH C.

Proof. For α = 1, the theorem clearly holds. Thus assume

D =
1− α

dimH C
> 0,
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and define

(3.1) A = {by/Dc : y ∈ N}

so that D = density(A). Let CA (CĀ) be the set of x ∈ [0, 1] having a ternary
expansion whose digits are all 0 or 2, where the 2’s only occur at positions in A
(positions not in A).

Now

dimB CA ≤ lim sup
n→∞

log 2n

log 3kn−1
= dimH C · lim sup

n→∞

n

kn − 1
= 1− α.

Since upper box counting dimension dominates Hausdorff dimension [7, p. 43], we
also have dimH CA ≤ dimB CA ≤ 1−α. As in (2.4), the Lipschitz map (x, y) 7→ x+y
does not increase dimension [7, Corollary 2.4], so dimH(CA+CĀ) ≤ dimH(CA×CĀ).
Since C = CA + CĀ, it follows from [7, Product formula 7.3] that

(3.2) dimH CĀ ≥ dimH C − dimB CA ≥ dimH C + α− 1.

We pause from the main argument to prove the following two lemmas. First we
exploit the special form of the set A.

Lemma 3.3. K(A[n]) ≤ 4 log3 n+O(1).

Proof of Lemma 3.3. Let r
s be the largest fraction with s ≤ n such that r

s ≤
1
D .

Notice if we know r, s, and n, we can compute A[n] because⌊ y
D

⌋
=
⌊ry
s

⌋
for 1 ≤ y ≤ n. (To see this, notice that if x = b yD c >

ry
s , then ry

s < x ≤ y
D . This

would give us r
s <

x
y ≤

1
D , contradicting maximality of r

s .) Specifying r, s, and n

requires a ternary string of length at most

(3.3) log3

( n
D

)
+ log3 n+ log3 n+ (2 log3 log3 n+ 1) +O(1),

where the “2 log3 log3 n + 1” bits are used to mark the ends of the “log3 n” bit
strings, and O(1) tells the universal machine how to process the input. The lemma
now follows by noting that 4 log3 n+O(1) is an upper bound for (3.3). �

Lemma 3.4. There exists a closed set E such that cdimHE ≤ α and CA+E = [0, 2].

Proof of Lemma 3.4. If α = 1, take E = [0, 1]. Assuming α < 1, we follow the out-
line of our prior argument from Section 2. The idea is to take E to be a set generated
by concatenating elements from the blocks B1, B2, B3, . . . as in Theorem 2.1.

For each k > 0, let mk = k2, let nk denote the difference mk −mk−1, and let

Ik = {i : 0 ≤ i < 3nk}.

Let A be the set from (3.1), and define

Ck = {i ∈ Ik : i has only 0’s and 1’s in its ternary expansion

and the 1’s only occur at positions in A−mk−1}.

By Lorentz’s Lemma, there exists a set Bk ⊆ (−3nk , 3nk) with

(3.4) Ik ⊆ Ck +Bk
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satisfying, for all ε > 0 and all sufficiently large k,

cardBk ≤ c′ · 3nk ·
log
[
2nk(D+ε)

]
2nk[D−ε] = c · 3nk · nk(D + ε)

2nk(D−ε)

where c′ is the constant obtained from Lorentz’s Lemma, c = c′ log 2, and again
D = density(A). Let

1

2
CA =

{ ∞∑
k=1

ak
3mk

: ak ∈ Ck

}
and

1

2
E =

{ ∞∑
k=1

bk
3mk

: bk ∈ Bk

}
.

The set E is closed since it is the countable intersection of closed sets. Let x ∈ [0, 1]
with ternary expansion 0.x1x2x3 . . . . By (3.4), there exist sequences {ak} with

members in Ck and {bk} from Bk such that for all k,
∑nk−1
j=0 xmk−j3

j = ak + bk,
and therefore

x =

∞∑
k=1

mk∑
j=mk−1+1

xj
3j

=

∞∑
k=1

1

3mk

nk−1∑
j=0

xmk−j3
j =

∞∑
k=1

ak
3mk

+

∞∑
k=1

bk
3mk

.

is a member of ∈ 1
2CA + 1

2E. This proves CA + E = [0, 2].
It remains to verify that cdimHE ≤ α. Let ε > 0, and let x ∈ E. We want to

compute an upper bound on K(x � mk). To specify x � mk, we can first specify
the sets Bj , for j ≤ k and then specify which element of B1 × · · · × Bk gives the
blocks of x � mk.

If we know A[mk], we can determine the sequence of sets Bj , for j ≤ k (just use
a brute force search to find the first Bj as in the conclusion of Lorentz’s Lemma);
by Lemma 3.3 this requires a ternary string of length at most 4 logmk +O(1) (plus
an additional o(log3mk) for starting and ending delimiters if desired). An element
of the known set B1 × · · · × Bk can be specified by a ternary string of length at
most

log3

k∏
j=1

cardBj ≤ log3

k∏
j=1

c · 3nj · nj(D + ε)

2nj(D−ε)

= k log3 c+mk + log3

k∏
j=1

nj(D + ε)

2nj(D−ε)
≤ k log3 c+mk + log3

(D + ε)k · (mk)k

2mk·(D−ε)

≤ k log3 c+ k2 + k log3(D + ε) + 2k log3 k − k2(D − ε) dimH C.

(and again we can add O(log3mk) for delimiters). Therefore,

K(x � mk) ≤ k2[1− (D − ε) dimH C + o(1)] + 4 log3mk +O(log3mk)

= k2[α+ ε · dimH C + o(1)],

and appealing to the Kolmogorov complexity definition for constructive dimension
(1.5), we find

cdim{x} ≤ lim inf
k→∞

K(x � mk)

mk
≤ α+ ε · dimH C.

It follows from (1.4) that cdimHE ≤ α+ ε for every ε > 0. �

Take E as in Lemma 3.4 and let F = 2 − E. Then F ⊆ E≤α and F − CA =
2− (E + CA) = [0, 2]. Fix r ∈ [0, 1] and let S = C ∩ (F − r); it will suffice to show
that dimH S ≥ α− 1 + dimH C.
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Now for each z ∈ C there exist unique points v ∈ CA and w ∈ CĀ such that
v+w = z; let p be the projection map which takes z ∈ C to its unique counterpart
w ∈ CĀ. For each y ∈ CĀ we have r + y ∈ [0, 2] ⊆ F − CA, so there exists x ∈ CA
such that r+ y ∈ F − x, which gives x+ y ∈ S since CA + CĀ = C. Thus p maps S
onto CĀ. Since p is Lipschitz we have, using (3.2),

(3.5) dimH S ≥ dimH CĀ ≥ α− 1 + dimH C
because Lipschitz maps do not increase dimension [7, Corollary 2.4]. Theorem 3.2
follows. �

Remark. The set E constructed in Lemma 3.4 has both Hausdorff dimension and
effective Hausdorff dimension α. Following the method of (3.2), we can establish
the following lower bound:

dimHE ≥ dimH[0, 2]− dimB CA ≥ 1 + α− 1 = α.

4. Upper bound

In this section we prove the following upper bound which matches the lower
bound of Theorem 3.2 and Theorem 5.1.

Theorem 4.1. Let 1− dimH C ≤ α ≤ 1. For every Martin-Löf random real r,

(4.1) dimH [(C + r) ∩ E≤α] ≤ α− 1 + dimH C.

Proof. The case α = 1 is trivial, so assume α < 1. Fix a computable γ > α +
dimH C ≥ 1, and let t = γ − 1. Let f be defined as in (1.6) and, as before, let
B = f−1(C × E≤α), so that the vertical fiber of B at x is Bx = (C + x) ∩ E≤α. To
prove Theorem 4.1 it suffices to prove the following lemma.

Lemma 4.2. For every Martin-Löf random real r, Ht(Br) = 0.

Let Mt be the t-dimensional net measure in the plane induced by the net of
standard dyadic squares, and for each δ > 0, let Mt

δ be the δ-approximate net
measure [6]. Mt and Mt

δ are defined in the same way as Ht and Htδ except that
the covers G from the definition in (1.3) consist exclusively of square sets of the
form [

m

2k
,
m+ 1

2k

)
×
[
n

2k
,
n+ 1

2k

)
for integers k, m, and n. Hence for any set E, Mt

δ(E) ≥ Htδ(E). Let L1 = H1 be
Lebesgue measure on the real line.

To prove Lemma 4.2, we will use:

Marstrand’s Lemma ([12], [6] Lemma 5.7 ). Let A ⊆ R, let {In} be a δ-mesh
cover of A by dyadic intervals, and let an > 0 for all n. Suppose that for all x ∈ A∑

{n:x∈In}

an > c

for some constant c. Then for all s,∑
n

an|In|s ≥ c · Ms
δ(A).

We will apply Marstrand’s lemma to obtain the following “computable” version
of another lemma of Marstrand’s. Lemma 4.2 clearly follws from Lemma 4.3.
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Lemma 4.3. Fix c > 0. There is a uniformly computable sequence of open sets
Um with L1(Um) < 2−m such that for each m,

(4.2) {x : Ht(Bx) > c} ⊆ Um.

(We note any x which belongs to the left-hand side of (4.2) for every m fails a
Martin-Löf test and therefore cannot be Martin-Löf random.)

Proof of Lemma 4.3. We may assume that c is computable. Fix a uniformly com-
putable sequence of collections Sk = {Sk,i} of dyadic squares which for each k,

forms a 21/2 · 1
k -mesh cover of B with∑

Sk,i∈Sk

|Sk,i|γ <
c · 21/2

2k+1
.

We show the existence of such a sequence in Lemma 4.5. For each k, let

Ak =

{
x :

∞∑
i=0

∣∣(Sk,i)x∣∣t > c

}
where (Sk,i)x denotes the vertical fiber of Sk,i at x. The sets Ak are unions of
left-closed right-open dyadic intervals in a uniformly computable way. Since

Ht(Bx) > c =⇒ x ∈
∞⋂
m=1

∞⋃
k=m

Ak,

we shall see that it suffices to show L1(Ak) < 2−k−1.

Let ak,i = |Sk,i|t and let

Ik,i = {x : (x, y) ∈ Sk,i for some y}.

Each Ik,i is a dyadic interval and |Ik,i| = 2−1/2|Sk,i|. Also, if x ∈ Ak, then∑
{i:x∈Ik,i} ak,i > c.

Now, applying Marstrand’s Lemma with s = 1, we have

c

2k+1
> 2−1/2

∑
Sk,i∈Sk

|Sk,i|γ =
∑

{i:x∈Ik,i}

ak,i|Ik,i| ≥ c · M1
1/k(Ak).

It follows that L1(Ak) < 2−k−1. Thus, for each m, L1(∪∞k=mAk) < 2−m. Now
we may find uniformly computable open sets Um with

{x : Ht(Bx) > c} ⊆
∞⋃
k=m

Ak ⊆ Um

and L1(Um) < 2−m. �

For s ∈ [0, 1], a weak s-randomness test [17] is a sequence of uniformly c.e. sets
of open dyadic intervals U0, U1, U2, . . . such that

∑
σ∈Un 2−s|σ| ≤ 2−n for all n. We

will call a set E ⊆ R weakly s-random if E 6⊆
⋂
n Un for every weak s-randomness

test U0, U1, U2, . . . . We will need the following technical result in order to ensure
that the cover Sk in Lemma 4.5 is sufficiently uniform:

Lemma 4.4. For every d > α there is a computable function 〈j, k, l〉 7→ Q〈k,l〉,j
such that for all k and l,

(i)
{
Q〈k,l〉,j

}
j

is a 2−k-mesh cover of E≤α by dyadic intervals, and
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(ii)
∑∞
j=0

∣∣Q〈k,l〉,j∣∣d < 2−l.

Proof of Lemma 4.4. Without loss of generality, we can assume that l ≥ kd; prov-
ing the result for a larger l only makes the second part of the lemma more true.
An inspection of [3, Proposition 13.5.3] (and the proof of the theorem immediately
preceding it) reveals that for any s ∈ [0, 1] and any set of reals E,

cdimE ≥ sup{s : E is weakly s-random}.

Since cdimH(E≤α) = α < d [11, Theorem 4.7], we have that E≤α is not weakly d-
random. This means that there exists a uniformly c.e. collection of dyadic intervals
Qk,l = {Q〈k,l〉,j : j ≥ 0} such that

(4.3)

∞∑
j=0

∣∣Q〈k,l〉,j∣∣d < 2−l

and each Qk,l covers E≤α which proves (ii). It follows from (4.3) that for every j0,∣∣Q〈k,l〉,j0∣∣d < 2−l, and so ∣∣Q〈k,l〉,j0∣∣ < 2−l/d ≤ 2−k

as needed for (i). �

Lemma 4.5. There exists a uniformly computable sequence of collections of dyadic
squares Sk which, for each k, form a 21/2 · 1

k -mesh cover of B with∑
S∈Sk

|S|γ < c · 21/2

2k+1
.

Proof of Lemma 4.5. Write γ = s + d, where s > dimH C and d > α. Let Gk be a
uniformly computable mesh cover of C by dyadic intervals of length 2−k such that
for each k, card(Gk) ≤ 2sk and, let Qk,l = {Q〈k,l〉,j : j ≥ 0} as in Lemma 4.4. Form
the uniformly computable sequence of square covers:

Γk,l = {G×Q : Q ∈ Qk,l and G ∈ G−blog |Q|c}.

Then, using card[G−blog |Q|c] ≤ |Q|
−s

for all Q ∈ Qk,l,∑
X∈Γk,l

|X|γ =
∑

Q∈Qk,l
G∈G− log |Q|

|G×Q|γ = 2γ/2
∑

Q∈Qk,l

|Q|s+d · card
[
G− log |Q|

]
≤ 2γ/2

∑
Q∈Qk,l

|Q|d < 2−l.

Let f be the Lipschitz mapping (1.6) whose inverse map does not increase diameter

by more than a factor of
√

2 and maps Γk,l onto B for all k and l. For every

k, let m(k) be sufficiently large so that 2−m(k) is less than c/2k+1. Now form
the collection Sk by taking, for each X ∈ Γk,m(k), the two dyadic squares which

together cover the sheared dyadic square f−1(X). Then the Sk’s form a uniformly
computable sequence of square covers which achieves the desired bounds. �

This concludes the proof of Theorem 4.1. �
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Remark. In contrast to the lower bound in Theorem 3.2 which holds for all reals
in [0, 1], the upper bound in Theorem 4.1 indeed requires some hypothesis on r.
Indeed if r = 0 and dimH C < α < 1 satisfied (4.1), we would have

dimH C = dimH [(C + 0) ∩ E≤α] ≤ α− 1 + dimH C < dimH C,

a contradiction.

5. Lower bound II

We modify the proof of Theorem 3.2 to obtain a stronger result for the case of
Martin-Löf randoms:

Theorem 5.1. Let 1 − dimH C ≤ α ≤ 1 and let r ∈ [0, 1] be Martin-Löf random.
Then

dimH [(C + r) ∩ E=α] = α− 1 + dimH C.
Moreover,

Hα−1+dimH C [(C + r) ∩ E=α] > 0.

Proof. Fix an α satisfying 1− dimH C ≤ α ≤ 1, and let A, CA, CĀ, E, F , and S be
as in the proofs of Theorem 3.2 and Lemma 3.4. For x ∈ R, let

Nδ(x) = {y ∈ R : |x− y| ≤ δ}.

We shall make use of the following result from Mattila’s book:

Theorem 5.2 ([14], Theorem 6.9). Let µ be a Radon measure on Rn, E ⊆ Rn,
0 < λ <∞, and α > 0. If

lim sup
δ→0

µ[Nδ(x)]

(2δ)α
≤ λ

for all x ∈ E, then Hα(E) ≥ µ(E)
2αλ .

Lemma 5.3. Hα−1+dimH C(CĀ) > 0.

Proof of Lemma 5.3. Since the case α = 1 − dimH C is trivial, we assume α >
1−dimH C. Let β = α−1+dimH C. Since A = {by/Dc : y ∈ N} where D = 1−α

dimH C ,

we have A = {u1 < u2 < u3 < . . .}, where limn→∞
n
un

= 1−D. In fact, the careful
choice of the set A lets us make a stronger statement about the numbers un: there
is a fixed number t such that un ≤ (n + t)/(1 − D) for all n. For each finite
binary string σ = σ1σ2 . . . σn, let I(σ) be the closed interval of ternary expansions
x = 0.x1x2 . . . satisfying

xp =

{
σk if p = uk for some k ≤ n, and

0 if p ≤ un and p /∈ {u1, . . . , un}.

Define a probability measure µ on [0, 1] by requiring

µ[I(σ) ∩ CĀ] =
1

2[length of σ]
.

Since µ is a bounded Borel measure supported on the compact set CĀ, µ is a Radon
measure; hence Theorem 5.2 applies. For δ > 0, let f(δ) be the least index such
that δ > 3−uf(δ) . Let

x = .000 · · · 00xu1
000 · · · 00xu2

000 · · · 00xuf (δ)000 · · · ∈ 1

2
CĀ,
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and let J = I[xu1
xu2
· · ·xuf(δ) ]. Then x ∈ J and the length of the closed interval

J is 3−uf(δ) < δ. So J ⊆ Nδ(x). Now the length of each interval I[σ1 · · ·σf(δ)−1]

is 3−uf(δ)−1 ≥ δ, so Nδ(x) can intersect no more than 4 of these non-overlapping
intervals. Therefore µ[Nδ(x)] ≤ 4 · 2−(f(δ)−1). Let c = 1−D. Then

µ[Nδ(x)]

(2δ)β
≤ 4 · 2−(f(δ)−1)

(2 · 3−uf(δ))β
≤ 8

2β
·
(

3βuf(δ)

2f(δ)

)
≤ 8

2β
·

(
3β·

f(δ)+t
c

2f(δ)

)
.

Thus

lim sup
δ→0

µ[Nδ(x)]

(2δ)β
≤ lim sup

δ→0
8 · 3βt/c

2β
·
(

3β/c

2

)f(δ)

= 8 · 3βt/c

2β
,

since 3β/c = 2, and hence by Theorem 5.2, we have Hβ
(

1
2CĀ

)
≥ 3−βt/c

8 . It follows

that Hα−1+dimH C(CĀ) = Hβ(CĀ) > 0. �

Lemma 5.4. Hα−1+dimH C [(C + r) ∩ E≤α] > 0.

Proof of Lemma 5.4. Let S = C ∩ (E − r). By Lemma 3.4, E ⊆ E≤α, and so it
suffices to show that Hα−1+dimH C(S) > 0. Retracing the argument of Theorem 3.2
down to (3.5), we get dimH S ≥ α− 1 + dimH C. Furthermore, as we now argue,

(5.1) Hα−1+dimH C(S) ≥ qα · Hα−1+dimH C(CĀ) > 0

for some constant qα > 0. The strict inequality in (5.1) follows from Lemma 5.3.
For the nonstrict inequality, we again appeal to the fact that the projection map
from C to CA is Lipschitz. [6, Lemma 1.8] states that, up to some constant factor,
a Lipschitz map does not increase Hα measure. This is slightly stronger than
what we used before in Theorem 3.2, namely that a Lipschitz map cannot increase
dimension. �

Using the assumption that r is Martin-Löf random, we next obtain the following:

Lemma 5.5. Hα−1+dimH C [(C + r) ∩ E<α] = 0.

Proof of Lemma 5.5. The case α = 1−dimH C follows from Theorem 1.2, so assume
α > 1− dimH C. By Theorem 4.1, for any γ with 1− dimH C ≤ γ < α, we have

dimH [(C + r) ∩ E≤γ ] ≤ γ − 1 + dimH C < α− 1 + dimH C.

Since E<α is the countable union of sets E≤γ for a sequence of γ’s approaching α
from below, the theorem follows. �

Combining Lemma 5.4 with Lemma 5.5, we find that

Hα−1+dimH C [(C + r) ∩ E=α] = Hα−1+dimH C [(C + r) ∩ (E≤α − E<α)] > 0,

whence we conclude the desired theorem. �

Combining Theorem 5.1 with Theorem 3.2 and Theorem 4.1 yields Theorem 1.1.

Remark. Although we have shown Hα−1+dimH C [(C + r) ∩ E=α] > 0, for each α
with 1 − log 2/ log 3 ≤ α < 1 and each Martin-Löf random real r, we don’t have
any upper bound or gauge function g with respect to which the Hg measure of
(C+ r) ∩ E=α may be σ-finite. This sort of problem is common in fractal geometry
and dynamics, see e.g. [4].
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