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Abstract

In this paper we continue our investigation of series of the form
ZAGA f(z+X). Given a sequence of natural numbers n; < n2 < ... we are
interested in sets A of the form U, a*Z N [ng, ni11), where 0 < o < 1.
In case @ = 1/q, where ¢ > 1 is an integer, there is a zero-one law showing
that for every measurable f : R — RT the above sum either converges
almost everywhere or diverges almost everywhere. However, for any other
value of a € (0,1) there is no such zero-one law.

1 Introduction

This paper is a continuation of papers [1], [2], and [3]. In [3], answering a
question of Haight [6] and Weizsécker [10] we showed that there is a measurable
characteristic function f : R — R* such that both of the sets {z : Y7 f(nz) <
+oo0} and {z : Y o, f(nz) = +oo} have positive measure. Earlier results, and
further references related to convergence of > f(nz) can be found in [7], [§]
and [9]. In fact, Marstrand in [9] disproved the Khinchin conjecture [7] which

concerned the convergence of Cesaro means (1/k) EIZ:1 f(nz) to the integral of
f on [0,1], when f is the characteristic function of a set E with period 1.
In [1] and [2] we considered the following additive generalizations of the

convergence problem of Y f(nz):
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Given A, an infinite discrete set of nonnegative numbers, and f : R — R a
nonnegative Lebesgue measurable function we consider the sum of translates of

f:
st@) =Y fla+ ) ()

AEA

and the sets of convergence and divergence C(f,\) = {z : > ., f(z+A) < +oo}
and D(f,\) = {x: ) \cp f(x + ) = +o0o}.

A set A is of type 1 if either C'(f, A) = R almost everywhere, or C'(f,A) =0
a.e. (in this case a zero-one law holds for the convergence of (1)). Otherwise, A is
of type 2. Using additive terminology, the result of [3] says that A'°8" := {logn :
n=1,2,...} is of type 2. In [1] and [2] several generalizations were considered.
Given a sequence of na;ctural numbers n; < ny < ..., it was shown that AD" =
Uz"zlAEﬁ) , where AEC%) := ($)*ZN[nk, ne+1) is of type 1. It was also shown that
this type 1 set could be adjusted to become a type 2 set by making it become
asymptotically dense at a faster rate as follows: there is a sequence m(k) — oo

such that A" = UZ"ZIAEC%)M(U, AG™Y = (H)mMZ A [ng, ngs1) is of type
2.

A number ¢ > 0 is called a translator of A if (A+%)\ A is finite. Condition (x)
is said to be satisfied if T'(A), the countable additive semigroup of translators of
A, is dense in R™. We showed that condition () implies that C'(f, A) is either
(0, R, or a closed left half-line modulo sets of measure zero. The two sets just
described above both satisfy condition (x). So condition (*) is not enough to
determine whether A is of type 1 or type 2.

In this paper for a given a € (0,1), we are interested in the sets At =
U A" AYY = ok 70 [ng, g ).

Ifa= % for some ¢ € {2,3, ...}, then a we indicate how a slight modification

of the proof of Theorem 1 of [1] shows that A" s of type 1 and condition (x)
is satisfied. If & ¢ Q, then we indicate how one can apply Theorem 5 of [1] to
show that A®" is of type 2.

Thus, there remains the difficult case when o = % with (p,q) =1, p,qg > 1,

p < q. In this case we show that AD" s of type 2. The problem of showing
this is not easy even in the special case when p = 2, ¢ = 3. When working
on this problem, for a while it seemed that we needed some information on
the distribution of {(2)*}, (where {-} denotes the fractional part). To our

surprize, and showing why the case A®" was difficult, it turned out, [4] that in
1980 it was not even known, whether {(£)*} is uniformly distributed, or even
dense in [0, 1]. These questions were extensively studied previously (see further
references in [4]) and according to a recent letter from Choquet remain open
at this time. Fortunately, we found a way avoiding any information about the

distribution of {(2)¥}, (or of {(%)k}) to determine that A", (or A(g)k) is
of type 2. Another novelty of this paper is that in the cases A(%)k, (p > 1)
condition () is not satisfied and in Theorem 3 we also show that there exists a



characteristic function f such that C'(f, A) does not equal §), R, or a left half-line
modulo sets of measure zero. This structure of C'(f, A) has not been seen before
and casts a little more light on the question of what the possible structure could
be.

Throughout the paper we assume that n; < ns < ... is a given arbitrary
monotone increasing sequence of natural numbers. We use the notation |z | for
the integer part of x and |A| for the Lebesgue measure of the set A C R.

2 The cases when o € Q, or a = 1/q

Recall first Theorem 5 of [1]:

Theorem 1. Suppose that there exist three intervals I, J, K such that J =
K + 1 —1 (algebraic sum), I is to the left of J, and dist(I,J) > |I|, and two
sequences (y;) and (N;) tending to infinity (y; € RT, N; € N) such that, for
each j, y; — I contains a set of N; points of A mdependent from AN (y; —J) in
the sense that the additive groups generated by these sets have only 0 in common.
Then A has type 2. Moreover, for some f € Cg (R), D(f,A) contains I and
C(f,A) has full measure on K.

If @ ¢ Q then one can apply Theorem 1 above Indeed, choose intervals
I=0,%], K = [%—%ﬁ, T+, and J = [$ - 8, t+%]. Sety; = (nj+5). Observe
that y;—INA®" = oI ZN(y;—1I), yj—JNAY = ai~1ZN(y;—J) and the additive
groups a/Z and o/~'Z have only 0 in common. Setting N; = #(y; — I N Aeh)
we have IV; — oo and hence all conditions of Theorem 1 are satisfied.

If @« = 1/q one can repeat the proof of Theorem 1 in [1] by using the following
modification of Lemma 2 of [1]. We leave the details to the reader.

Lemma 2. Let ¢, : T — R be a sequence of positive measurable functions,
where T =R/Z. If 577 | pn(q™t) < oo a.e., it then follows that
S enlgt + %) < oo fork=1,..,q—1.

3 The case o =

ISHke}

. From here on we work with fixed relative prime mtegers p,g>landl <p<yq.

For ease of notation we denote A5 by A and A( > by Ag.
Fix an integer r such that r > 8, (r,p) =1, and (r,q) = 1.
The main result of our paper is the following:

Theorem 3. The set A defined above is of type 2. Moreover, there exists a
characteristic function f : R — Rt such that almost every point in [ 7n] belongs
to C(f,A), |ID(f,A)N [1+ 1 1+ 2] > & and

ID(f,A)N[=1+ 3, -1+ ]|> 8

The proof of Theorem 3 relies on the following technical lemma.



Lemma 4. Given positive integers M and Kpr—1 we can choose the sets LM C
(L2, HM c 1+ 11+ 2, H VM C[-1+ 1, -1+ 2] and an integer Ky >
Kpr—1 such that

a2 M
< 2 @)

1

HYM| > H= M| > 3
M| > o [T > o (3)

and a characteristic function fyr = g, : R — RT such that letting

AKM 1,Km _Uk K- 1+1A

and
su—1,m () = Z fu(z+X)
NEAK 1. Ky
we have
1 2 o
sm—1,m(x) =0, forxz € S \ LM, )
sarta(@) > 1, forw € HYM UH-M (5)

and far =0 on (—00, Nk, +2) U (N, —2, +00) D (—00, nk,,_, +2) U (nk,, —
2, 4+00).

First, let us prove Theorem 3 assuming Lemma 4 holds.

PrOOF OF THEOREM 3. Set M =1 and Ko = 1. Using induction and repeated
application of Lemma, 4, choose the sets LM, HM  H-5HM  the functions fas
and the constants Ky for M = 1,2,.... Observe the sets Ej; are pairwise
disjoint. Set f(z) = Y-3;—; fm(z) = Wy, k(). Also, observe that if z €
[—1,2], then s(x) = Y cx, f(z+A) + 25— sm—1,m(z) on [—1,2] and hence
by the Borel-Cantelli lemma, (2) and (4) imply that s(z) < oo for almost every
point of [, 2]. On the other hand, (5) implies that s(z) = oo for NF_; U3_x
HWM g 1M, Using (3), we have

1 2 1
ﬂ U H1M0[1+—1+ } >3
N=1M=N
and
o0 o0
1 2 1
N U H—17Mm{—1+—,—1+—] > —.
r r 8r
N=1 M=N




PROOF OF LEMMA 4. Set m = 2M+2 and choose k; > Kjr_1 + 2 such that
(%)’“*1 < 5. Assuming k;_; has been defined choose k; > k;_; such that

o ks 10p
qk] kJ—l > (Q)kj' (6)
q

Do this for j = 2,...,m and put Ky = k,,, + 4.

Set
N, = {%| @

and assume 7 € [0, 1) is fixed. Let
(r) = Dk, Pk, o 1, ) )

Note that ®(7) has period 1 and next we show that its elements have a certain
“independence” property.
Assume z € ®(7) has the representations:

Pk Pk 1 1 Pk 1 Pk 1,
r=7+L() "+ L)t =5 L+ (2 4+ 2t
'(2) O+ 7 () PR

9)

Then, after multiplying by r - ¢*~ and rearranging we obtain ¢*=(t — t') =
Ayr, where Ay is an integer. Since (¢,r) = 1 we have r|t—t' and hence 1t —1t' €
7.

Now, assume j < m and we have already verified that I; = I} for i > j.
Then, multiplying (9) by ¢* and rearranging we obtain that (I; — I})p* =
Ay -gFi=ki=1 where Ay € 7. Hence, ¢*~*i=1|1; — I}, but by (6), (7), and (8) we
have |I; — 15| < ¢*~hi=1. Therefore, [; = I. Thus each x in ®(7) has a unique
representation given by (9). This implies

1
# (‘I)(T) N [a,a + ;)) = Ny -+ N, for arbitrary a € R. (10)

The set ®(7) will be used to define those points in [L, 2) where sp/—1 () can

take values different from 0. In the sequel it will be enlarged to obtain a set of
b

positive measure. Set S; = L(E)_kfj +1.

For even j choose the integer vy, such that ng, < I/k].(%)kj < ng; + (%)ki

and set Ji, = [nkj + %,nkj + 1). For odd j choose the integer vg; such that

ng41 — 1< yk].(%)kf <mg41— 1+ (%)ki and set Ji; = [ng; 41 — 5,7k, 41)-
Observe that if X € Ay, N Ji;, then X has the form (vg, + l)(%)kj, where

I € {0,...,S;}. To see this, note that we have A = (v, +1)(2)"¥ < ny; + 1.

So, I <14 1/(p/q)*. Or, 1 —1 < 1/(p/q)*i. Since 1/(p/q)* is not an integer,
1 —1<(1/(p/g)ki]. Thus, | < S;.



Put

1
0;(r) ={r + ll(g)kl + ot (g +lj)(§)’“f +.+ lm(g)km + ot (11)
Le{l, . N}fori#yj, l; €{S;+1,..,N;}, t€Z}.

In the sequel we will choose certain values of 7 and fatten up ©;(7) N Jy; to
be the collection of those points where fis = 1in [ng;, ng,41)-
Note that if z € (0,3) and = + X € J;; for some X € A, then

A= (w, +Zj)(§)'ff for some I; € {0, ..., S;}. (12)

Thus, if  + X € ©;(7) N Jy; (that is, fas(x) = 1), then we would have

= » o 1
T+ (v + lj)(g)’w =T +ll(§)’“ + ot (g + lj)(g)’”f + ... +lm(§)’“m +—t;

and therefore,

Dk FENDY N Dk 1
s=7+L ()" o+ =) L (5)E 4+ =t
l(q) (] J)(q) (q) r

By (11) and (12), l; —I; € {1, ..., N;} and hence
1
z € (0, 5) and z + X € ©;(7) N Jy, imply x € ®(7). (13)
Next we fix the values of the integers 73-71 and ?j,,l so that
i) p flj1 and g fI; 1, (14)
_ kj—1
ii) Aji = Zj71 <§> € Akj—l N [nkj — l,nk].),
- p kj+1
Aj—1 =151 <E> € Agj41 N [Pkj41, 0,41 + 1),
1 2 4 2
iii) [1+—,1+—} + X1 C [nkj +1— =, ny, +1——} ,
r r r r

1 2
iV) |:—1+ - =1+ —:| +)\j7_1 C
r r

4 2
NE;+1 — ;7nk,-+1 7l

Observe that by iii) [1 + 1,14 2] 4+ X;1 C Ji, when j is even, and by iv)
[-1+ 21, -1+ 2]+ X\j _1 C Ji; when j is odd.
Set

W51(r) = ((05(7) N i) = A [+ 1,1+ 2), (15)



and

W1 (1) = (O;() 1) = X)) N1+ T 14 ) (16)

These sets will be enlarged by adding a small interval to define H"* and
H~"M and will give points z € [-1+ £, =1+ 2] U [l + £,1 + 2) for which
fu(z+Xj—1) =1or fu(x + Aj1) =1, depending on the parity of j.

Arguing as at (10), using (11) and (7) one can show that

i (91'(7)0 {a,a+%>> > w

holds for all & € R. This implies for even j and for all « € R

20,1(r) > Ny - 2 N,, _ #(D(1) 02[a,a + ;))’ (17)

for odd j and for all « € R

#; (1) > Ny - 2 Nm _ #(2(7) ﬂéaaa + F)) (18)

Next we want to show that if j' < 7, 7' and j are both even then
Ui (r)NEa(r) =0, (19)
and if j' < j, j' and j are both odd then
U 1(r)N¥y (1) =0. (20)

This will be the “independence” property of the sets ¥; 1. Since they are
disjoint we will obtain more than (m/2)- Ny --- Ny /2 = (m/4)#(®(1) N[L, 2))
points in [-14 %, -1+ 2), and in [1+ £,1+ 2), where Donedn i (@HA) 21
will hold.

First we verify (19). Proceeding towards a contradiction assume x € ¥, 1 (7)N

U 1(7). Then there exist

t,t' €Z, l; € {1,...,N;} for i # 4,1l € {1,...,N;} for i # j', (21)
lj €{Sj+1,..,Nj}and 1% € {Sj +1,...,Nj} such that (22)
Pk AN Py, L
rLE e AL - L D EV L L (B 2t = 23
1(q) vk, +1; y,lp)(q) m(q) - (23)
= 1

D\ ! q.\ P\i. 1 Pk !
THEE)"™ + 4 (v, + U =L a2) (5 + o+ 0, (5) ™ + =t
g T g r

Again, as we argued earlier, after multiplying by r - ¢*~ and rearranging we
obtain ¢f=(t — ') = Az - r where A3 € Z. Using (¢,7) = 1 we have r|t — t'.
Therefore, 1t — 1t' € Z.



Now assume ¢ € {j+1,...,m} and we have shown [, =[] for + > i. Multiplying
(23) by ¢* and rearranging we infer (I; — I})pFi = Ayq*i—*i-1 where 4, € Z.

Since (p,q) = 1 we again find that ¢*~ki-1|l; — I!. But by (21) and (6) we
have |l; —1}| < g*=*i-1 hence [; = I}.

Now we turn to the case when ¢ = j and recall that in this case j is even.
This time after multiplying (23) by ¢*/ and rearranging we have

(v +1; = Ta % = Lt = gb5b5m1 4 21)

where Ay € Z.
Hence,

q“ R (p(vy + 1 = 17) — alja)p " (25)
Since (p,q) = 1, we obtain
kj—kj—1 / 7 ._
g p(vey + 1 — lj) —qlj1 = Bi. (26)

Recall that

kj _ kj—1
p Pk, 7 p
ng; < Vg; (E) <ng; + (a)]‘] and Ng; — 1<, <E> < N

p kj - p kj—1
0< Vi; <—> — ljyl <—> <2
q q

2.qkj
0<kaJ. —l]71q< pk?J——l = (%T

Thus,

and

Using (22), (7) and (6) we infer |B;| < ¢ki—Fi— and (26) implies B; = 0, but
this is impossible since by (14) i), we assumed p ;. This proves (19).

To verify (20) we use an argument which is simpler and similar to the case
(19). We just outline the differences of the arguments. So, (23) is replaced by
Pk 7P\ (P Py , 1
THLE) 4+ (e, AL =1 a=) (5 o L (5P + = 27

1) W +15 =12 ) ) ) " (27)

[+ 7 ’ 1
. l’l(g)kl I (ij/ + l;/ _ lj’,*lg)(g)kj’ + ...+ lfm(g)km + ;t’.

(s}

One can show again that %t — %t’ € Zand forie {j+1,...,m}, I; =1
When i = j we need to replace (25) by
_ pkj—‘,-l

SR (v + 1 = 1)PY — 1

q (28)

q

which contradicts (14) i), since by this assumption the right hand side of the
above formula is not an integer.



_ Now we introduce _
U;1(r) =V;1(r) +2t,t € Zand ¥; (1) = U1 (1) + Lt, t € Z, which are the
1 periodic extensions of ¥;1(7) and ¥; _1(7).
Our aim is to show that if € > 0 is sufficiently small and we add an interval
I, of length € to these discrete periodic sets then we have the required function.
For € > 0 set I, = [0, €] and put
(1) = (B(r) + 1) N [L, 2),
T (1) = (UL (T (r) + L) N[+ 1, 1+ 2),
V(1) = (U (B0 (1) + L) N -1+ L, —14 2),
Now, next we want to take advantage of the estimates (10), (17), and (18) to
obtain measure estimate (29) below. In our notation usually we denote by '
those sets which are obtained from discrete point sets after the addition of I..
Indeed, using (10), and (17-20) one can easily see that if € > 0 is chosen
sufficiently small then we have

W5 (r)] > T|@'(r)] and |27, (7)] > Z[#(). (29)

We now fix such a small € > 0 and set
O'(1) = UTL(0;(7) + 1) N Ty,
Observe that from (13) it follows that

12
ifz e {;, ;) , and N/ 7y (z + ) =1 then z € ®'(7). (30)

By (15) and (16) it is also clear that from =z € ¥} (7), or from =z € ¥’ (7),
it follows that

m m
Z]l@r(.r)(m + >\j71) >1, or Z]l@r(.r)(m + )\j7_1) > 1.

j=1 j=1
Hence

Yo lep@+A)>1 (31)

NEAK 1Ky

for these z € Wi (1) U ¥’ (7).

Next we choose translations 0 < 731, 73,1 < %, t = 1,...,7v, where the
number v will be determined later. Set 71 = 71,1 = 0. Assume that we have
already defined 7;1, and 7;,_1 for ¢ =1, ..., j for some j > 1 so that if

H]I',l = ngl‘lfll(ﬂ',l), and H]{7_1 = ngllIILl(Ti,—l)ﬂ then
! 1 1 ] ! jm !
from |H} | < 3y it follows that |H; | > ?M) (0)|, and (32)

11 j
from |H; | < 3r it follows that [H; ;| > %|<I>'(O)|.

1
p

By choosing € > 0 sufficiently small we can assume [H{ | < §=.



We also put L, = = U, ® (i), L = = U, ® (i, 1)

Notice that |#/(r)] = |#'(0)], |¥(r)| = |#,(0)], and |¥ ()] = [, (0)]
for all 7 € [0,1). It is clear that (32) holds when j = 1.
. The definitions of L;.J and L _; imply that [L | < j|®'(0)], and |L} _,| <
712" (0)]. :

If |Hj,| < g+ then §3 > |Hj | > .m|<l>’(0)| > Z|LY |- Similarly,
if [Hj || < §% then %l S |H} | > 28|®'(0)| > %Z|L _,|. This implies

1 1
2~ M=2. ~ > 1Ljal, and 27 M2 = > Ll (33)

Next we show how to choose Tj41,1 and Tjq1,—1-
Assume |Hj,| < §+. We claim that there exists ;1,1 € [0, +) such that

1
|H} y N (Tj51,0)] < §|‘I"1(Tj+1,1)|- (34)

In the sequel o +, 7 denotes the sum of ¢ and 7 modulo % We have

r/r |Hj , N (7)|dr = r/ / Ly (o) - Ly (o), (0)dodr =
0

r/r /T Lp, () - Ly (o) (0 +¢ (=7))dodT =
o Jo '

1 1
» [¥ 1
r / / Ly (07 40 7) - Ly o) (0)do'dr = v H] |- |94 (0)] < 5195 (0)].

This implies that there exists 7j41,1 for which (34) holds.
Now,

|H +1 1= |Hj U(‘I’Il(Tj+1,1)\HI‘,1)| >
Jjm 1
?|‘I"(0)| + —|‘I"1(Tj+1,1)| >

B0/ (0)] + 5 5 19(0) = (G + D T2 ),

where we also used (29).

This will yield (32) with j replaced by j + 1 when |Hj,, | < 3. Also,
observe that if |[H} ;| > +1 then, recalling (33),
@ (e0)] = [9(73.)] < L] <272 L implies

e 1
|Lj1al = L5 U (rja0) < 27V 1';- (35)

From (32) it follows that we reach a step j when |H},, [ > %% but [H}, | <
11 For this value of j set 71 = j + 1. By (35) we have |L' Lal< 2~ M-1. 1,
Argue similarly for choosing 7j11,—1 and choose y_; as 71 was chosen.

10



Set v = max(y1,v-1). Ify>vy_1 thenfory 1 <j<vysetr; 1 =m,_1 =0.
This implies that L. ; = L. |, for vy <j <. Similarly if v > v, then for
7 < j<7set 71 =71 =0. This implies that L), = L. , for 11 <j <.

Set LM =L/ , UL!, _,. We have
[LM] < L5 |+ 1, ] <27

Put H'M = H! |, = H! |, and H-"M = H! | = H,_ _,.
|HLM| > L. | g=tM| > 1.1

Finally, set fy = 22:1(]16’(rj,1) + ler(r;_,))- Now (30) implies that if
z€[L,2)and fa(z+A) = Lthenz € Ul (@' (1j,0)U®"(15,-1)) = L., JUL, ;=
LM . Hence sp—1,n(z) =0 for z € [£,2) \ LM,

By using (31) we find that if
T € U;Yzl(‘l”l(TjJ) U ‘Iflfl(TL_l)) = HgL"My H_I’M, then SM—I,M(x) > 1. This
completes the proof of the lemma. O

Hence
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