THE DOUBLING PROPERTY OF CONFORMAL MEASURES OF
INFINITE ITERATED FUNCTION SYSTEMS

R. DANIEL MAULDIN AND MARIUSZ URBANSKI

ABSTRACT. We provide sufficient conditions for the conformal measures induced by regu-
lar conformal infinite iterated function systems to satisfy the doubling property. We apply
these conditions to iterated function systems derived from the continued fraction algorithm
-continued fractions with restricted entries. For these systems our conditions are expressed
in terms of the asymptotic density properties of the allowed entries. As examples, we give
some relatively large classes of sets of continued fractions with restricted entries for which
the corresponding conformal measures have the doubling property. Similarly, we give some
other classes for which the conformal measure does not have the doubling property.
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Recall that a Borel probability measure m defined on a compact metric space (Y, p) satisfies
the doubling property provided that there exists a constant C' > 0 and 7 > 1 such that

m(B(z,1r)) < Cm(B(z,T)), (0.1)

for m almost all z € Y (or equivalently for all = in the topological support of m) and all
r < 1. A trivial observation is that instead of 1 we can equivalently require r to be less than
or equal to any fixed positive number. Since the property (0.1) holds for some 7 > 1 if and
only if it holds when 7 = 2, it is appropriate to call this the doubling property although it
has been given several names. The doubling property and some closely related variants play
an important role in geometric measure theory: Vitali and differentiation type theorems (see,
for examples [Fa], [Fe], [M1]). For some additional consequences of the doubling property see
for example [M2] (John-Nirenberg inequality), [GS] and [JW]. Thus, it is important to know
whether a measure has this property or not. Some prime examples of such measures arise in
conformal dynamics. If one has either a finite conformal iterated function system satisfying
the open set condition or a hyperbolic rational function of the Riemann sphere €, then there
is a natural probability measure m called the conformal measure defined on .J, the limit set
of this system or the Julia set respectively. The measure m satisfies the doubling condition.
In fact, letting h denote the Hausdorff dimension of J, it is well-known there is a constant
C > 1 such that for all x € .J,

ct <
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for all sufficiently small . See, for example, [MU1|, Lemma 3.14 for the iterated function
system case. Going beyond the hyperbolic case, the h-dimensional conformal measure m for
a parabolic rational function or a finite parabolic conformal iterated function system has been
shown to satisfy the doubling property respectively in [SU1] and [SU2].

In this paper, we investigate the conformal measure, if there is one, induced by an infinite
conformal iterated function system. We recall that the iteration of infinitely many conformal
maps naturally arises in several contexts. For example, one is naturally led to consider
infinite systems when one is dealing with a finite system of conformal maps which have some
cusps or singularities, the parabolic systems mentioned above, see e.g. [MU3], [MU4], [SU2].
Another natural class of examples arise from the investigation of sets of continued fractions
with restricted entries. We determine here some easily verifiable conditions under which the
conformal measure satisfies (or does not satisfy) the doubling condition. This continues our
study of the geometric properties of these systems [MU1], [MU2], [MMU], [JJM] and [Ur]. As
a special case, we give particular attention to the systems generated by continued fractions
with restricted entries. Our sufficient conditions for general systems then have interpretations
in terms of the arithmetic properties of the allowed entries. The case where the each entry
must be a prime remains unsolved.

1. PRELIMINARIES

Let us describe first the setting of conformal (infinite) iterated function systems introduced
in [MU1]. Let I be a countable index set or alphabet with at least two elements and let
S ={¢;i: X — X :i € I} be a collection of injective contractions from a compact metric
space X into X for which there exists 0 < s < 1 such that p(¢;(z), ¢:i(y)) < sp(zx,y), for every
t € I and for every pair of points x,y € X. Thus, the system S is uniformly contractive. Any
such collection S of contractions is called an iterated function system. We define the limit
set, J, of this system as the image of the coding space under a coding map as follows. Let
I™ denote the space of words of length n, I the space of infinite sequences of symbols in I,
I'=U,s1 I" and forw e I", n > 1, let ¢, = ¢, 0Py, 0200, fwel*UI*andn>1
does not exceed the length of w, we denote by w/|, the word wws . ..w,. Since given w € I*°,
the diameters of the compact sets ¢,,,(X), n > 1, converge to zero and since they form a
decreasing family, the set

) 6.(¥)

is a singleton and therefore, denoting its only element by m(w), defines the coding map = :
I* — X. The main object of our interest will be the limit set

J=TJs=n(1®) = U [ ¢unl(X).

w€eIl>® n=1

Observe that J satisfies the natural invariance equality, J = U;c; ¢:(J). Notice that if I is
finite, then .J is compact and this property fails for infinite systems.
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An iterated function system S = {¢; : X — X : i € I} is said to satisfy the Open Set
Condition (OSC) if there exists a nonempty open set U C X (in the topology of X) such that
¢;(U) C U for every i € I and ¢;(U) N ¢;(U) = 0 for every pair i,j € I, i # j. (We do not
exclude the possibility that ¢;(U) N ¢;(U) # 0.) A system satisfying (OSC) is said to satisfy
the Strong Open Set Condition (SOSC) if J¢NU # () and it is said to satisfy the Super Strong
Open Set Condition (SSOSC)if Js C U.

An iterated function system S satisfying the Open Set Condition is said to be conformal if
X c IR? for some d > 1 and the following conditions are satisfied.
(1a): U = Intjpa(X).
(1b): There exists an open connected set V such that X C V C IR? such that all maps
bi, 1 € I, extend to C* conformal diffeomorphisms of V into V. (Note that for d = 1
this just means that all the maps ¢;, i € I, are C* monotone diffeomorphisms, for
d > 2 the words C! conformal mean holomorphic or antiholomorphic, and for d > 2
the maps ¢;, i € I are Mobius transformations. The proof of the last statement can
be found in [BP] for example, where it is called Liouville’s theorem.)
(1c): There exist v,/ > 0 such that for every x € X C IR? there exists an open cone
Con(z,v,[) C Int(X) with vertex x, central angle of Lebesgue measure v, and altitude
[.
(1d): Bounded Distortion Property(BDP). There exists K > 1 such that

16L,(y)] < K4, ()|

for every w € I'* and every pair of points x,y € V, where |¢/ ()| means the norm of
the derivative.

Let us now collect some geometric consequences of (BDP). We have for all words w € I'* and
all convex subsets C' of V'

diam(¢,(C)) < ||¢,,||diam(C) (1.1)

and
diam(¢,,(V)) < DI|¢,|l; (1.2)
where the norm || - || is the supremum norm taken over V' and D > 1 is a constant depending

only on V. Moreover,

diam(¢, (X)) = D™|¢, || (1.3)

and
¢u(B(w,1)) D B(du(), K~||6,]|r) (1.4)

for every x € X, every 0 < r < dist(X,0V), and every word w € I*.

As was demonstrated in [MU1], infinite conformal iterated function systems, unlike finite sys-
tems, may not possess a conformal measure. There are even continued fraction systems which
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do not possess a conformal measure, see [MU2|, Example 6.5. Thus, the infinite systems nat-
urally break into two main classes, irregular and regular. This dichotomy can be determined
from either the existence of a zero of the topological pressure function or, equivalently, the
existence of a conformal measure. The topological pressure function, P(t), t > 0, is defined
as follows. For every integer n > 1, define

Ua(t) = 3 lgLll"
weln

and set .
P(t) = lim —logn(t).

For a conformal system S, we sometimes write ©s = 11 = 1. The finiteness parameter, 0,
of the system S is defined by inf{¢ : ¢)(t) < oo} = fs. In [MUI1], it was shown that the
topological pressure function P(¢) is non-increasing on [0, 00), strictly decreasing, continuous
and convex on [#,00) and P(d) < 0. Of course, P(0) = oo if and only if I is infinite. In [MU]]
(see Theorem 3.15) we have proved the following characterization of the Hausdorfl dimension
of the limit set Jg, which will be denoted by h = hg.

Theorem 1.1.
hs = sup{h(s,y : F C I is finite } = inf{t : P(t) < 0}.
If P(t) =0, then t = hg.

We called the system S regular provided that there is some ¢ such that P(¢) = 0. It follows
from [MU1] that ¢ is unique. Also, the system is regular if and only if there is a ¢-conformal
measure. A Borel probability measure m is said to be t-conformal provided m(Jg) = 1 and
for every Borel set A C X and every ¢ €

m(@i(4)) = [ lo}f"dm
and

m(i(X) N ¢;(X)) =0,
for every pairi,j € I, 1 # j.

There are some natural subclasses within the regular systems. A system S = {¢;};cs is said
to be strongly regular if 0 < P(¢) < oo for some ¢ > 0. As an immediate application of
Theorem 1.1 we get the following.

Theorem 1.2. A conformal system S is strongly reqular if and only if h > 6.

Also, in [MU1] we called a system S = {¢;};c; hereditarily regular or cofinitely regular
provided every nonempty subsystem S’ = {¢;}icy, where I' is a cofinite subset of I, is
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regular. A finite system is cofinitely regular and for an infinite system, we showed in [MUI1]
that whether a system is cofinitely regular can be also determined from the pressure function:

Theorem 1.3. An infinite system S is cofinitely or hereditarily reqular if and only if P(0) =
00 Y(f) =00 & {t:P(t) <oo}=(0,00) & {t:(t) < oo} =(0,00).

We end this section with a short description of the contents of this paper. In Section 2
we provide some general sufficient conditions for conformal measures to satisfy the doubling
property. In Section 3 we consider the maps ¢, : [0,1] — [0,1], for n € IN given by the
formula ]
Onlz) = r+n’

and an arbitrary subset I of positive integers IN. We investigate the corresponding iterated
function system S; = {¢;}ic; called there a continued fraction iterated function system. Its
limit set J; consists of all those x € (0,1) that each partial denominator z;, i« > 1 in the
continued fraction expansion

$2+F
is in I. In Theorem 3.4 an effective sufficient condition for the conformal measure of the
system S; to satisfy the doubling property is provided. This condition is in terms of the
arithmetic properties of the infinite set I of positive integers. This continues our theme from
[IMU2] that many geometric measure theoretic properties of these system are reflected in the
arithmetic properties of the index set I. In Section 4 we describe some general classes of
cofinitely regular continued fraction systems whose conformal measures are proven to either
satisfy or fail to satisfy the doubling property.

2. GENERAL RESULTS

Let us recall that a Borel measure v defined on a metric space (Y, p) satisfies the doubling
property provided that there exists a constant C' > 0 such that

m(B(x,2r)) < Cm(B(z,))
for all z € Y and all » > 0.

Theorem 2.1. Suppose that S = {¢;}ier is a regular conformal iterated function system
satisfying the (SSOSC) and that m is the corresponding conformal measure. Suppose also
that there exist constant v > 1 and C' > 0 with the following two properties.

(a): Vi € IVx € ¢y(J)  m(B(x,2Kydiam(¢;(X)))) < C|¢}]|".

(b): Vi € I Yz € ¢;(J) ¥Vr > ydiam(¢;(X))  m(B(z,2r)) < Cm(B(z,1)).
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Then the conformal measure m satisfies the doubling property.
Proof. The (SSOSC) says that
¢ =dist(J, R*\ X) > 0.
Put a = (4¢"'K2D?)~'. First, we shall show that
3C, > 0 Vi € I Vz € ¢;(J) Vr > adiam(¢;(X)) m(B(z,2K7r)) < Ciym(B(x,7)).
(2.1)
. . . log K 4 q .
Indeed, if r > ydiam(¢;(X)), then with C; = C™e2 ™" we are done by assumption (b). So, we
may assume that
adiam(¢;(X)) < r < ydiam(¢;(X)). (2.2)
Now, using (a), we obtain
m(B(x,2Kr)) < m(B(x, 2K~diam(¢;(X)))) < C||¢i][" (2.3)
On the other hand, using (1.3), we get
B(z,r) > B(z,adiam(¢:(X))) > B(z,aD Y|4[]) D ¢:i(B(¢; *(z),aD)).
Since m is positive on non-empty open sets of J, M = inf{m(B(z,aD™')) : 2 € J} > 0.
Noting ¢; ' (z) € J and B(¢; ' (z),aD~') C X, by conformality of m, we obtain
m(B(w,r)) > K™|gi[|"m(B(¢; ' (x),aD™")) > ME"||g}]|".

Combining this and (2.3), we obtain m(B(z,2Kr)) < M 'CK"m(B(x,r)) and formula (2.1)

is proved. We now turn to the doubling property. Fix x € J and 0 < r < (4K D) !(diam(X).

Write = 7(w), w € I°® and let n > 0 be the least integer such that ¢, (X) C B(z,2KD(™'r).

In view of the requirement imposed on r, we have n > 1 and by the definition of n,

diam(,, ,(X)) > 2KD¢"r. Using (1.1), 2K7|¢;, |7 < (. Therefore, B(r(c" ' (w)), 2r K||¢,,, |71
X and consequently,

B(x,2r) C u, ., (B(r(o" " (w)), 2Kr||¢L,, 1)

and

m(B(z,2r)) < [|¢l,,_[I"m(B(x(0" " (w)),2K7r]|¢, ,|I™)). (2.4)
On the other hand,

m(B(z,r)) > K¢, |I"m(Bx (o™ (), rllél, 1Y) (2.5)

In addition, 7(c"™ ' (w)) € ¢, (X) and since ¢y, (X) C B(z,2KD( 'r), we get
rllog, 17> a6l 17l | > KD~ rdiam™ (6, (X))diamn(,, (X))
> K~'D™%r(4K D¢ 'r) "t diam(¢,, (X))
= (4 'K*D?) 'diam(¢,, (X)) = adiam(a,,, (X)).
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Thus, (2.1) may be applied and combining this with (2.4) and (2.5), we get
m(B(xz,2r)) < CiK"m(B(z,r))

and the proof is complete. H

Corollary 2.2. Suppose that S = {¢;}ier is a regular conformal iterated function system
satisfying the (SSOSC) and that m is the corresponding conformal measure. Suppose that the
following two conditions are satisfied.

(a): Vi < 13C, > 0Vi € I3z, € ¢:(X)  m(B(a;, ndiam(py(X)))) < Cil|¢i]|".
(b): 3y >13C > 0Vi € I Jy; € ¢;(X)Vr > ydiam(¢s(X)) m(B(y;, 2r)) < Cm(B(yi,r)).

Then the conformal measure m satisfies the doubling property.

Proof. Let us first show that the condition (a) can be strengthened by replacing the
quantifier Jz; € ¢;(X) by the quantifier Vo € ¢;(X). Indeed, if z € ¢;(X), then ||z — z;|| <
diam(¢;(X)) and therefore

m(B(x, wdiam(¢y(X)))) < m(B(ws, (5 + 1)diam(¢i(X)))) < Crpa [|6}]]".
Let us show the same about condition (b). Put 8 = max{2,6y"'}. Then

5+ (Bv)‘lﬁ >l

and using (b) we find for every x € ¢;(X) and for every r > fydiam(¢;(X))) that

m (B (= 2r) ( (y T+_)) — m(B(yi, (3/2+ (57)")r))
(

> 3/2+ (617"
]
i)

on (i o+
-en (i 3+ 0))
3 31
o (i 3+ 3 3)1)) =i

Thus, m(B(x,2r)) < C?*m(B(x,r)). We finish the proof by directly applying Theorem 2.1.
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3. CONTINUED FRACTION ITERATED FUNCTION SYSTEMS

For every n > 1 we consider the map ¢, : [0,1] — [0, 1] given by the formula

() = —

r+n

If I C IN contains at least two elements, we call {¢;};cr a c.f. (continued fraction) iterated
function system. Many geometrical properties of these systems have been thoroughly inves-
tigated in [MU2] and [Ur]. In this section, we deal with the doubling property of conformal
measures of c.f. systems. There are three arithmetic properties of the index set I under
which we can guarantee that the conformal measure exists and is doubling. One is simply
that 1 ¢ I. The other two involve the asymptotic density properties of I. In the next section
we will give some examples of index sets which satisfy these conditions. We start here with
the simplest.

Lemma 3.1. If 1 ¢ I and S = {¢;}icr is a c.f. iterated function system, then S satisfies the
Super Strong Open Set Condition.

12 1 1
%(Pzﬂ>:h:?;fﬂ’
we have ¢,,([—1/4,2/3]) N ¢n_1([—1/4,2/3]) = . Since obviously
¢n([_1/4v 2/3]) N ¢k([_1/47 2/3]) - @

if [ln—k| > 2, the open set condition is satisfied with the set X = [-1/4,2/3] C V = (=1/2,1).
Since in addition Jg C [0,1/2], the (SSOSC) is satisfied. ®m

Proof. Since

Next, we show that regular c.f. systems automatically satisfy one part of our general sufficient
conditions for doubling.

Lemma 3.2. If S = {¢;}icr is a regular c.f. iterated function system and m is the corre-
sponding conformal measure, then condition (a) of Corollary 2.2 is satisfied.

Proof. Let X =[0,1]. Fix x > 1. We are to prove that there exists C' > 0 such that for all

n € I and for all x € ¢,(J),
m(B(z, kdiam (¢, (X)))) < Cn 2" (3.1)
Clearly, it suffices to prove this inequality for all n large enough. In fact, if ¢p(X) N
B(z, kdiam(¢,(X))) # 0, then ‘% — %‘ < Cin"? and k < Cyn for some constant C; > 0
depending on k. Hence, |k —n| < % < C?. Therefore, using the conformality of m, we have

Ct

for some positive constants Cy and C5 and all n large enough. B

m(B(z, rdiam(¢,(X)))) < C; < Csn ™" = Csl|g)[|"
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Next, let us define one of the asymptotic density properties we need. Given 0 < a < 1 and
g > 1 we call an infinite subset of IV, («, g)-evenly distributed provided there exist constants
A >1and g > 1 such that

#(INn,gn]) < An® (3.2)
for all n > ¢, and in addition if n € I, then

min{#(I N [n, gn]), #( N [g " n,n])} > A~ 'n", (3.3)
Our first result about («, g)-evenly distributed sets is the following.

Proposition 3.3. Let I C IN be an (o, g)-evenly distributed set. Then the system S is
cofinitely regular and s = /2.

Proof. Tt follows from (3.2) that for every ¢ > 0,
v(t) =<3 #IN0[g" g " (") 23 AN =AY (¢ (39
k=0 k=0 k=0

If & = 0, then it immediately follows from this formula that s = 0 and since [ is infinite,
1(0) = oco. In particular, Sy is cofinitely regular. (In fact, the system is absolutely regular-
every subsystem is regular, see [MU2].) So, we may assume that o > 0. Then it follows from
(3.3) that for all n large enough [n, gn] NI # () and consequently #(I N [n, g’n]) > A~n°.
Thus,

w(t) — i #([ N [g2k,92k+2])(g2k)72t t i Afl(g%)a(ng)th
k=0 N k=0 (3‘5)
— Afl 2(92(047%))16‘

This inequality along with (3.4) implies that Sy is cofinitely regular and s = /2. ®
Let us now define the second density property we need. We say that an infinite subset I of
IN is slowly growing provided there exists a constant C' > 0 such that
VneIN0O<k<n #({InNn,n+3k) <CH#INn,n+Ek|) (3.6)
and
Vn e INO <k <n/4 #(IN[n-3kn]) <CHIN[n—Ekn]) (3.7)
The main result of this section is the following.

Theorem 3.4. Let I C IN \ {1} be an infinite (o, 4/3)-evenly distributed subset and let I be
slowly growing. Then the corresponding conformal measure m satisfies the doubling property.
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Proof. In view of Lemma 3.2, it suffices to check condition (b) of Corollary 2.2. To this
end, fix n € I and set y, = 1/n € ¢,(X). (Recall we can take X = [—1/4,2/3].) For each
r >0, put

]+(r):[ﬂ{k2n:%—%<r}zfﬂ[n,ﬁ]
and L1 o
I-(r )—Iﬂ{k<n. k- n <r}—[ﬂ {1+rn’n}'
First, note the symmetric difference of J N B(z,r) and Ugey, (ryur_ ) #x(J) is contained in
the union of two sets of the form ¢;(J), for some two j € [m1n{[+( ) _(r)} =1, max{I,(r)u
I_(r)} +1]. From this we easily deduce that

m(B(1/n,r)) < Sooom(ge() = Y BT+ > kT
kel (r)uI_(r) keli(r) kel (r)
Our goal is to compare the two sums on the hand side for the values r and 2r. To do this we

use both of the arithmetic properties of 1.
Let us deal first with the set I, (r). Consider two cases.

Case 1+: r < ﬁ
Then I, (2r) = I N[n, 5] = I N [n,n + (=5, — n)]. But, since r < 1/4, 3(
( n_ n) Therefore, using (3.6), we obtain that

1-2rn
n n
I,(2r)= I < I — ) = I .
w1 =# (10 |0 5] ) s o (10 [n 72| ) = c#1.0))
Using in addition the fact that —5— < 2n , we conclude that
S k(L (2r) < O P H(LL(r) < > kT (3.8)
kel (2r) kel (r)

Case 2+: r > -
Then

—n) >

1—rn

n n 4
=-n

1—m — 1-— i
and since [ is (a,4/3)-evenly distributed, we have
ookt > > k= (3.9)
kely(r) keIn[n,3n]
Since by Proposition 3.3, 2h > 260 = «, we find

R CRACON

kel (2r) kelIn([n,co0) j=0

o 00 4 a—2h\ J 1 o
X”%Z«Q )Z——TWWQ”
7=0 1= (4)
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Combining this and (3.9), we obtain

DD W (3.10)

k€I+(2T) ICEI+(T‘)
Let us deal in turn with the set I_(r).

Case 1-: r < % . %

It follows that n — (n/(1 +rn)) < n/4. So, using (3.7), we get

C#I (r) = C’#[ﬂ[n —(n— lfm),n] > #Tﬂ[n - 3(n - Hﬁ),n] Since n—3(n— lfm) <
we have #(1_(2r)) < C#(I_(r)). Using

n n n

_n_
1+2rn’?

> =— 3.11
1+2m — 143 4 ( )
we deduce that
ST kT =TI (2r) <OnTHI(r) < Y kT (3.12)
kel_(2r) kel_(r)
Case 2-: 3- L <r<1/2
Then
n n 2 3
< s =-n<-n
I+rn = 1+35 5 4
and since I is («, 4/3)-evenly distributed, we get that
logy/3(14+rn) 3N\ 3\ 7 —2h
2 Wz 3 BE= ) ((z) ”> ((z) ”>
kel (r) keIn[ 2= ] 3=0
logy/s(14rn) 2h—a\ J (2h—a)logy,3(1+rn)
— na—?h Z ( é) ) — na—Qh (é) 4/3 (313)
0 3 3

— na72h(1 4 ,rn)thoc Z na72h(rn)2hfa — T2hfa.
Also,

logy/3(1+2rn) 3\ J o 3N J —2h
N e A O DN (G
J=0

kel_(2r) keIN| = n]

— 10g4/3(215r2’"”) <é>2ha J - <é>(2ha) logy/3(142rn)
s 3 3

2 8 2h—«
= na*Z"(l + 2rn)2h’a < o2 (57% + 2rn> = <§> r2h-e
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Combining this and (3.13), we conclude that
DR T Y (3.14)
kel_(2r) kel_(r)
Recalling that

m(B(1/n,r)) < Soom(ge() = Y BT+ > BT
kel (r)UI—(r) kel (r) kel (r)
the combination of formulae (3.8), (3.10), (3.12), and (3.14) shows that if » < 1/2, then
m(B(1/n,2r)) = m(B(1/n,r)). Since for r > 1/2 such an estimate is obvious, we complete
the proof by applying Corollary 2.2. B

4. EXAMPLES OF RESTRICTED ENTRY CONTINUED FRACTION SYSTEMS

In the first part of this section we provide a list of cofinitely regular systems derived from the
continued fraction algorithm whose corresponding conformal measures satisfy the doubling
property. Afterwards, in the last part of this section, we describe a class of such systems for
which the doubling property fails.

Our first theorem concerns index sets I which are growing geometrically.

Theorem 4.1. Let a > 2 be an integer and b a nonnegative integer. Let I = {a" + b},>1,
then the system S = {¢n}ner s cofinitely reqular and the corresponding conformal measure
(which with the methods of [MU2] can be shown to be the normalized h-dimensional Hausdorff
measure restricted to the limit set Jr) has the doubling property.

Proof. We shall prove first that the set I is (0,4/3)-evenly distributed. And indeed, since

a4+ b > gt > (%) (a™ + b) for all n large enough, and since a"~! + b < (%) (a™ +b) for
all n large enough, we conclude that for all n large enough

3 4
In Z(a”+b),§(a”+b) = {a" + b}

and therefore the set I is (0,4/3)-evenly distributed. In particular, in view of Proposition 3.3,
it is hereditarily regular. Fix n > 1. If a/ + b € [a™ + b, 4(a"™ + b)], then j > n and o/ < "3
assuming n to be large enough. Consequently, j € [n,n + 3| and

#(IN[a" +b,4(a™ +0)]) < 4. (4.1)

If o/ + b € [$(a™ +b),a™ 4 0], then j <n and o/ > ta™ — 3b > a"3. Hence j € [n — 3,n] and
1

#(Iﬂ Z(a”+b),a"+bD < 4. (4.2)

In view of (4.1) and (4.2), the formulae (3.6) and (3.7) are respectively satisfied, and we
conclude the proof by applying Theorem 3.4. B

Our next examples consist of families which are growing less rapidly.
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Theorem 4.2. If p,q > 1,0 > 0 are integers, I = {n? + b},>, and 1 ¢ I, then the system
S = {bntner is cofinitely reqular and the corresponding conformal measure possesses the
doubling property.

Proof. We shall prove first that the set I is (1/p,4/3)-evenly distributed. And indeed, fix
n > q. Then kP 4+ b € [nP + b, 5(n? + b)] provided

4 1

In particular, if k» + b € [n? + b, %(n” + b)] and n is large enough, then k? < 2Pn? and, in
consequence, k < 2n < 2(n? + b)'/P. Thus, we have proved that

4 (I N {n” +b, %(n” + b)]) < 2(n? 4 b)MP (4.4)

1
On the other hand, if n < k < (g) /v n, then kP < %n” < %n” + %b for all n large enough, and
consequently

o0 endoren]) = ()" -2)a= 3 ()" )0

(4.5)

for all n large enough. Keep now n > ¢ fixed. Then k” + b € [3(n® + b), n? + b] if and only if
1

k <n and k? > zn” — Zb' (4.6)

In particular, if k¥ + b € [3(n? 4 b), n? + b] and n is large enough, then k7 > (%)p n? and, in

consequence, k > %n > i(n” + b)1/? for all n large enough. Thus
#(Iﬂ [Z(n”+b),np+bb g%(np+b). (4.7)

On the other hand, if (3/4)'/Pn < k < n, then kP > %np > %np — ib, and therefore

3 3\» 1 3\

Yot by, 41]) 2 (1_@ )nzi(l_@ )Wbﬁ

for all n large enough. Combining this inequality along with (4.7), (4.5) and (4.4), we conclude
that I is (1/p,4/3)-evenly distributed.

Let us now show that the set I is slowly growing. Towards this end fix n > ¢ and 0 < k <

n?+b. Let [ > n be the largest integer such that [?+b < n?4b+k. That is,#(IN[n”, n?+k])
[ —n+1. Then (I +1)? +b > nP + b+ k and therefore [ + 1 > (n? + k)'/?. Hence

#(I N [P +b,n? +b+k]) > (n” 4+ k)Y? —n.
On the other hand, if s > (n? + 3k)'/?, then s* +b > n? + b + 3k and consequently
#(I N [np + b, n? +b+ 3k]) < (np + 3k)1/p _n.

#(m
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Using the Mean Value Theorem we get

1
—xiflk
p

for some x € [nP,n? + k] C [n?, 3nP], where the inclusion holds for all n large enough. Hence,

(n? + k)l/p —n = (n?+ k)l/p _ (np)l/p —

1-p

#IN[N"+b,n”+b+k|) > 371’”1%. (4.8)

Similarly
1 1
(n? + 3k)YP —n = (n? + 3k)/P — (nP)V/P = Z3ky» !
b
for some y € [nP, n? + k] and therefore

#(I N [P +b,n? + b+ 3k]) < 3 pirg.
p

Combining this inequality and (4.8), we get

HI NP +bnP +b+3k]) <377 (IO [P +b,n? + b+ k). (4.9)
In order to check condition (3.7), fix 0 < k < n/4. Let u < n be the least integer such that
n?+b—k < uP+b. Hence #(INnP+b—k,n?+b]) =n—u+1. Then (u—1)P+b<nP+b—k
and therefore u — 1 < (n? — k)'/?. Hence, using the Mean Value Theorem we get

1 1
LI [P +b—kn? + b)) >n— (0P — k)P = (P)/P — (P — k)P = ~¢ 7"k
p
for some & € [n? — k,nP]. Thus

1
#(I N[N +b—k,nP+0b)) > -n" Pk (4.10)
p

Similarly, if v < (n? — 3k)'/P, then v? + b < n? + b — 3k and using the Mean Value Theorem
we get

1 1-p
#(I N[N +b—3k,n? +b]) <n— (nP —3k)'/P = S0 3k,
p
where 1 € [n? — 3k,n?] C [nP — 33(n? + b),n?] = [gn? — 2b,nP?] C [gnP,n?] for all n large

enough. Hence, using (4.10), we obtain

w

H(IN["+b—3kn”+b]) < 8% n' Pk <387 #£(I N[N +b—k n?+10)).

i

This and (4.9) demonstrate that the set I satisfies the slowly growing property (3.6) and
(3.7). Invoking now Theorem 3.4 finishes the proof. ®

Remark 4.3. Obviously the methods employed in Theorem 4.1 and Theorem 4.2 can be applied
to prove the doubling property for the sets of the form {ca™ + b},>1 and {cn? + b},>1.
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Recall a set I = {a,}n>1 has bounded gaps if suanI{anH —ap} < oo. It is obvious that I is
slowly growing and that it is (1, 4/3)-evenly distributed. It therefore follows from Theorem 3.4
that

Theorem 4.4. If I C IN \ {1} has bounded gaps, then the corresponding conformal measure
satisfies the doubling property.

Corollary 4.5. If I C IN\{1} is an arithmetic progression, then the corresponding conformal
measure satisfies the doubling property.

We remark that in case I is an arithmetic progression, it was shown in [MU2] that m is,
up to a constant the packing measure, restricted to the set J; and the Hausdorff measure of
J] is 0.

We shall now describe a class of examples which do not satisfy the doubling property. An
increasing sequence {a,},>1 is said to belong to the class PNDP if the following conditions
are satisfied

(a): 1€ {anfn>1-

(b): limy, 5“2 = 0.

(c): If @ =inf{t > 0:£(t) == 3,5 a, > < 00}, then £() = oo.

As an example of a PNDP sequence take for instance the sequence {2”2}@1.

Our examples are obtained by fattening up a PNDP sequence somewhat. We call a subset
I ¢ IN\ {1} NDP if there exists a PNDP sequence {ay},>: such that the symmetric difference
of I and the union U,,>[an, 2a,] is finite. We shall prove the following.

Theorem 4.6. If I C IN is an NDP subset of IN and h > 1/2, then the system Sy is cofinitely
reqular and the corresponding conformal measure does not satisfy the doubling property.

Proof. The fact that the system Sy is cofinitely regular follows immediately from the item
(c) since £(t) < 15(t). For every n > 1 large enough, we have

2an
m(B(0,1/a,)) = > j "> 47"l
Jj=an
and .
m(Blos-))= X < ¥ =
n IN[an+1,00) J>an+1

Since it follows from item (b) that

1-2h 2h—1
Oy, o Qn+1 _
lim e = lim = 00,
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we conclude that the measure m fails to satisfy the doubling property for the point 0 € .J. &

Remark 4.7. Notice that if I is an NDP set and if we add to I finitely many elements
all different from 1, then the resulting set I, remains in the class NDP, and if we add a
sufficiently long initial segment of IN \ {0} so that hy, > 1/2 (see Theorem 1.1 and recall that
the Hausdorff dimension of the set of all continued fractions with all partial denominators
greater than 1 had Hausdorff dimension greater than 1/2), then the conformal measure of the
system Sy, fails to satisfy the doubling property.

Question 4.8. There are many interesting index sets I for which we were not able to
determine whether the doubling property holds. In particular, if the index set I is the set of
prime numbers, then, as is shown in [MU2] using results about the asymptotic behavior of
the size two sided gaps in the primes, the system is hereditarily regular, but the Hausdorff
measure of the corresponding set of continued fractions in dimension h; is 0 and the packing
measure is infinite. Does the conformal measure generated from the index set consisting of all
prime numbers have the doubling property?
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