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In this note I will discuss several problems mentioned over the years by Erdos.
As with so many of his problems, they are simply stated and beautiful and yet
they get to the heart of some central issues. They also indicate the tremendous
influence “Uncle Paul” had on my mathematical interests. I am most fortunate and
grateful to have met him early in my career and that I was a fairly regular stop in
his travels. Most of these problem are discussed in the book of Croft, Falconer and

Guy [CFG]. For these, I am reproting either solutions or progress.

1. The triangle of area one problem.

Years ago Erdés posed the following problem, see e.g., [CFG] (G13),[Er79], [Er81]
and [Er84].

PROBLEM 1.1 Is there a positive finite constant ¢ such that every measurable
set in the plane with area larger than ¢ contains the vertices of a triangle of area
one?

This problem remains unsolved. As a warm up for this problem Erd6s would usually
indicate an agrument for the fact that if A is a measurable subset of R? with infinite
planar Lebesgue measure, then A contains the vertices of a triangle of area one.
This may be shown with an application of Steinhaus’ theorem concerning the fact
that the difference set of a measurable set of real numbers with positive measure
contains an open interval about 0. In fact, if A has positive measure and A is
unbounded, then A contains the vertices of such a triangle. Erdds conjectured the
answer to his question is yes and conjectured the best constant:

Conjecture 1.2 If A is a measurable subset of R? with area > co = 47 /3+/3, then
A contains the vertices of a triangle of area one. Of course, co is the area of the
disk such that the inscribed equilateral triangle has area one.

There are several partial results and reductions. For a positive solution it suffices
of course to show that there is a positive constant ¢ such that a compact set with
positive measure contains such a triangle. Also, I noted, by applying Besicovitch’s
covering theorem, it suffices to show that there is a positive constant ¢ such that
if one has a set with measure greater than ¢ which is the finite union of pairwise
disjoint balls all with the same radius, then this set contains the vertices of a
triangle of area one. Weizsacker and I tried this approach without success. It may
be that using this approach one may succeed in obtaining a positive answer to

Erdés’ question, but not obtain the best constant.
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I want to mention a result of Chris Freiling and myself which also lends some more

evidence that Erdos conjecture is correct. I will state it as follows:

Theorem 1.3 Let A be a set in the plane not containing the vertices of a triangle
with area larger than one. Then the disk whose area is the same as the outer
measure of A will also not contain the vertices of a triangle with area larger than

one. Thus, the area of A is no more than co = 4mw/3\/3.

The proof starts with an arbitrary set A, not containing the vertices of such a
triangle, and gradually transform A into a disk D. The area of D will be at least
as large as the outer measure of A, and D also will not contain the vertices of
such a triangle. To begin with, we might as well assume that A has positive outer
measure, otherwise the claim is trivial. We may further assume A is bounded since
otherwise, it will contain the vertices of triangles of arbitrarily large area.

Let us say a set is “large” if it contains three points such that the area of the
triangle formed by these points is greater than one. A set is called “small” if it is

not, large.
Lemma 1.4 If A is small, then so is C(A), the closed convex hull of A.

Proof. To prove the lemma, note that A is bounded. By way of contradiction
suppose C(A) is large. Since C(A) is compact, there is a triangle T" with area
greater than one, whose vertices, vy, vq,v3 are in C(A) and such that the area of
this triangle is maximal among all triangles with vertices in C(A). Let [ be the line
containing v; and vy. Let I” be the line parallel to [ passing through v3. Then no
point of C(A) lies on the side of I’ opposite to [. Thus, moving vz along the line if
necessary, we may take vz to be an extreme point of C'(A) and similarly for v; and
v9. Now, each of these vertices must be a limit point of A. From continuity of the
area function, it follows that A contains the vertices of a triangle with area greater

than one. A

It follows that if A is a small set with outer measure p, then there is a closed convex
set which is also small with area at least u. We recall the following well known fact
from convex analysis.

Lemma 1.5. If A is a bounded closed convex set in R? with positive area and l is
a line, then S;(A), the Steiner symmetrical of A about [, has the same area as A
and also S;(A) is small, if A is small.

By the preceding lemmas, we can assume that A is compact and convex and by

translation, we can assume the center of mass of A is the origin. There is a sequence
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of lines {l}32; passing through the origin such that the sequence of sets {A,}52,
converges to a disk, D, with center the origin where A; = A and for each positive
integer n > 1, A,, is the Steiner symmetrical of A,,_; about the line /,,_;. Clearly,
then the area of each A,, is p and therefore the area of D is u. Since each A,, is
small, D is small. H

Finally, in connection with this problem let me mention that Erdés discusses this

problem further in [Er84]. There he gives some variations he and I considered.

2. Series of translates.

In [Er84], Erdds recalls a problem of W. Schmidt: Is there a set S on the line
with infinite measure so that £ is never an integer if z,y € S7 J. Haight [H1] and
E. Szemerédi [S] independently constructed such a set. He mentions a very nice
problem of Haight [H2], also see [CFG], G16:

Problem 2.1 Let E be a set of positive measure in (0,00). Consider the set
E' = U rE. Is it true that for almost all x > 0 there is an M (x) so that for every
n>M(z),n-x € FE?

Erd6s then proposes several problems connected with this sort of problem which
remain unsolved as far as I know.

Buczolich and I solved Haight’s problem [BM]. Actually, we were considering a
more general problem which arose from several different sources. Let me state our
result.

Theorem 2.2 There is an open subset S of (0,00) and two nonempty intervals
P,UC [%, 1) such that setting f =1g for every x € U we have Y .- | f(nx) = +00
and for almost every v € P we have Y., f(nz) < +oc.

Our proof uses some elementary properties of the prime numbers and their distri-
bution and some classical results from diophantine approximation. As Buczolich
points out our theorem, as a sort of dual, gives a negative answer to Haight'’s
problem as follows.

Choose N such that Py = {z € P : Y% f(nz) = 0} has positive measure. Let
E = Py, define E' as above. Then SN E'N[K,c0) = () for a sufficiently large K.
On the other hand, we also know that Y f(nz) = oo, for every x € U. This means
that for infinitely many n’s we have nx € S and nz ¢ E’. This gives a negative
answer to Haight’s question.

Shortly after Buczolich and I completed our paper, Buczolich, Kahane and I ob-
tained more general results by different methods [BKM1, BKM2]. We changed our
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viewpoint from the multiplicative to the additive. Let me give the setting.

Given f : R — R™T and A a discrete infinite subset of RT we denote by C(f,A)
resp. D(f,A) the set of x’s where the series X f(z + A) (A € A) converges resp.
diverges. The sets A break into two types. Type 1 consists of A such that the
Lebesgue measure of either C'(f, A) or D(f, A) vanishes no matter what measurable
f is considered, and type 2 consists of all the other A. In this context the result of
Buczolich and myself is that {logn} (n = 2,...) is of type 2. Buczolich, Kahane
and myself show that type 2 sets are generic and type 1 are rare with respect to
the box topology. We also define a notion of A being asymptotically lacunary and
show all such sets are type 2.

As an example of Type 1 sets we show

Theorem 2.3 Let (ny) be an increasing sequence of positive integers and let A =

UrenAr where Ay, = 27FN N [ng, npy1). Then A is of type 1.

On the other hand, it is possible to modifiy the type 1 sets given in theorem 2.3
so that they become type 2 sets. This is accomplished by making them become
asymptotically dense at a faster rate:

Theorem 2.4 Let (ny) be a given increasing sequence of positive integers. There
is an increasing sequence of integers (m(k)) such that the set A = UgenAg with

Ap = 27BN N [ng, ngi1) is of type 2.

Problem 2.5 What is the situation with theorems 2.3 and 2.4 when the integer 2
in those theorems is replaced by some number a > 17

There are several other interesting unsolved problems posed in [BKM]. One of them
is the following:

QUESTION 2.6 Is it true that A is of type 2 if and only if there is a {0,1} valued
measurable function f such that both C(f,A) and D(f,A) have positive Lebesgue

measure?
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3. Sets meeting each line in two points

In 1914, Mazurkiewicz [Maz] showed that there is a “two-point” subset M of R?,
i.e., M meets each line in exactly 2 points. One can easily modify Mazurkiewicz’s
argument to show that for each positive integer n, n > 2, there is an “n-point”
subset M of R?; a set M which meets each line in exactly n points. More refined
generalizations of this result were given by Bagemihl and Erdés [BE]. The axiom
of choice played a central role in these constructions. There is one indication that
perhaps the axiom of choice is not needed. Consider the set M which is the union
of all circles with center the origin and radius a positive integer. This F, set meets
every line in a countably infinite set. Thus, the question naturally arises as to how
effective a construction of an n-point set can be.

Problem 3.1 Can a set which meets every line in exactly 2 (or more generally n)
points be a Borel set?

This question has been known for many years. I first heard the problem from Erdos,
who said it had been around since he was a "baby.” (It is mentioned by Sierpinski,
[S4], p. 450.) Many people have studied this problem from various viewpoints.
Larman showed that if there is such a Borel set, then it must be somewhat complex
[Lar]. He showed that a 2 point set cannot be an F, set. This naturally leads to
a restricted version of the main problem which I posed in [Mau90]. (This article
contains further references and discussion.)

Problem 3.2 Can a set which meets every line in exactly 2 (or generally n) points
be a Gs set?

It seems likely to me that the solution to this restricted question would entail
an answer to the general question. Recently, J. J. Dijkstra and J. van Mill in a
preprint showed that that if a 2-point set is a G set, then it must be nowhere dense
in the plane.

Let me mention that it is also known that if M is analytic and M is an n point set,
then M is a Borel set. This follows from the fact that every analytic subset A of R?
such that each vertical fiber A, has cardinality < n lies in a Borel set B such that
each vertical fiber has cardinality < n. Also, Arnie Miller has shown that if one
assumes Godel’s axiom of constructibility, V' = L, then there is a 2 point set which
is a coanalytic set [Mil]. It is also known that a two point set must have topological
dimension zero [Kul]. I have discussed this in problem 1069 in [Mau90]. In [Mau98]

I proved the following geometric measure theoretic result about this problem:
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Theorem 3.3 Let n be an integer, n > 2. Let M be a subset of R? which meets
every line in exactly n points. Then M is not the union of countably many rectifiable

1-sets.

I also related this problem to another old unsolved problem in geometric measure

theory (see [Mat., p. 258]) whether the following proposition is true:

(P2) every purely unrectifiable or irregular compact 1-set in R? must meet some
line in at least three points or,
more generally

(Pn) every purely unrectifiable or irregular compact 1-set in R? must meet some

line in at least n + 1 points.

Theorem 3.4 Suppose n > 2 and proposition (Pn) is true. Then there is no

analytic subset of R? which meets every straight line in exactly n points.

Another variant of this problem is

Problem 3.5 Can a compact partial two-point set (meaning a set which meets
each line in no more than 2 points) with linear Hausdorff measure zero always be
extended to a two point set?

Clearly, some condition must be added here as a circle cannot be extended. Some
fairly definitive results about this problem have been obtaind by Dijkstra, Kunen
and van Mill [DKM]:

Theorem 3.6 There exist compact partial 2-point sets with linear Hausdorff
measure zero (even with Hausdorff dimension zero) that are not contained in a 2-
point set. Also, if a partial 2-point set has the property that the linear Hausdorff
measure of its square is zero then it is extendible to a 2-point set (provided that

Martin’s Aziom holds).



Problems in set theory, analysis and geometry Page 7

4. Partitions of lines and planes.

In 1951, Sierpinski [S2] showed that the continuum hypothesis is equivalent to the
following: for the partition of the lines in R3 parallel to one of the coordinate
axes into the disjoint sets, Lq, Lo, and L3, where L; consists of all lines parallel to
the i*? axis, there is a partition of R? into disjoint sets, Si,S2, and S3 such that
any line in L; meets at most finitely many points in S;. He also showed that the
corresponding statement for R*, using L1, L2, L3 and L, and four sets Si, Sa, S3
and Sy is equivalent to 2 < wsy. Also, the corresponding statement for R?2, using
sets of lines Ly and Ly and sets S; and Ss is false. He obtained analogous results
by replacing “finite” by “countable”. Thus, CH is equivalent to the assertion that
R? can be divided into two disjoint sets S; and S, with each line in L; meeting
S; in a countable set [S1]. He showed that the countable version for R® with three
sets is equivalent to 2 < ws. These theorems were generalized by Kuratowski [Kul]
and Sikorski [Si]. Erdds [Er53] raised the issue of whether these results could be
further strengthened by considering partitions of all lines rather than just those lines
parallel to some coordinate axis. There has been quite a bit of research on these
possibilites. Simms [Sm] gave an extensive historical survey and we also indicate a
number of further results in [EJM1]. In [EJM1], we develop a general framework
for studying arbitrary partitions of all lines (or planes, or more general objects)
and not necessarily special partitions or families of lines. The central issues are the
number of sets of lines in the partition, the allowed size of the intersection of a line
in a given set with the corresponding set in the decomposition of the space, and
the value of the continuum. In order to state one of the main results in [EJM1] let
us establish some conventions. If ¢ is a positive integer, then card(A) = |A| < w_;
means A is finite. If # = § + s, where § > 0 is a limit ordinal and s is an integer,

and t is an integer ¢, t > s, then |A| < wp_; means |A| < wy.

THEOREM 4.1. Let § be an ordinal, § = 6 + s > 1, where 0 is 0 or a limit
ordinal, and let s € w. The following statements are equivalent:

(1.1) 2% < wy.

(1.2) For each n > 2 and for each partition of L, the set of all lines in R™ into
p > 2 disjoint sets, L = L1 ULy U ...UL,, there is a partition of R" into p disjoint
sets, R" = S{ US> U ...US,, such that each line in L; meets S; in a set of size
< Wh—pt1-

(1.3) For some n > 2, some p, with s +2 > p > 2 and some non-parallel lines
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li,....;0, in R™, if we let L; be the set of all lines in R™ parallel to l;, then there is

a partition R™ = S; U ...U S, such that every line in L; meets S; in a set of size

S We—p+1-

I note that the fact that (1.3) implies (1.1) was proven earlier by Roy Davies [D1]
and that some of the key ideas of our arguments go back to combinatorial arguments
of Erdds and Hajnal [EH]. Several corollaries are given in [EJM1]. For example,

Sierpinski’s theorem and the answer to question a) in [Er53]:

COROLLARY 4.2 The following are equivalent:

(i) CH, the continuum hypothesis holds: 2% = wy,

(ii) if the lines in R® are colored with three colors L; (i = 1,2,3), then there
exists a coloring of R3 with the same three colors such that each line meets only

finitely many points with its color.

Proof. Take # = 1, n = 3 and p = 3 in theorem 4.1. Then each line in L; meets
S; in a set of size at most wg_p,41 = w_1, which by our convention means finite.
A second corollary notes that the condition that we are in R3 in corollary 4.2 is

not necessary. This also answers question b) in [Er53]. B

COROLLARY 4.3 The following are equivalent:

(i) 2% = wy,

(ii) If the lines in R? are colored with three colors, then there exists a coloring
of R? with the same colors such that each line contains only finitely many points

with its color.

Proof. Take # =1, n =2 and p = 3 in theorem 4.1. W

We also gave some theorems concerning partitions or colorings of other objects in
R”, for example hyperplanes, and corresponding colorings of the points in R" so
that one had prescribed bounds on how many points an object contained with its
color.

We also considered infinite colorings of lines and points in [EJM1]. One corollary
of our theorems is the following theorem of Davies [D2]:

Theorem 4.4 Assume ZFC. For every infinite partition L = J,,, L; of L, the set
of all lines in R™, there is a partition, R" = Ui@d S;, of the points in R™ such that
Vi€ L; (lNS;| is finite). Furthermore, if 2 < w,,, then “finite” may be replaced
by m + 1.
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Davies had suggested that the converse of theorem 4.4 might hold. That is, does
the partition property with size m + 1 intersection imply 2¢ < w,,, or any bound
on 2?7 In [EJM2] we showed that this is not the case by proving the following

theorem.

Theorem 4.5 Assume ZFC + MA. Then for any partition L = |J,c,, Li of the
lines in R (n > 2), there is a partition R* = J,;,, Si of the points in R™ such that
Vie Li(|lnS;] <3).

However, our result left open the questions of whether MA is necessary and what

is the situation for n = 2. Both of these questions were answered by the conclusive

work of Schmerl [Sch]:

Theorem 4.6: Let L = Ly U Ly U Ly U--- be a countable partition of the set of
lines of R™. Then there is a countable partition R® = SoyU S1 U Sy U -+ of the set
of points such that whenever £ € L;, then |[£N S;| < 2.

5. Steinhaus’ lattice problem.

Sometime in the 1950’s, Steinhaus posed the following problem. Do there exist two
sets A and B in the plane such that for every set congruent to A has exactly one
point in common with B? The trivial case where one of the sets is the plane is
ruled out. Sierpinski [S3] showed the answer is yes and later Erdds rediscovered
this result [Er85]. Komjath showed that such a set exists if B = Z, the set of all

integers [K]. Steinhaus also asked about a specific case:

Problem 5.1 Does there exist a set E C R? which meets every isometric copy of
72 in exactly one point?

The first reference in the literature to this problem that I know of is Sierpinski’s
1958 paper [S3]. See also [CFG], E10,G9. Now, the situation regarding this problem
seems somewhat unusual. J. Beck showed that there is no bounded measurable
subset of the plane which is a ”Steinhaus” set [B]. Also, Kolountzakis and Wolff
have shown that for the analogous problem for R% with d > 2, there is no such
set F/ which is measurable [KW]. However, their methods do not quite work in the
plane. So, whether there can be a measurable Steinhaus set in the plane remains
open although there are numerous partial results as indicated in [KW]. On the
other hand, Steve Jackson and I have shown that the answer to Steinhaus’ planar

problem is yes [JM]. However, our methods do not directly generalize to the case
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when d > 2. So, the higher dimensional version of Steinhaus’ problem remains
open.
I want to make a few comments about the proof Jackson and I gave. In fact, we

proved a slightly stronger theorem:

Theorem 5.2 There is a set S C R? satisfying:

(1) For every isometric copy L of Z? we have SN L # (),

and

(2) for all distinct 21,20 € S, (p(z1,22))? & Z.

Of course, for S to be a Steinhaus set we only need condition (1) to hold and
(27) for all distinct 21,22 € S, the distance between z; and zy is not the distance

between two lattice points.

Note that viewed this way, the Steinhaus problem has a natural interpretation for
smaller sets of lattices. Namely, given an arbitrary set £ of lattices (each of which
is an isometric copy of Z?), we may ask whether there is a set S satisfying (2)
of theorem 5.2 and such that SN L # () for all L € £. Indeed, establishing this
restricted version of the problem for the case where £ is the (countable) family of
rational translations of Z?2 is a central step towards proving our theorem.

In proving theorem 5.2, it is natural to procede inductively. That is, we build the
desired set S in (transfinitely many) stages. At limit stages, we take unions, and
at successor stages we enlarge S, to S,41 S0 as to meet a new lattice, while at the
same time keeping property (2). Note that (2) is then trivially satisfied at limit
stages. If we can meet every lattice L along the way, then the final set S =, Sa
will be as desired. While this is the general plan for the proof, there are several steps
that must be taken to ensure its success. For example, we do not simply enumerate
the lattices £ in type 2¢. Rather, it turns out to be important that we use the
“hull construction” which has played a significant role in several other theorems of
this general character in our work with Erdés, [EJM1], [EJM2]. The idea, described
abstractly, is to consider a continuous elementary chain { M, },<2« of substructures
(say of some large V) with each M, of size < 2, but R C {J, 9o Mq. Let L,
denote the isometric copies of Z? which are in M,. At successor steps, we now
enlarge S, to S,41 which meets all lattices L € L4141 — L4, while, of course,
keeping property (2). The point is that while this gives us more to do at each
successor step, it also provides us with a powerful inductive assumption, namely,

the closure of L, under various operations.
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