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Abstract. The quantization dimension function is determined for a certain class of
probability measures generated by a finite conformal iterated function system satisfying
the strong open set condition.

1. Introduction

The term quantization in this paper refers to the idea of estimating a given probability
on R? with a discrete probability. That is, a “quantized” version of the probability
supported on a finite set.  Hence, quantization in this context should not be
confused with a similar term from quantum physics. For over fifty years engineers
and mathematicians have been interested in the problem of efficiently quantizing a
probability distribution. This problem arises in signal processing, data compression,
cluster analysis, and pattern recognition, and it also has been studied in the context of
economics, statistics, and numerical integration. Many useful theorems and algorithms
have evolved over the years. (See [4] for a detailed survey of the history of quantization.)
In general, these theorems have dealt almost exclusively with absolutely continuous
distributions on R?. Two main goals have been (1) finding the exact configuration of a
so-called “n-optimal set” which corresponds to the support of the quantized version of
the distribution, and (2) estimating the rate at which some specified measure of the error
(also called the distortion or noise, between the quantized distribution and the original
distribution) goes to zero as n goes to infinity. This paper deals with the second problem
in the case of singular distributions.

If the absolutely continuous part of the given probability does not vanish, then the
asymptotics of the error behave nicely, and certain limits are known to exist. However,
less is known in the strictly singular case. The goal of this paper is to generalize
known results for certain “self-similar” probabilities to a class of (singular) probabilities
supported on fractal sets generated by conformal iterated function systems in RY.

Following the work of Graf and Luschgy [2] and [3] we define the quantization
dimension (or perhaps better, the quantization dimension function) as follows. Given a
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Borel probability measure P on R?, a number 7 € (0, +00) and a natural number n € N,
the n-th quantization error of order r for P is defined by

enr = inf{( / d(z, ) dPE)Y" : o C RY, card(a) < n}

where d(x, ) denotes the distance from the point z to the set o with respect to a given
norm || - || on R, We note that if [ [|z||"dP(z) < oo, then there is some o C R? for
which the infimum is achieved [2]. As a side note we observe that this set « can then be
used to give a best approximation of P by a discrete probability supported on a set of
n points. Under suitable conditions this can be done by giving each point ¢ € v a mass
corresponding to P(A,) where A, is the set of points € R? such that d(z, ) = d(x,a).
Of course, the idea of “best approximation” is, in general, dependent on the choice of r.

Graf and Luschgy also define e, , when r = 0 and r = oo, but in this paper we only
deal with the case 0 < r < +00.

The quantization dimension of order r for P is defined to be

logn

D, = D,(P) = lim —8""
n—oo — IOg En,r

if the limit exists. If the limit does not exist then we define D, as the limsup of the

sequence and D, as the liminf. One sees that the quantization dimension is actually a

function r — D, which measures the asymptotic rate at which e, , goes to zero. If D,

exists, then one can write

1\ 1/ D
loge,, ~ log <—> .
n
The quantization dimension function is in some respects similar to the f(«) curve which
gives the multifractal spectrum (see Falconer [1]). In fact, in Theorem 1 we indicate
a relationship between the quantization dimension function and (3(q), the Legendre
transform of f(«).

The use of the term “dimension” follows from the original work of Zador [12],
in which he introduces the formula and compares it to box-counting dimension and
Hausdorff dimension. In the engineering literature the case r = 2 is almost exclusively
used, and interesting relationships to other types of dimension have been noted.
Specifically, Pétzelberger [10] has shown that for distributions with bounded support

D, € [dimy(P),dimgz(P)] and D, € [dimp(P),dimp(P)]

where dimg (P), dimp(P), dimgz(P), and dimp(P) denote the Hausdorff, packing, lower
and upper box-counting dimension of P, respectively.

Another way of formulating the quantization error problem is by considering a
random vector X from a probability space (€, ) to R? with probability distribution
P = o X' We then want to approximate X with a random vector Y whose
range consists of at most n points in R?. In this case, we minimize || X — Y|,, where
1X1, = ([|X||"du)*/" is the L™-norm. It turns out that ¥ can be written in the form
f(X) where f:R¢ — R? is a function with at most n points in its range.
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The problem of determining the quantization dimension function for a general
probability is open. However, Graf and Luschgy have determined a formula for the
quantization dimension function of a self-similar probability P defined for an iterated
function system using a finite number of contracting similarities Si,..., Sy on R?
satisfying the Open Set Condition and given a probability vector (pi,...,py). The
measure P satisfies

N
P = ZpiPoS;l.
i=1

They show that D, := D, (P) satisfies
N
s
> (pisp) 0 =1 (1)
i=1
where s; is the contraction coefficient for the map S;. In fact, they prove a stronger
result. Namely, that the quantization dimension D, also satisfies the following.

0 < liminfne?r < limsupnels < +oo. (2)
n—00 ’ n—00 ’

In this paper we extend the results of Graf and Luschgy in the following ways. We
consider conformal iterated function systems, and we obtain the quantization dimension
function for probability measures supported on the limit set which are the Gibbs
states or equilibrium measures for a Holder potential. Our main theorem indicates
the relationship between the quantization dimension function and the multifractal
spectrum of the measure. Also, Lemma 6 shows that the right-hand side of (2) holds
for (finite) conformal iterated function systems. However, it still remains open whether
lim inf,, . nelr is strictly positive.

,r

2. Definitions and background
In [2] Graf and Luschgy set
Var = inf{/d(x, a)"dP(z) : @ C R?, card(a) < n}

and point out that e, , = nlﬁr Also, in their proofs in [3] they make use of the value

Uy = inf{/ d(z,a UU®)"dP(z) : @ C R, card(a) < n}
where U is a set which comes from the Open Set Condition (see below for the definition)
and U° denotes the complement of U. We see that

ulm < Vi —e, .

We will call sets o, C R¢, for which the above infimums are achieved, n-optimal sets
for e, , Vi, OF Uy, respectively. As stated above, Graf and Luschgy have shown that
n-optimal sets exist when [ [|z]|"dP(z) < oo. Since the probabilities associated with
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iterated function systems (as described below) are supported on compact sets we can
make use of n-optimal sets in our proofs.

In the following we remind the reader of the basic setup for conformal iterated
function systems. Our notation and assumptions are taken from [6]. Suppose X C R? is
a compact set such that X = Int(X) (the closure of its interior). Let [ = {1,2,..., N}
be an index set, I* = J,~, I" be the set of all finite words, and I*° be the set of all
infinite words. Suppose {¢; : X — X} is a collection of conformal maps such that

ll¢i]] < s <1 for some s where ||©}|| denotes the supremum norm of the derivative. Let
|oL(x)| be the norm of the derivative at x € RY. For w € I*, let |w| denote the length of
w. Forw =wjwsy ... € I let 0(w) = wows . . . be the “shift” map and w|, = wyws - - - wy,.
For w =wwy -+ wy, € I, let ¢, = @, 0Py, 0 0@, and w™ = wjws - wy—1. Let J
be the unique limit set which satisfies
T=Jei(]).
iel

An iterated function system satisfies the Open Set Condition if there exists a nonempty
open set U C X such that ¢;(U) C U for every i € I and ¢;(X) N p;(X) = 0 for every
pair ¢,7 € I, i # j. Furthermore, the system satisfies the Strong Open Set Condition if
U can be chosen such that U N.J # (). A recent paper by Peres et al [8] shows that the
Open Set Condition implies the Strong Open Set Condition in the case of a conformal
iterated function system using a finite number of maps.

An iterated function system satisfying the Open Set Condition is said to be
conformal if the following conditions are satisfied.

(i) U = Intga(X).
(ii) There exists an open connected set X C V C R? such that all maps ¢; extend to
conformal C''-diffeomorphisms of V into V.

(iii) There exist v,¢ > 0 such that for every x € 9X C R? there exists an open cone
Con(z,7,¢) C Int(X) with vertex x, central angle of Lebesgue measure 7, and
altitude ¢.

(iv) Bounded Distortion Property. There exists K > 1 such that

ol (y)] < K¢l (z)]

for every w € I'* and every pair of points z,y € V.

We see from a result of Patzschke [9], Lemma 2.2, that there exists K > K such
that

K, lld(z,y) < dpu(), 0u(y) < Kl lld(z,y)

for every w € I'* and every pair of points z,y € V.
As a specific example of such a system in R? the reader is referred to Figure 1. In
this example we let the initial set X be the disk centered at (1/2,0) with radius 1/2.
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Equating R? with the complex plane C we define three conformal maps @1, @9, and @5

on C by

p1(2) = 1Jlrz
B 1
p2(2) = m
B 1
p3(2) = m

In the figure one can see “level 17 and “level 5”7 in the construction of the limit set .J.

These levels correspond to the n = 1 and n = 5 stages in the representation of J as an

infinite intersection

J = ﬂ U Pu(X).

n=1weln"

The above example gives a fractal set whose elements are the points in C which have

an infinite continued fraction representation using only the entries 1, 1 — ¢, and 1 + ¢.

(2) .
z) =
72 (1—i)+=z
£,
1
-t _
. \ 901(2) 1+ 2
rd
&
‘J"V
i
¢
1
Z) =
#3(2) (1+1i)+2

Figure 1. A conformal construction in R?. This figure shows the boundary of the
original compact set X (the large circle), the boundaries of the images of X under the
three conformal maps (the three smaller circles), and “level five” in the construction
of the limit set J. Note that the conformal maps are given as maps from C to C.

Now we return to our general setup and discuss the existence of certain probability
measures on .J. To this end let F = {f® : X — R};c; be a strongly Hélder family of
continuous functions (see [6]). That is, for some § > 0, there exists

Vs(F) = iglf{vn(F)} < o0
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where, for each n > 1,

Vo(F) = sup sup {|f(‘“1)(gog(w) (z)) — f(wl)(gpo_(w) (y))|}e,3(n—1) (3)

welm™ zyeX
and also
D _lle™ll < oo (4)
iel
For n > 1 and w € I" denote Z?Zl fli) o Poi(w) by Su(F). We define the topological
pressure of F' by
1
P(F)= lim —1 Su(F))]|-
()= Jim g 3 oxp(5.()|
This is analogous to the free energy discussed by Tél [11]. By (4) we get that P(F') < oo,
and by subtracting P(F) from each f® we can assume P(F) = 0.
From [6] (using equation (2.3), Lemma 2.4, and the proof of Proposition 2.5), we

have the existence of a probability measure m on J (the F-conformal measure) such
that for any continuous function g : X — R and n > 1,

[oam =¥ [expls.F))- (g0 pu)im. (5)

|w|=n
Furthermore, for ¢, 5 € R, let
Gy = {9} = Blog ¢} + ¢f D }ier.

We note that since our system is finite we have that for every ¢ € R, P(¢F) < oo.
Therefore, we have the following lemma (compare Lemma 7.2 in [6]).

Lemma 1. For each q € R there exists a unique 3(q) € R such that P(Ggs(g) = 0.

The function ((g) is sometimes denoted T'(¢) and called the temperature function.
A more general discussion of this function can be found in Halsey et al [5], where our
S(q) function would correspond to —7(g) using their notation. We note from [6] that
in our conformal setup $(g) is continuous, strictly decreasing, convex, 3(0) = dimy(.J)
(the Hausdorff dimension of .J), and (1) = 0. Also, note that in the (finite) self-similar
case (3(q) satisfies the relation

N
D_pisl " =1 (6)
1=1

In addition, we have the existence of a probability measure m, on J such that for
any continuous function g : X - Rand n > 1,

/ gdm, = / S exp(Su(Gysia) - (970 9)dmg

|w|=n

= 3 [P exp(S.(E) - (g 0 ),

w|=n
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Note that equations (5) and (7) are true if the summations are taken over any finite,
maximal antichain. We call ' C I* a finite, maximal antichain if ' is a finite set of
words such that every w € I* is an extension of some word in ', but no word of I is an
extension of another word in I'. Of course, this requires that I is finite. We will make
this assumption in the remainder of this paper. By |I'| we denote the cardinality of T'.

3. Main result

The relationship of the quantization dimension function and the temperature function
((q) of certain probability measures m where the temperature function is the Legendre
transform of the f(a) curve (the definition of f(«) and the Legendre transform are given
in [1]) is given by the following theorem. For a graphical description see Figure 2.

Theorem 1. Let ¢q,...,on be a conformal iterated function system satisfying the
strong open set condition and F = {fM, ... fMNY g strongly Hélder family. Let m be
the F'-conformal measure generated by this system. That is, for any continuous function
g: X —=>Randn>1,

/gdm: > /exp(Sw(F)) (g 0 pu,)dm.

|w|=n
Let ((q) be the temperature function of the system. For each r € (0,4+00) choose g,

such that $(q,) = rq,. Then the quantization dimension (of order r) of the probability
measure m is given by

_ Ble)
1- dr
Our motivation for this theorem comes from the self-similar case. By comparing

r

equations (1) and (6) we see that in the self-similar case we have simultaneously

B(q) = rq and D, = lr—fq. Solving equation (1) for D, corresponds in our more general
setting to finding a value x, such that
lim Llog Y (gLl exp(SL(ENI) 5 = 0. 0
|w|=n

Hence, we wish to show that for finite conformal iterated function systems we still get
D, = k,. Then by comparing the solution k, in (8) to the solution 3(g) which gives
P(Gyp(g) = 0 we arrive at the statement of the theorem.

To show D, = k, we prove a series of lemmas. The following closely parallels the
proofs of Graf and Luschgy for the self-similar case. In this more general case we make
extensive use of the Bounded Distortion Property (using K and K in order to get our
inequalities) and the following lemma.

Lemma 2. There exists C > 1 such that for any v,y € X and w € I*,
exp(Su(F)@) _ .
exp(Su(£)(y))

In particular, for any x € X and w € I*, exp(S,(F)(z)) > C7|| exp(S,(F))||-
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I
4r 1

=

Figure 2. To determine D, first find the point of intersection of y = 3(¢) and the line
y =rq. Then D, is the y-intercept of the line through this point and the point (1,0).

Proof. We have for any z,y € X and w € I*, letting n = |w|,

n

[Su(F)(2) = Su(F) W) = | Y (F“ (@oiu(@) = [ (0ain(y))

j=1
< Z Vs (F)efﬂ(n*j)
j=1
< Va(F) !
= P e s
Let C = exp(V3(F)1——). The lemma follows. O
Lemma 3. Let I' C I* be a finite, maximal antichain. Then there exists ny = no(I)

such that for every n > ny, there exists a set of positive integers {n, = n,(n)}wer such
that Y crnw <1 and

1
Upy > ——=— oLl exp(Sw(F) ||ting, -
= 2l exp(SL(F)|

wel’
Proof. Let U be the open set from the strong open set condition. Then there exists
7 € I* such that ¢ (X) C U. Let € = d(p,(X),U°) and sp;, = minger{||¢,]|}. We get

A 001 (X)), 9u(U)) > %n@;nd(%m, ) > %m
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which implies for any x € ¢, (¢, (X)),

1
d(.ﬁU, UC) Z d(.ﬁU, Spw(U)C) Z ?Sming-

For each n let oy, be an n-optimal set for u,, and let §, = max{d(z,a,, UU®) : x € J}.
Since d,, — 0 as n — oo we can choose ng such that 4§, < %smine for any n > ng.
Suppose n > ng and = € ¢, (p,(J)). There exists a € a,, UU® such that

1
d(z, 0, UU®) = d(z,a) < 6, < Esmins

which implies a € ¢, (U). Therefore, letting o, ., = a, N, (U), we get ny, = |anw| > 1
and ) g, <n.
We now get

Uy = /d(x, a, UU)"dm(x)

- Z/exp d(u(z), 0, UU®) dm(z)

wel’

> Z/exp d(pu (), an U @, (U)) dm(x)

wel’

> Z HeXp “/ (0w (), tn U @, (U)) dm ()

Z || eXp || 1 | ’ ||r /d(!L‘, g0;1(0[%&)) U Uc)rdm(l‘)

K"
exp 1

> Z || )“ || ! ||r Un,, -
wel K

The second to last inequality in the above display is verified by the following argument.
For any = € J there exists y € ay, U p,(U)° such that d(p,(r), anw U pu(U)°) =
d(pw(),y). The claim is that z := ;' (y) € ¢ " (nw) U UC. But this is obviously
true, for if y € ay, then z = ¢ ' (y) € ¢, (anw), and if y € ¢, (V)¢ then z € U*,
otherwise we would have 2z = ¢_*(y) € U, which would imply y = ¢, (¢, (y)) € ., (U),
a contradiction. Therefore,

d(pu(2), anw U pu(U)°) = dpu (@), pu(2))
Lo
zleulld(@,2)

1 / -1
—= ||, lld(z, o5, (anw) UU).
=lleLlldle, @5 (emw) UUT)

Hence, the lemma is proved. 0

Y

v

Lemma 4. Let 0 <r < 400 and 0 < t < k,. Then liminf,_ n%uw > 0.

Proof. Since ¢t < k, we see from the uniqueness of , and (8) that

S ULl exp(Su(F)) )7 — 0o as m — .

|w[=m
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Choose m such that the above sum is greater than CK”, and let I’ = {we I*: |w] = m}.
Then I' is a finite, maximal antichain. By the previous lemma we have ny and for
n > ng the numbers {n,(n)},er which satisfy the conclusion of that lemma. Set
¢ =min{niu,, :n < ng}. Clearly each u,, > 0, and hence ¢ > 0. Suppose n > ny and
k%uk,r > ¢ for all k < n. Using the previous lemma we get

Bl

s 20 e SIS ) o))
ny(n) —
2 o It Mlespis.ml ()

Using Holder’s inequality (with exponents less than 1) we get

t ! - PR N O A
Wiy 2 et (Zumn lexp(SL(F)) ) (Z (™) .

wel wel’

By our choice of I', which depended only on ¢ and not on n, and the fact that
> n,(n) < n, we see that

r
Nt Uy, > C.

By induction, we have liminf,_, n%uw >c> 0. O
The following problem remains open: Is liminf, ., n"“/’"un,,« > 07

Lemma 5. Let I' C I* be a finite, mazimal antichain, n > |T'| and 0 < r < +o00. Then

Vir < K" min {Z e 7 T exp (S (FN Vs 10 > 1, ) < ”} :

wel wel
Proof. Suppose n, > 1 for each w € I' and > n, < n. For each w € T let o, be an
n,-optimal set for V;, ... Since |, o ¢u(ow)| < n, we get

Var < /d(CU,U(pw(aw))rdm(x)
- Z/exp w(x),Ung(aw))rdm(x)

wel’

< leexp(sw(F))ll/d(sow(fﬂ),%(aw))rdm(w)

wel

<Y lesp(SPIRT LI [ dew, o) dm(z)

wel

= > lexp(Su (ENIE" L Vi

wel
which implies the lemma. O

Lemma 6. Suppose &, satisfies (8). Then

: K
lim sup ne,’, < oo.
n—o0
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Proof. Write ¢ = f=— and note that 3(¢) = rq. For w € I" let g, = my(pu(J])).
Recall that m, is the probability measure on J which satisfies equation (7). Let gy =
min{qi,...,qn}. Fix m. Choose n such that CIK™(2) < £2. Let € = g, (2)CIK™.
Note that 0 < e < 1. Let I'(e) = {w € I* : q, < ¢ < q,-}. Since [ is finite, I is a finite,

maximal antichain. Now

G = Ma(u(T)) = / (exp (S, (F))7|, [ dm,

— [ xBSr (P D) explS.y (PN 1, i,

1 . o
> orerll S (EDI 1 [ (esp(Si, (PP, P,
1 .
Z Cquq (/(exp(sw_ (F)))q|()0w*| Qqu> qw|wl
1
- m(qﬁ)*)(qw‘u‘)

which gives us
1 1
1= ) q > iR D (), > cagera oL @)1
wel(e) w€el'(g)
This implies |I'(¢)| < C7K"(eep)~" = L, which implies n > m|T'(¢)|. Using Lemma 5

we get
Var KT 30 LI exp(Su(F) Vi

wel' ()

=K Y (el exp(SuENID = (19,17 exp(SuENI) T Vi,

weT ()
< RrCO oy ma (L1l exp(SL (P77}

=~ 2r 272 L r r
< K'C'K"™V,, . (CTWKTW £ mn) n .

The second to last inequality is true because

1—/1qu Z /exp NY el dm,

wel (e

Z [ exp(Su () [|17]1@i 1
C"IK’"LI '

wel' (e
The last inequality in the previous dlsplay is true by the following. For any w € I'(¢),

(LI N exp(SL(EDITE = 7 exp(Su(F)
<crrrt [ (exp(Su(P)) oL am,
— CQquqw < CI1K"¢

which implies
)7 < (O (KT)ress

(lleull"ll exp(S(F))
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r r2 m r
= Crer Krmr (g5 1 (—)CIK"™ ) wr
n

272 - r r
= <C’r+m K r+rer o fr mm) n o eEr.

Since m was fixed and n was chosen so that C7K" () < ¢§, we now have that there
exists a number L < 400 such that for all but finitely many n

Vo < L%,

which implies

. Ky
limsupne,”. <L+ < oo
n—00 ’

as desired. O
Proof of Theorem 1. Lemma 4 tells us that lim inf,,_, nefw > 0 whenever 0 < t < K,
which implies D, > t for every t < k,. Hence, D, > k,. Lemma 6 tells us that D, < k,.
Therefore, the theorem is proved. O

Remark. It is interesting to note that the formula for the quantization dimension
function corresponds with the Hentschel-Procaccia generalized dimension given by

Aoy 1 log [(u(B(x,r)))"" du(z)
DQ(M)_}«I—%q—l logr

where ¢ # 1 (see [7] Equation (3.14)). Patzschke notes in [9] that for a self-conformal
measure P we have

b,(p) = 212 )

The difference between this result and our result is that Equation (9) holds for any ¢ # 1,
whereas the same formula gives the quantization dimension only when ¢ is chosen such

that 5(q) = rq.
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