SETS MEETING ISOMETRIC COPIES OF THE LATTICE Z°? IN
EXACTLY ONE POINT

STEVE JACKSON! AND R. DANIEL MAULDIN?

ABSTRACT. The construction of a subset S of R2 such that each isometric copy
of 72 (the lattice points in the plane) meets S in exactly one point is indicated.
This provides a positive answer to a problem of H. Steinhaus.

1. INTRODUCTION

In the 1950’s, Steinhaus posed the following problem. Is there a set S in the
plane such that every set congruent to Z? has exactly one point in common with
S? The problem seems to have first appeared in a 1958 paper of Sierpinski [14].
Steinhaus also asked several related questions which have been stated and studied
in [5, 13, 14]. This specific problem has been widely noted, see e.g. [3, 4], but
has remained unsolved until now. Here using a combination of techniques from
analysis, set theory, number theory and plane geometry we show the answer is in
the affirmative:

Theorem 1.1 (ZFC). There is a set S C R? such that for every isometric copy L
of the integer lattice Z.> we have |SNL| = 1.

We call a set S as in theorem 1.1 a Steinhaus set and note that whether there can
be a Lebesgue measurable Steinhaus set remains unsolved. This problem has been
the origin of many papers including those of J. Beck [1], H. T. Croft [2], Komjath
[13], and Kolountzakis [11]. Kolountzakis and Wolff [12] showed that there is no
measurable Steinhaus set for the higher dimensional version of Steinhaus’ problem
for the standard lattice [12]. Steinhaus’ problem and variants were discussed in
some detail by Croft [2] and have been updated in sections E10 and G9 of [3].

A straightforward induction argument quickly runs into problems, as noted in
[2] and [9]. We avoid this by using a hull construction which we describe shortly.

Let us say a lattice distance is a real number of the form +/n? + m? where
n,m € Z. Our methods allow us to prove a strengthening of theorem 1.1:

Theorem 1.2 (ZFC). There is a set S C R? satisfying:

(1) For every isometric copy L of Z? we have SN L # {).
(2) For all distinct 21,22 € S, p(21,22)° ¢ Z.

The Steinhaus problem has a natural interpretation for smaller sets of lattices.
Namely, given an arbitrary set £ of lattices (each of which is an isometric copy of
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7%), we may ask whether there is a set S satisfying (2) of theorem 1.2 and such
that SNL # () for all L € £. We call a set S C R? satisfying (2) a partial Steinhaus
set.

Our first step toward proving theorem 1.2 is establishing this restricted version
of the problem for the case where L is the (countable) family of rational translations
of Z2. The proof involves only elementary number theory and combinatorics.

Lemma 1.3 (A). Let Lo denote the set of rational translations of 7.2, that is,
lattices of the form 7.2+ (r,s) where r,s € Q. Then there is a set S C R? satisfying
the following.

(1) For every lattice L € Lo, SNL # 0.
(2) For all distinct 21,22 € S, p(z1,22)° & Z.

Proof. We wish to show there is a map f : (Q/Z) x (Q/Z) — Q x Q such that
P2 (f(z), f(y)) ¢ Z holds for = # y and f is a selector: f([r],[s]) € [r] x [s]. The set
S is the image set of the selector.

For this we define a graph on the Abelian group Q/Z x Q/Z by joining = with
y if and only if there are elements g(x) € x + (Z x Z) and ¢g(y) € y + (Z x Z)
such that the square of the distance between g(x) and g(y) is an integer. When
constructing the selector we only have to worry about points that are joined. Let H
be the subgroup of Q x Q consisting of elements with denominators only divisible
by primes of the form 4k + 1. Note that if (r,s) € Q x Q and r? + s2 € Z, then
(r,s) € H. For suppose r = §, s = § (written in lowest terms), and r’+s>=ecZ.
Suppose p = 2 or p is a prime congruent to 3 mod 4, and p divides b or d. Then
the exact power of p dividing b, say p*, must be the exact power dividing d, as
otherwise multiplying through by the square of the least common multiple m of b
and d would give r’>m? + s>2m? = em? where the right-hand side and exactly one of
the left-hand side terms is divisible by p, a contradiction. Consider the case p = 3
mod 4. Since these exact powers are the same, neither term on the left is divisible
by p, and both are non-zero mod p. This would give that —1 is a square mod p, a
contradiction as p =3 mod 4. The case p = 2 is left to the reader. Thus, if [z], [y]
are joined then z —y € H, that is, no edges go between distinct cosets of H, so it
suffices to make the construction per cosets, and this again reduces to making the
construction on H. _

To motivate the following argument, let 2 = (&,2), ¢ = (

.
¥

R ,%), where d is
only divisible by primes congruent to 1 mod 4, and suppose f([z]) = = + (k1,11),
f(ly]) = y + (k2,12) and p(f([z]), f([y]))*> € Z. Multiplying through by d* this
becomes

(1) (ix —i2)” + (j1 — j2)” + 2d(i1 — in) (k1 — k2) + 2d(jr — j2)(lh — l2) € d°Z.

Suppose p? is one of the prime components of d, and p¢, p/ are the exact powers
of p dividing i1 — i2, j1 — j2 respectively. If e > a, then easily f > a as well,
and conversely. If e < a, then easily e = f. This gives (“ZD;”)2 +(82)? =

mod p®~¢. Recall that for each prime power p®, where p = 1 mod 4, there are
exactly two square roots, say Apa, fips, of —1 mod p?, and for any a’ < a, Ape
mod p@, ftpa mod p® are the roots mod p®. So we must have jlplh = Apa ilp_fz
mod p®~¢, where A\, denotes one of the roots. So, ji — j2 = Apa (i1 — i2) mod p®
holds in either case (¢ > a or e < a). Since this holds for each prime power p® of d,

we conclude that for p(f([z]), f([y]))? € Z to hold, we must have j; — ja = A(i1 —i2)

8
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mod d, where A2 = —1 mod d. To further motivate the argument, suppose now
that d = p® is a prime power and j; — jo = A(i; — i2) where X is chosen so that
A2 = —1 mod p?®. Substituting in equation (1) and dividing through by 2d(i; —i>)
gives k1 + Ay = ks + Al; mod p®~ where p® is the exact power dividing #; — 2.
Note, for example, that if a = 1 (i.e., d is a prime) then this equation would not hold
if we hac} ki = ko =0 and l; = i1, I = i5. This suggests we somehow write each
z = (4,2) in terms of the “basis elements” (1,Ape), (1, pe) for each p® dividing d,
and use this to define the k, [ values (where f([z]) = z + (k,l)). We now carry out
the details of this argument.

Let P, P>, - enumerate the positive powers of primes of the form 4k + 1 such
that if P; divides P; then ¢ < j. By recursion, for each ¢ fix the distinct mod P;
natural numbers \;, u; > 0 such that P?[A\? + 1, p? + 1 and P?|\; — \i, 5 — pi,
where P; is the next member of the sequence which is a power of the same prime
as P;. Note that \; and p; > 0 are the distinct square roots of —1 mod P?. Let
B(P;) be an integer divisible by every Py, ..., P;_1 but not by P;, and, if P; = p",
then let A(P;) be an integer divisible by each of Py, ..., P;_; which are not powers
of p, but (A(P;), P;) = 1. If (z,y) is a pair with z, y rational numbers, 0 < z,y < 1,
and the denominators of x,y are only divisible by primes of the form 4k + 1, then
(z,y) we claim can uniquely be written mod 1 as

(2) > @ (i (1, 20) + Bi(1, i)

(3

with 0 < «;, B; < p, here p is the prime whose power P; is. To see this, first write
(z,y) = (e;a+{1)+- . -+(el’ja+{’“) mod 1, where the e;, f; are integers and d = p{* ... p.*.
1 k

Each term in this sum is of the form % for some Pj, and it is enough to show
that this term can be written as ) @ (ai(1,A;) + Bi(1, p;)) where the P; range
over the divisors of P;, and 0 < «;,3; < p. Find «;, §; in the desired range
with A(P;) (o (1, Aj) + B (1, 15)) = (e, f) mod p, where P; is a power of p. This
is possible as (A(P;),p) = 1, and the two by two system is non-singular mod p.
Then 0}—? - %}?) (o (1, A5) + B(1, 1)) is of the form % where P; = Ppip.
Continuing we finish. The uniqueness part of the claim is easily checked. We now
add (0,>"t;B(P;)) to the point defined by (2), where t; = (a; + ;). This will be
£, ).

Assume that the square of the Euclidean norm of the difference of two such
points is an integer. The difference of the two points is of the form

A(P;)
(3) Z P, (ui(1, M) +vi(1, pi)) + (0,5),
where S = > (u; + v;) B(P;) with —(p — 1) < w;,v; < (p—1) for P, = p™ and the
sum here is taken over all 7 such that not both u; and v; are zero.

If the point given by (3) is (4,2 + S) where (a,d) = (b,c) = 1, then d = ¢, as
otherwise the square of the norm could not be an integer. From this we get that
b= Xa (mod d) where A2+ 1 =0 (mod d?). Next, note that all the P; which occur
in the sum in (3) divide d. Thus, for every i, either A = \; (mod P?) or A = p;
(mod P?) and the same case must hold for powers of the same prime. By renaming,
if needed, we assume that A = \; (mod P?) holds for every i.
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Since b = Aa (mod d) and A = \; (mod P?), we have
A(P)vi(N; — g
Z AlP)vi(i = i) =0 (mod 1)
P;
holds. Notice that p does not divide A\; — u; where P; is a power of p, and from this
we get by backward induction on ¢ that v; = 0 holds for every i.

What we have now is that
a\?2 b 2
(2) + (a * 5)

is an integer, where

a _ — wiA(P)
d P,
d > P’
and
S=> u;B(P).

Let 7 be the first index such that u; # 0 and let P; = p™. Then the first nonzero
term of S, that is, u;B(P;) is divisible by p™~! but not by p" and all later terms
are divisible by p™ (because of the factors B(P;)). So S is divisible by p"~! but not

by p™. If we replace 2 by 22 then we can easily conclude, using A*> = —1 (mod d?),
a\? Aa > _ 2Xa

which is certainly not an integer as d is divisible by p™ while S is not.

We now argue that the same holds for (5, %) instead of (§, %‘1) To this end, it
suffices to show that the integer %‘1 — g is divisible by p™. Indeed, if X is that last
difference, then we can repeat the above argument with S — X in place of S.

To show the last claim decompose it as
A b A= NAWE) "
T a2 2 =2t

where 3’ contains the terms with p|P; and 3" contains the other terms. In the

first sum, using the fact that A = A; (mod sz), every term is an integer divisible

by p™. The second sum is an integer of the form g where B is divisible by p™

(because of the factors A(P;)) but C is not divisible by p. O

Note that for any choice of the A(P;), B(P;) we have f([0],[0]) = (0,0) in the
above construction. However, for any (e, f) € Z? we could add (e, f) to the value
of f([z], [y]) for all z, y and still keep the squared distances between distinct points
in the range of f non-integer. Thus, we are free to make f([0], [0]) any point in Z2.

Actually, we require a slightly stronger form of the lemma 1.3. To state it we
call sets of the form x+ (Z x Z), (x € Qx Q) Z x Z-subsets of Qx Q. Also, a subset
E CQxQ is small, if for every Z x Z-subset D, DN E is contained in the union of
finitely many lines. If L is isometric to Z2 and @ is the set of points having rational
coordinates with respect to L, then we define in an analogous manner the notion
of E being small relative to L.

Let d be a positive integer. Let R; be the subgroup of Q/Z x Q/Z of points
([#], [y]) where z, y can be written with denominator d. Let Hy = H N Ry. If
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d = pi* ...pZ’“q'lJl ...qlb’ where each p; = 1 (mod 4) and each ¢; = 2 or ¢; = 3
mod 4, then H, are those ([z],[y]) where z, y can be written with denominator
pi"...pg*. Note that Ry is isomorphic to the direct sum Hy & K,, where K  is
the subgroup of ([z],[y]) where z, y can be written with denominator qi’l ...q;”.
In particular, the distinct cosets of Hy in Ry are given by ([z], [y]) + Hq, where
(fal. [y]) € Ka.

Suppose now f is a selector on Ry. We say f is good if on each coset of Hy in
Ry, f is defined as in the construction of lemma 1.3. More precisely, we mean the
following. Let d = p{* ... pg* <. .qlb’ as above (if d = 1, we declare f to be good).
Let d = p{*...pp*. Then for each coset ([z],[y]) + Hq, where ([z],[y]) € K, there
is a sequence of prime powers Py, P», ..., P;, which “build up” d (that is d is the
product of the P; which do not divide another term in the sequence) and integers
A(P;), B(P;), i < ig, as in the proof of lemma 1.3, and an initial translation (e, f)
such that for all ([7],[s]) € Ha, £(([a], [y]) + (L [5])) = (e, £) + £'([7], s, where f"
is defined on Hy as in lemma 1.3 using the P;, A(P;), and B(P;).

It was shown in the proof of lemma 1.3 that if f is a good selector on Ry, then
the range of f is a partial Steinhaus set.

Lemma 1.4 (A'). Let d be a positive integer and f be a good selector on Rgy.
Suppose d|d' and E is a small set missing ran(f). Then f may be extended to a
good selector f' on Ry whose range also misses E.

Proof. Using the fact that the constructions on the different cosets of H are inde-
pendent (c.f. the first paragraph in the proof of lemma 1.3) and also that a rational
translation of a small set is small, it is enough to show the following (changing
somewhat the notation from the statement of the lemma). Let d be a product of
positive powers of primes congruent to 1 mod 4. Let Py, Ps, ..., P;_; build up d (as
defined above). Let A(Py), B(Py), ... A(P;—1), B(P;_1) satisfy the requirements
given in lemma 1.3. Let f be the selector on H; defined from these quantities as in
lemma 1.3. Suppose finally that E is a small set missing ran(f), and P; is given with
Py, ... P; building up d' say. Then we show that there are A(P;), B(P;) so that if f'
is defined using these extended sequences, then the range of f' misses E. The point
is we have enough freedom in choosing the values of A(P;), B(F;). We are assum-
ing f([z], [y]) has been defined for all (x,y) having a representation as in (2) with
the sum ranging over prime powers in the list Py,..., P;_1. Let A, B, satisfy the
requirements for A(P;), B(P;) given in lemma 1.3. Let U be the product of the P;
with j < i and P;, P; relatively prime. Then A' = A+ KP,U, B' = B+ LP;U also
satisfy these requirements for any K, L € Z. Let f' be as constructed in lemma 1.3
using A’, B'. For any fixed x, y € Ry — Ry, a computation shows that the cor-
responding values of f'([z],[y]) will have the form (2’ + KUa,y' + KUb+ LU P;a)
for some fixed z',y' € Q, a,b € Z with a,b # 0. Since E is small, for each [z], [y]
the requirement that f([z],[y]) ¢ E rules out only the K, L lying on finitely many
lines in Z x Z. As there are only finitely many [z], [y] to consider at stage i, it is
clear that we can choose K, L so that f’ misses F. O

We thank one of the referees for pointing out the proofs of the preceding lemmas.
These proofs are based on and motivated by the more complicated proofs that we
give in [9] for stronger results. To state one of these results we adopt the following
terminology. For rationals r, s, let L, s = Z? + (r, s) be the rational translation of
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Z? by (r,s). Let R = Q" N ([0,1) x [0,1)). For each positive integer d, let R4 C R
be defined by Ry = {(4,2) : 0 <,j < d}. We prove the following in [9].

Lemma 1.5. Let d > 1 and suppose functions k, | mapping Ry into Z have been
defined such that setting Sq = {(r + k(r,s),s +1(r,s)) : r,s € Rq} we have:

(%)q: for all distinct 21,22 € Sy, p(z1,22)* ¢ 7.
Then for any d' with d|d’, the functions k,l may be extended to Ry so as to satisfy

(*)ar -

This last lemma assures us not only that there is a set S satisfying lemma A, but
also that any partial Steinhaus set defined for the translates in R4 may be extended.
We also prove similar extension theorems where we must avoid small obstruction
sets. These extension lemmas are much stronger than is required for the proof
of our main theorem but we feel that they may be useful in studying analogous
problems for other lattices, other dimensions and other groups of isometries.

By a rational translation of a lattice L we mean a lattice of the form L + ri + st/
where 7,5 € Q, and &, ¥ are the unit basis vectors of L.

Definition 1.6. Two lattices are equivalent L; ~ Lo, if Ly can be obtained from
L, by rational rotations and translations.

In other words, L; ~ L, if and only if all of the points of L, have rational
coordinates with respect to the coordinate system determined by L; (and vice-
versa). This is easily an equivalence relation and each equivalence class is countable.
We also note that if two lattices are not equivalent then there can be at most one
point with rational coordinates with respect to both of them.

An important aspect of the construction is that if one has a Steinhaus set for
all the rational translates of a given lattice L, then it is a Steinhaus set for the
equivalence class of L:

Lemma 1.7. Let L, be a lattice and suppose S C R? satisfies the following:

(1) For every lattice L which is a rational translation of L1, SN L # (.
(2) For all distinct z1, 22 € S, p(z1,22)° ¢ Z.

Then for every lattice L' which is equivalent to Ly, we have SNL' # (. O

Naturally, this last observation suggests constructing a full Steinhaus set by
induction on the equivalence classes of lattices. This leads us to the set theoretic
part of the proof. The transfinite induction considers collections of lattices which
are sufficiently closed. The main closure property we need arises from lemma 1.9,
and the corresponding argument is given in claim 1.11 below. Rather than specify
at the outset exactly what closure properties we wish our sets at each stage to
satisfy, it is more convenient to follow a standard set-theoretic practice. If CH
held, we would at stage a consider those equivalence classes of lattices which lie in
an elementary substructure (or hull) M, of V) for some large A (though actually
A = w + w will suffice). Here V) denotes the initial segment of the universe of sets
of rank less than A, and an elementary substructure denotes a subset closed under
the functions f: (Vi)™ — V), for some n, which are definable in V) (the so-called
Skolem functions of V). For the benefit of the reader unfamiliar with set-theoretic
terminology, we note that this is merely a convenient shorthand for requiring that
the sets we consider be sufficiently closed without having to specify in advance
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exactly which functions we want them to be closed under. Thus, in place of M,
the reader could substitute “a sufficiently closed collection of points and lattices”
(the closure properties needed will be apparent from the following argument, and
could be specified in advance).

In the general case (not assuming CH) the construction is essentially an iteration
of this substructure construction. Although the set-theoretic terminology could be
largely eliminated (see also the comments at the end of this paper), we believe
doing so would lessen the generality of the method and hide our motivation (for
example, it was by pursuing the “hull” strategy just outlined that we were led to
consider lemma 1.9).

We now describe the particular enumeration or well-ordering of the equivalence
classes which we will use.

First, some notation. If L C R? is an isometric copy of Z? let [L] denote the
equivalence class of L under the equivalence relation ~ of definition 1.6. Let £
denote the family of all equivalence classes. Let £ — L(L£) be a function which
picks for each equivalence class £ a member L(L) € L.

The construction of the enumeration begins by letting {M,, : @y < 2¥} be
an increasing continuous (i.e., at limit stages we take unions) chain of elementary
substructures of a large V) with |M,,| < 2 for all ap < 2¢ and such that each
lattice and each equivalence class of lattices is in one of these substructures. Assume
also that My = (. (The starting set My is an exception in that it is not an
elementary substructure.) Let Ny, = Myy41 — Moy, -

By simultaneous recursion we define a subtree 7' of ON<“ and an ordinal (&)
and sets Mz, Nz for @ € T. Set k() = 2¥. In general, suppose that My is
defined for & in a certain subtree of ON<“. If Mo, ...,ar is defined, we assume also
that k(ao,...,ar_1) has been defined and is an infinite cardinal. Furthermore, we
assume in this case that My, . o, ,.3 is defined if and only if § < k(ao, - .., ak-1).
We let Ny, ,....ap denote My ap+1 — Mag,....an -

Suppose now that My, ... o, is defined. If Ny, .. o, contains only countably many
equivalence classes of lattices, let {Lqy,....ax:n fnes, Where s < w, enumerate these

equivalence classes. In this case, (ag,...,ax) is a terminal node in the tree, T, of
indices & for which Mg is defined. Otherwise, let k(ao,...,ar) = |Nag....,ax | and
express

Na07~~~yak = U Ma07~~~yak7ak+l

ap41<k(@o,-..,a)

as a continuous increasing union, where each My, ... ay,a,4, iS the intersection of
Nag....,a,, With an elementary substructure of V), and each Moy, ....a,an, has size
< k(g .. .,ar). Assume also My, a0 = 0. We note two facts. Easily, the tree
of indices is well-founded (since the cardinals k5 are strictly decreasing along any
branch). Also, if a1,...,am € Mqy, ... a0z, a0d f is a Skolem function of V) and
flai,...;am) € Nag,....ay, then f(ar,...,am) € Moy, . ars-

Notice if & is incompatible with ,6_” , then Nz and N i have no equivalence class in
common. Furthermore, every equivalence class occurs as some Lq,,... a5;n- Lhus,
the Lag,....ar;n Drecisely enumerate the equivalence classes of lattices. By an “w-
block” of lattices we mean the (equivalence classes of) lattices of the form Lqq,.ayin
for some fixed terminal index ag,...,ar. We consider the indices to be (well)
ordered lexicographically.
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The following easy lemma will be used.

Lemma 1.8. Suppose @ is an index for which Mg is defined. Let ay,...,a, € Mg
and suppose b is definable from ay,...,a., in V. Then b € Ug<& MB—». O

The idea for constructing a Steinhaus set is by transfinite induction along the
terminal nodes of the tree T'. However, it turns out we need another lemma in pure
plane geometry in order to make an inductive extension.

Lemma 1.9 (B). Let c¢1,c¢2,c3 be three distinct points in the plane, and let 1, ra,
rg > 0 be real numbers. Let Ci be the circle in the plane with center at c¢; and
radius ry, and likewise for Cy and Cs. Let a,b,c be three distinct points in the
plane. Then, except for the exceptional case described afterwards, there are only
finitely many triples of points (p1,pa,ps) in the plane such that

(1) p1 € C1, p2 € Co, and p3 € Cs.
(2) The triangle pipaps is isometric with the triangle abe (we allow the degen-
erate case where the points a,b,c are collinear).

The exceptional case is when r1 = ro = rz and the triangle abc is isometric with
C1C2C3.

This lemma seems to be known within engineering mathematics specifically re-
garding the geometry of mechanisms [10]. Although not explicitly stated, lemma B
follows from the analysis of Gibson and Newstead in [8]. The Gibson-Newstead
argument uses a significant amount of algebraic geometry. We also give two el-
ementary proofs of lemma B in [9], an algebraic one using Grébner bases and
computer algebra, and the other a purely geometric proof.

Fix now a terminal index & = (ap, ..., a). Assume inductively we have defined
for each terminal index 5 < aaset S 5 C R? which satisfy the following:

(1) If 51 < EQ < @, then 531 - ng
(2) For every terminal index f§ less than &, S5 meets every lattice in every

equivalence class £ Gin-
Every point of S5 — [J;_5 57 lies on some lattice of the form Lz .

—
w
N

¥<B
(4) For all distinct 21,22 € Sz, p(z1,22)* ¢ Z.
(5) Suppose Bi<Bo<a ze Szandy € Sz —U5 5,59 Thenif p(z,y)? €

Q then z, y both have rational coordinates with respect to some lattice of
the form Eﬁ}n'

Let Scq = U3<& SB" We show how to extend Scgz to a set Sy also satisfying 4, 5
and such that Sy meets every lattice in each equivalence class Lg,,. This suffices
to prove theorem 1.2.

To ease notation, let £, = Lg,n, and let L, = L(L,). From lemma 1.7, it
suffices to maintain property 4, have property 5 when 52 = @, and have S5 meet
every rational translation of each L,, (recall a rational translation of L,, refers to a
motion which is a translation in the coordinate system of L,,).

For integers n, d, i, j, let L%%J denote the translation of L,, by the amount (é, %)
(in the coordinate system of L,,). We also need the following easy lemma.

Lemma 1.10. Let L be a lattice and z € R%. Suppose z has coordinates (z,y) with
respect to the lattice L, where at least one of x, y is irrational. Then there is a line
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I =1(z,L) such that if w has rational coordinates with respect to L and w ¢ I, then
p(w,z)* ¢ Q.
These last two geometric lemmas give the following claim (see [9] for details).

Claim 1.11. For each n and rationals fi, %, there is a finite set of lines G, (d, d)
with the following property: if ¢ € S.5z does not have rational coordinates with

respect to Ly, if 2 € L&, and if p(c,2)? € Q, then z € UG, (3, d)

Fix a bijection (n,m) — (n,m) € w between w? and w. We may assume this
bijection is increasing in each coordinate. Let @), be those points having rational
coordinates with respect to L,,. We construct partial Steinhaus sets 1)} in stages,
with Tg* C T{* C --- C Q. We will arrange it so that if 7" = {J,, T2, then 7"
meets every lattice in £,,. At stage i = (n,m) we extend T _, to T} (or define T}’
if m =0). We will follow lemma 1.4 in doing each extension.

Fix i = (n,m), and assume that for all (p,q) < i that T} is defined. Assume
inductively that the T7 so far defined satisfy the following (below, interpret Tg’_l
as ) if ¢ = 0):

(a) TP contains T, |, and each T} is a partial Steinhaus set (that is, p(21, 22)* ¢
Z for all distinct 21,22 € T7).

(b) TP is the range of a good selector fP on Rj . Here Rj is the set of
points having coordinates with respect to L, which can be written with
denominators dg, and do, dy, . .. is a sequence (depending on p) with d;|d;44
for all 7 and such that every integer divides some d;.

(c) Let EP = U, ; 4(Gp(%, %) N L&), Note that EP is small relative to Q.
Then (TP — (S<a YU py<(p.q I5)) N EP = 0.

(d) Suppose z ¢ Scg, and iy = (p2,qo) is least so that 2 € Tp2. If iy =
(p1,q1) < iz and p; # po, then z does not have rational coordinates with
respect to Ly, .

(e) Suppose z ¢ Scg, and i2 = (p2,q2) is least so that z € TF2. If iy =
(p1,q1) < iz and y € TP+ does not have rational coordinates with respect
to Lp,, then z ¢ I(y, Lp,), where I(y, L,,) is as in lemma 1.10.

Consider now i = (n,m), and we define T so as to also satisfy the above
properties.

Consider first the case m = 0, that is, we are at the beginning stage in the
construction of 7. We claim that there is at most one point in S5 U U (», q < IF
which is also in @Q,,. For suppose y, z were two such points. Note that p(y, z)? € (@.

SupposE ﬁrstﬁthat g,z Eﬁ Scg. Say y € 551 — UA?<31 Sy, z € ng - Us<z, S
where 1 < 8. If 1 = B2, then each of y, z lies on a lattice in NB»Q. Since L,, is
definable from y and z, L,, is definable from two lattices in M i for some /3; <da

From lemma, 1.8 it follows that L, € Uw<a 7, a contradiction. If B} < B_; then
from inductive property 5, y, z both have rational coordinates with respect to some
lattice L in N . This would again imply that L, € (J;<; M5, a contradiction.
Suppose next that y € Scy and z ¢ Scg. Let (p,q) be least so that z € T? (so

p < n). Since by (c), z ¢ UG, (4, d) we must have that y is rational with respect to
L, (as otherwise p(y,z)* ¢ Q). Thus, both y and z have rational coordinates with
respect to both L, and L,, a contradiction to the fact that there can be at most
one point with rational coordinates with respect to both lattices. Suppose now
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Y,z ¢ Sca. Lety € TP, z € TP2, with i1 = (p1,q1), i2 = (p2, ¢2) chosen minimally,
S0 p1,p2 < n. Assume without loss of generality that iy < is. If i1 = iy then y, 2
are rational with respect to both L,, and L,, a contradiction. If i; < iy then from
(e), y is rational with respect to Lp,. So y, z are both rational with respect to Ly,
and L,, again a contradiction.

Let Eg be the union of |J; ; 4(G (4, DYNLLHT) together with |J, I(z, L,) where z
ranges over the points in U (pa)<i T} not having rational coordinates with respect to
L, together with the (finitely many) points of (), which are rational with respect
to one of the lattices L, with p # n, and (p,q) < i for some ¢ (for m = 0 this is
equivalent to p < n). Clearly E¥ is small with respect to @,,. Let w,, be the unique
point in (Scz U U (may<i TP)NQy if it exists, and otherwise let w;, be any point of
L, — E§. Apply now lemma 1.4 to get Tj avoiding Ef — {w,} and with w,, € Tj.
From the definition of EJ it is clear that (c)-(e) are still satisfied.

Consider next the case m > 0. Define E}! exactly as above and apply lemma 1.4
to get T, adding only points which avoid the set E7 . Again, (c)-(e) are satisfied.

Note for the arguments below that if z ¢ Sc5 and (n,m) is least so that z € T},
then z # wy,.

This completes the definition of the T}, and we have verified (a)-(e). Let T =
Un.m T Let Sg = Sz UT. We must show that inductive hypotheses (1)-(5) are
satisfied. Properties (1)-(3) are immediate from the construction. To see (5), let
B<dandyeSs 2z € Sz — Seg, and suppose p(y,2)? € Q. Let (n,m) be least

so that z € T)y,. Since 2z ¢ |J; ;4G (%, %) by construction, we must have that y is
rational with respect to L,,.

Finally we verify (4), that is, we show Sy is a partial Steinhaus set. Let y, 2
be distinct points in Sg, and assume p(y,z)?> € Z. We may assume z € T — S_5.
Suppose first that y € Scg. Let i = (n,m) be least with z € Tr. As in the previous
paragraph we must have y rational with respect to L,, as otherwise p(y,2)? ¢ Q.
Let i' = (n,0), so i’ <i. In defining T{", y would then have been the point w,,. So,

€ T, and since this is a partial Steinhaus set, p(y, z)? ¢ Z, a contradiction.

Assume now that y,z ¢ Scgz. Let y € T{,;ll, z € Tp2, with i1 = (n1,m1),
i2 = (ng, mg) chosen minimally. Clearly i; # i2, in fact ny # ns. Assume without
loss of generality that 41 < 4. We must have y rational with respect to L,, as
otherwise from the definition of EJ!2 and I(y, Ly,) we would have p(y, z)* ¢ Q. Let
i3 = (ns2,0) (note that iz # 41). If iy < i3, then y is the point wy,, which lies in
Tr>, and so p(y,z)* ¢ Z. If however iy > i3, then from the definition of E% we
would have that y is not rational with respect to Ly, (since into EJ} we added
the (at most one) point of Q,, N Q,,). This again implies that p(y,z)> ¢ Q, a
contradiction.

This completes the proof of theorem 1.2.

Finally, we point out two simplifications that could be made to the proof. First,
one could make the inductive construction more specific for this problem. Fix a
transcendence basis for R over (Q, and let < be a well-ordering of this transcendence
basis. Then the finite <-decreasing sequences s from the basis are well-ordered
lexicographically. For each such s, there are only countably many lattices which
are algebraic over Q and s. Do the transfinite construction in the order of these
sequences s, at each stage handling those countably many lattices that are algebraic
over Q and s but not algebraic over Q and s’ for any s’ < s. Then all of the
arguments go through as before, if one replaces “definable” with “algebraic.” The
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key point is: if three of the sequences 3, all precede « lexicographically and first
differ from « at the same position k, then the union of these three sequences,
arranged in <-decreasing order, still precedes « lexicographically.

Secondly, the full strength of lemma 1.9 is not needed for the proof. Let again
(using the notation of claim 1.11) EP be those points z € @, (i.e., having rational
coordinates with respect to L,) such that p?(c,z) € Q for some ¢ € S.s where
c does not have rational coordinates with respect to L,. Then it suffices to show
that EP is semi-small with respect to (), which means for each rational translation
L = L&%7 of L, there is a finite set of lines F' such that for any line [l ¢ F, INLNEP
is finite. This is because the proof of lemma 1.4 shows that we may actually avoid
any (), semi-small set in constructing the TP. To see E? is semi-small, it suffices
to show that there is a bound s € w such that if ¢y,..., s are points in the plane
with p(c;,c;)? ¢ Z for distinct ¢;,cj, and if 21,...,2z, are collinear points with
p(ciyzi)? € Q and p(z;, 2j)* € Z, then the z; are definable from {ci,...,cs}; in fact,
for fixed ¢1, . . ., ¢s, distances p(c;, 2;) and p(z;, 2;), there are only finitely many such
{#1,...,2s}. This fact follows from lemma 1.1 of [13].

We thank the referees for pointing out these possible simplifications as well as
the simplified proof of lemma A which we presented here. We also thank Robert
M. Solovay for his detailed comments and attention to the paper.
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