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1. INTRODUCTION

Sometime in the 1950’s, Steinhaus posed the following problem. Do there exist
two sets A and S in the plane such that every set congruent to A has exactly
one point in common with S? The trivial case where one of the sets is the plane
and the other consists of a single point is ruled out. The first appearance of this
problem in the literature seems to be in a 1958 paper of Sierpinski [14]. In this
paper, he showed the answer is yes, a result later rediscovered by Erdés [5]. Of
course, there are many variants of this problem. For example, one could specify
the set A. In this direction, Komjdth showed that such a set exists if A = Z, the
set of all integers [13]. Steinhaus also asked about the specific case where A = Z2.
The first reference to this problem also seems to be Sierpinski’s 1958 paper where
he mentions that in this case there is no set S which is bounded and open or else
bounded and closed. This specific problem has been widely noted, see e.g. [3, 4]
but has remained unsolved until now. In this paper we answer this question in the
affirmative:

Theorem 1.1. There is a set S C R? such that for every isometric copy L of the
integer lattice Z* we have |[SNL| = 1.

We note that throughout this paper we work in the theory ZFC; the usual ax-
ioms of set theory with the axiom of choice (AC). AC is used heavily in the main
construction as we require, for example, an enumeration of the equivalence classes
of the lattices under a certain equivalence relation. Also throughout this paper by
“lattice” we mean a set in the plane which is isometric with the integer lattice Z2
(a brief exception occurs in lemmas 2.2, 2.3 where we consider scaled versions).

Let us point out that there are several things proven in this paper which are
stronger than what is needed to prove theorem 1.1. Stronger forms of our two main
technical lemmas, lemma A (lemma 1.3) and lemma B (lemma 1.5), are proven
here than is required for the main theorem. In [9] a shorter argument is given for
the main theorem. For example, a shorter proof of lemma A of this paper is given
there. Here we give a more involved induction argument in §3. This argument,
which uses only basic number theory and combinatorics, shows something much
stronger and interesting in its own right. We feel that these stronger results may
be useful in resolving whether the main theorem holds for other lattices and other
dimensions. We note that the geometric lemma B is also stronger than what is
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required for a proof of the main theorem. A weaker alternative is also indicated in
84. It is also quite possible that something like lemma B may be needed to resolve
the problem for other lattices.

We note that theorems similar to lemma B may be found in theory of mechanical
linkages [10]. Recall a four-bar linkage may be described as two circles C, Cs, and
arigid “bar” connecting two points p;, p2 constrained to lie on Cy, C5 respectively.
If we consider a third point p3, and require that the triangle Ap;paps be rigid, then
the locus of points traced out by ps3 is called a coupler curve for the linkage. We
say the coupler point ps is non-trivial if it is not one of the endpoints p;, po. In this
terminology lemma B is the statement that the curve traced out by a non-trivial
coupler point of a four-bar linkage has, except in the degenerate case noted, a finite
intersection with any circle. In particular, lemma B is implicit in the analysis of
Gibson and Newstead [8] (we give a brief sketch in §4). Their analysis uses a fair
amount of machinery from algebraic geometry. However, since we were not able to
find the precise statement of the lemma and as it is crucial to our methods, we give
in §4 two very different elementary proofs of it.

We call a set S as in theorem 1.1 a Steinhaus set and note that whether there
can be a Lebesgue measurable Steinhaus set remains unsolved. (We also do not
know whether a Steinhaus set can be connected although one can prove that if it
is measurable then it is totally disconnected.) Concerning measurable Steinhaus
sets, T. H. Croft [2] and independently, J. Beck showed that there is no bounded
measurable Steinhaus set [1] and Koulountzakis obtained some further refinements
[11]. Also, Kolountzakis and Wolff showed that there is no measurable Steinhaus set
for the higher dimensional version of Steinhaus’ problem [12]. It is relatively easy to
see that no Steinhaus set can be a Borel set or even have the Baire property if one
follows the agruments given by Croft. We briefly sketch this argument. Suppose S
has the Baire property. Since R* = J,.;2(S + 2), S cannot be meager. Fixing a
ball with respect to which S is comeager and noting the the gaps between successive
lattice distances converges to 0, we see that there is some some ball M such that
the part of S outside this ball is meager. Let E be the set of points where neither
S nor R? \ S is meager in any neighborhood. Then E is a nonempty closed nowhere
dense set and following the proof of Lemma 3 of Croft’s paper, we see that there
is an isometric copy L of Z? which meets F in exactly one point, p. Thus, there is
a ball B(p,d) such that neither S nor R? \ S is meager in that ball but R? \ S is
comeager in B(z,d) for every z € L with x # p. But, this would mean there is a
small translation of L which would entirely miss S. We also note that the question
of whether there is a bounded Steinhaus set remains unsolved. Steinhaus’ problem
and variants were discussed in some detail by Croft [2] and have been updated in
sections E10 and G9 of [3]. In particular, Steinhaus also asked about sets meeting
each copy of the lattice points in exactly n points. The fact that the answer to
this question is yes follows directly from our main theorem and is discussed in our
concluding remarks.

The authors thank C. Freiling, D. Goldstein, J. Rosenberg, and R. Solovay for
helpful conversations. We also thank the referees for several valuable suggestions
and corrections.

Let us say a lattice distance is a real number of the form +/n? + m? where
n,m € Z. Theorem 1.1 is clearly equivalent to the existence of a set S C R2
satisfying the following two properties:
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(1) For every isometric copy L of Z2, SN L # ().

(2) For all distinct 21,22 € S, p(21,22) is not a lattice distance, where p denotes
the usual Euclidean distance.

In fact, we prove in this paper a slight strengthening of theorem 1.1:

Theorem 1.2. There is a set S C R? satisfying:

(1) For every isometric copy L of 7> we have SN L # ().
(2) For all distinct 21,20 € S, p(z1,22)? ¢ Z.

We call a set S C R? satisfying (2) of theorem 1.2 a partial Steinhaus set.

Note that viewed this way, the Steinhaus problem has a natural interpretation for
smaller sets of lattices. Namely, given an arbitrary set £ of lattices (each of which
is an isometric copy of Z?), we may ask whether there is a partial Steinhaus set S
such that SNL # § for all L € L. Indeed, establishing this restricted version of the
problem for the case where L is the (countable) family of rational translations of 7?2
is a central step toward proving theorem 1.2. Actually, we need a slight technical
strengthening of this “rational translation” case, which we state below.

In proving theorem 1.2, it is natural to proceed inductively. That is, we build
the desired set S in (transfinitely many) stages. At limit stages, we take unions,
and at successor stages we enlarge S, to S,41 so as to meet a new lattice, while
at the same time keeping property (2). Note that (2) is then trivially satisfied
at limit stages. If we can meet every lattice L along the way, then the final set
S =, Sa will be as desired. While this is our general plan, there are several steps
that must be taken to ensure its success. For example, we do not simply enumerate
the lattices £ in type 2“. To appreciate the difference, we note that there does
exist a “finite obstruction.” That is, there is a finite set of points F C R? (in fact
F C @) which forms a partial Steinhaus set, but which cannot be extended to
meet even the integer lattice Z?2 and remain a partial Steinhaus set. For example
the following set of 17 points forms such an obstruction (this set was constructed by
considering a partial good permutation of 65 of size 17 which cannot be extended
to a good permutation of 65; these concepts are explained in §3):

(216/5,2/5) (107/5,4/5) 283/5,1/5)  (174/5,3/5)
(677/13,5/13)  (340/13,10/13) (744/13,2/13) (407/13,7/13)
(70/13,12/13)  (474/13,4/13)  (137/13,9/13) (541/13,1/13)
(204/13,6/13)  (712/13,11/13) (271/13,3/13) (779/13,8/13)
(2601/65,57/65)

AAAA
NN N N

Rather, it is important that we use the “hull construction” which has played an
important role in several other theorems of this general character (see [6, 7]). The
idea, described abstractly, is to consider a continuous elementary chain {M,}o<o
of substructures (say of some large V,;) with each M, of size < 2¢, but R C
Ua<2w M,. Let L, denote the isometric copies of Z?2 which are in M,. At successor
steps, we now enlarge S, to S,41 which meets all lattices L € L4411 — L4, while
of course keeping property (2). While this gives us more to do at each successor
step, it also provides us with a powerful inductive assumption, namely, the closure
of £, under various operations. For the reader unfamiliar with the set-theoretic
terminology, we may describe the idea as follows. We write the collection of lattices
L as an increasing union of sets £, where at limit stages we take unions, and we
require each £, to be closed under certain finitary functions Fy: (£)<¥ — £. We
could specify in advance which functions Fj we need the L, to be closed under,
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but it is more convenient not to. We note that when the continuum is greater than
w1, the actual construction we will use will be a bit more complicated, essentially
an iteration of this hull construction.

We now state precisely two lemmas, which we call lemma A and lemma B, which
we will need to carry out the plan sketched above. The first of these is the “rational
translation” case mentioned above.

Lemma 1.3 (A). Let Lo denote the set of rational translations of 7.2, that is,
lattices of the form 7>+ (r,s) where r,s € Q. Then there is a set S C R? satisfying
the following.

(1) For every lattice L € Lo, SN L # 0.
(2) For all distinct 21,22 € S, p(21,22)° ¢ Z.

Actually, we require a technical slight strengthening of lemma, A, which we call
lemma A’. In this lemma, and for the rest of this paper, we adopt the following
terminology. If L C R? is a lattice, then by a “rational translation” of L we mean a
lattice of the form L+ ri+ s where r, s € Q, and #, ¢ are the unit basis vectors for

L. In other words, we are always referring to the coordinate system of the lattice
L.

Lemma 1.4 (A"). Let L be a lattice, and w be a point having rational coordinates
with respect to L. Let P be a (countable) set of points containing w, all of which
have rational coordinates with respect to L, and satisfying the following: for all
integers d, i, j, a, b, there are infinitely many points of P which have coordinates
with respect to L of the form (é + k:,%l + 1), where k, | are integers with k = a
mod d, I =b mod d. Then there is a set S satisfying:

(1) For every rational translation L' of L we have SN L' # ().
(2) For all distinct z1, 20 € S we have p(21,22)* ¢ 7.

(3) weSs.

(4) SCP.

Note that lemma A’ immediately implies lemma A taking P to be the set of all
points having rational coordinates with respect to L.

The second lemma is a result in pure plane geometry, which arises in carrying
out the hull construction mentioned above.

Lemma 1.5 (B). Let c¢1,c¢2,c3 be three distinct points in the plane, and let 1, ra,
r3 > 0 be real numbers. Let Cy be the circle in the plane with center at ¢, and
radius ry, and likewise for Cy and Cs. Let a,b,c be three distinct points in the
plane. Then, except for the exceptional case described afterwards, there are only
finitely many triples of points (p1,pa,ps) in the plane such that

(1) p1 € C1, p2 € Cy, and p3 € Cs.
(2) The triangle pipaps is isometric with the triangle abe (we allow the degen-
erate case where the points a,b,c are collinear).

The exceptional case is when r1 = ro = rz and the triangle abc is isometric with
C1C2C3.

In §2 we give the proof of theorem 1.2 assuming lemmas A’ and B. In §3 we
prove lemma A’, and in §4 we prove lemma B. §§3, 4 are self-contained and may
be read independently.
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2. THE MAIN THEOREM

In this section we prove theorem 1.2 assuming lemmas A’ and B. Throughout,
“lattice” will mean an isometric copy of Z2. w denotes the first infinite ordinal, we
which identify with the set of natural numbers.

Recall that by a “rational translation” of a lattice L we are referring to the coor-
dinate system of the lattice L. By a rational rotation of Z? we mean an operation
of the form Z?2 — R(Z?), where R is a rotation of the plane whose corresponding

matrix Mg = (:11 :12 has rational entries. In this case, Mg must be of the
21 T22
a _b
form <§ ad> where a, b, d are integers and a® + b = d?. For a general lattice
d d

L, a rational rotation means a rotation about a point of L which is rational in the
coordinate system of L.

Definition 2.1. Two lattices are equivalent L; ~ Lo, if Ly can be obtained from
L1 by rational rotations and translations.

This is equivalent to saying that in the coordinate system determined by L, the
isometry moving L; to Ly is of the form

()= G 5)- () ()
Y a3 qa Y ds
where all of the ¢; are rational. Equivalently, L; ~ Lo iff all of the points of Lo
have rational coordinates with respect to the coordinate system determined by L;
(and vice-versa). This is easily an equivalence relation, with each equivalence class
countable.
We first prove a lemma which will help us deal with rotations.

Lemma 2.2. Let Ly be a lattice, and Lo obtained from Ly by a rational rotation.
Let S C R? satisfy the following:

(1) For every lattice L which is a rational translation of L1, SN L # (.

(2) For all distinct z1, 22 € S, p(z1,22)° ¢ Z.
Then for every lattice L' which is a rational translation of L we have SN L' # ().

Proof. Without loss of generality we may assume L; = Z2. Let the rational rotation

a _b

R correspond to the matrix M = <g ad>, where a, b, d € Z, d > 1, and
d d

a’? +b* = d*. L, = R(Z?) has standard basis vectors @ = (%,2) and 7 = (-5, 2).

It suffices to show that for any positive integer e such that d|e, and any rationals of
the form r = 2, s =  (m, n integers), that SNL, , # 0, where L;. , = Ly +ri+ st/
is the rational translation of L by (7, s). Fix a positive integer e with d|e. Consider
the e? set of points of the form i+ 24, where 0 < m,n < e. For each such point
p, we must show that there are integers k = kp, [ =, such that p+ k@ + 10 € S.

We require the following technical lemma whose proof we give below.
Lemma 2.3. Let e be a positive integer, and R the rational rotation with matriz

a _b
M= (g ad> , where dle. Let Ly, = LR(Z?). Then there are exactly €* points of

(&

d d
the scaled lattice L}, which are of the form (z,y) with 0 < z,y < 1.

Granting the lemma, we finish the proof of lemma 2.2. Let T denote the e? set of
points in L} of the form (z,y) with 0 < z,y < 1. Note that each of these points has
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coordinates (x,y) with  and y rational (in fact, their denominators can be taken
to be de). By property (1) of S, for each such point (x,y) there are integers (k',1")
such that (z,y) + (k¥',1') € S. For each such (z,y), let (z',y") = (z,y) + (§¥',1')
denote the corresponding point in S. Clearly the map f(z,y) = (¢',y') from T
into S is one-to-one. Thus f[T] is a subset of S of size exactly e?. Note also that
in the coordinate system determined by Ls, each point of f[T'] has coordinates in
%ZQ (since this is true of the points in T, and (k',1") has coordinates with respect
to Ly which have denominators d and d|e). For each point (2',y') € f[T], let k",
I" be integers such that (z',y") = (z',y") + k"@ + 1" ¥ has coordinates with respect
to Lo of the form (", 2), where 0 < m,n < e. Let g be the function defined on
f[T] sending (z',y’) to (z",y"). Note that g is one-to-one, or else we would violate
property (2) of S. Thus, (g o f)[T] consists of e? points which in the Ly coordinate
system all have coordinates of the form (%, %) where 0 < m,n < e. Since there are
only e? such points, (g o f)[T] exhausts this set. By definition of g, we thus have
for any point p having Ls coordinates of the form (2, 2), 0 < m,n < e, there are
integers k = —k", | = —1" such that p + ki@ + {7 € S. This completes the proof of
lemma 2.2. O

Proof of lemma 2.3. Scaling by e, the lemma follows immediately from the follow-
ing well-known more general fact about lattices: Suppose vy, ...,vq are linearly
independent vectors in Z?. Let D = det(vi,...,vq). Then there are exactly D
points of Z% of the form aivi + ...aqvg where 0 < aq,...,aq < 1. To see this,
let R be the fundamental domain for the lattice determined by the v;. That is,
R={a1v1 +...aqv4: 0 < ay,...,aq4 < 1,a; € R}. Suppose there are D' points of
Z%in R. Clearly any translation of R of the form R + niv; + - - - + nqvgq, where the
n; are integers, also contains exactly D' points of Z%. Thus, nR = {ajv1 +...aqvq :
0 < ai,...,ag < n,a; € R} contains exactly (D')n? points of Z% On the other
hand, a volume argument shows this number to be of the form (D +o(1))n¢. O

Lemma 2.4. Let L be a lattice and z € R?. Suppose z has coordinates (x,y) with
respect to the lattice L, where at least one of x, y is irrational. Then there is a line
[ =1(z,L) such that if w has rational coordinates with respect to L and w ¢ 1, then

p(w,2)* ¢ Q.

Proof. Without loss of generality, suppose L = Z2. Suppose z = (z,y) with at least
one of x, y irrational and w = (a,b) € Q. If p(w, 2)? € Q, then (z—a)?+ (y—b)> €
Q, and so

22 +y? — 2az — 2yb € Q.

If wy = (a1,b1) and wy = (ae,bs) were two such points, then subtracting the
corresponding equations we would have

(1) 2(a1 — a2)x + 2(by — b))y € Q.

If ws = (as,bs) were a third such point, then we likewise have

(2) 2(ar — az)x + 2(by — b3)y € Q.

If wy, wa, w3 were not collinear, then we could solve equations (1), (2) for = and y,
and these numbers would both be rational, a contradiction. Thus, all such points
w (if any) must lie on a single line. O

Lemma 2.5. Let Ly, Ly be lattices which are not equivalent. Then there is at most
one point which has rational coordinates with respect to both Ly and L.
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Proof. Assume without loss of generality that L; = Z2. If there were two points in
@? having rational coordinates with respect to Ly, then the standard basis vectors
i, U of Ly would also have rational coordinates. Since one point of Ly has rational
coordinates, it follows that all of the points of Ls have rational coordinates, that
iS, L1 ~ L2. O

We now turn to the proof of theorem 1.2.

If L C R? is an isometric copy of Z2, let [L] denote the equivalence class of
L under the equivalence relation ~ of definition 2.1. Let £ denote the family of
all equivalence classes. By AC, let £ — L(L£) be a function which picks for each
equivalence class £ a member L(L) € L.

To carry out the main construction, we first describe a particular enumeration of
the equivalence classes of the lattices. Let () = 2%, and let {M,, : ap < (D)}, be
a continuous increasing chain of elementary substructures of a large V,, (V41 will
actually suffice) with |M,,| < (D) for all oy < k(@) and such that every equivalence

class of lattices is in some M,,. Assume also My = ). Let Ny, = Myg+1 — My, -
In general, suppose that Mg is defined for & in a certain subtree of ON<¥. If
May,....ap 18 defined, we assume also that (g, ..., ar—1) has been defined and is

an uncountable cardinal. Furthermore, we assume in this case that M,,,... 0, _,,3 1S

defined iff § < k(ao, ..., a_1). Welet Ny, ... 0, denote Mo, ant+1 — Mag,....on -
Suppose now that My,.. . q, is defined. If N, ., contains only countably

many equivalence classes of lattices, let Lo, .. a;:n €numerate them. In this case,

(ao,---,ar) is a terminal node in the tree of indices @ for which My is defined.
Otherwise, let k(ao, ..., ) =|Nay,....ar, N L] and write
Nag,....on = U Mao7---,ak7ak+17

a1 <K(Q0,...,0)
as a continuous, increasing union, where each My, . ay,a,4, 1S the intersection
of Nq,.....a, With an elementary substructure of V,;, and each May,....ap, 0041 COD-
tains fewer than k(ao,...,q;) many equivalence classes of lattices. Assume also
Mey,....an.0 = 0. Easily, the tree of indices is well-founded (since the kg are de-
creasing along any branch).

If @ is incompatible with 5 , then N5 and NV 5 have no equivalence class of lattices
in common. Furthermore, every equivalence class occurs as some Ly, .. az:n- Thus,
the Lo,,....ax:n Precisely enumerate the equivalence classes of lattices. We consider
the indices to be (well) ordered lexicographically.

The following simple lemma will be used.

Lemma 2.6. Suppose @ is an index for which Mg is defined. Let ay,...,am € Mg
and suppose b is definable from a1,...,a, in V. Then b € Ug<& Mg.

Proof. Let @ = (ayg,...,q)) and assume b ¢ Ug<& Mg. Since My, ...,y is relatively
closed under the skolem functions of V, inside of Noy... ap ,, it follows that b ¢
Nag,...oan_,- Since b ¢ My, . oy, by assumption, we thus have b ¢ My, o, ,+1-
Continuing, we eventually have b ¢ M, +1, a contradiction since M,,+1 is a sub-
structure of Vi containing the a;. O

Fix now a terminal index & = («p, - - ., @x). Assume inductively we have defined
for each terminal index § < d a set Sz C R* which satisfy the following:

(1) If §) < B2 <@, then S5 C S
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(2) For every terminal index f§ less than &, S5 meets every lattice in every
equivalence class £ Gin-

Every point of Sz — [J;_5 57 lies on some lattice of the form Lz .

For all distinct z1, 22 € Sg, p(z1,22)° ¢ 7.

Suppose f < B2 <@,z € S, andy € Sz, — 55, S5 Then if p(z,y)? €

Q then z, y both have rational coordinates with respect to some lattice of
the form ng,n.

—~ o~ o~
T s W
- T

Let Scgq = UB’<& Sz. We show how to extend S.z to a set Sy also satisfying 4, 5
and such that Sy meets every lattice in each equivalence class Lg,,,. This suffices
to prove theorem 1.2.

To ease notation, let £, = Lg,n, and let L, = L(L,). From lemma 2.2, it
suffices to maintain property 4, have property 5 when 52 = a, and have S5 meet
every rational translation of each L,, (recall a rational translation of L,, refers to a
motion which is a translation in the coordinate system of L,).

For integers n, d, i, j, let L%%J denote the translation of L,, by the amount (é, %)
(in the coordinate system of Ly,).

Note for the following the simple fact that if two distinct points y, z lie on a lattice
L, then L is definable from y and z. In fact, there are only finitely many lattices
containing both y and z. More generally, if y, z both have rational coordinates
with respect to L, then L is definable from y and z.

Claim 2.7. For each n and rationals [%, %, there is a finite set of lines Gn(g, %) with
the following property: if ¢ € Sc5 does not have rational coordinates with respect
to Ly, if z € LEH  and if p(c,z)? € Q, then 2z € UG, (4,2).

Proof. Suppose there is a z; € L& and a ¢; € S not rational with respect to Ly,
such that p(z1,c1)? € Q (otherwise there is nothing to prove). Let Iy = I(cy, LE59)
be the line (necessarily through z;) given by lemma 2.4. Suppose there is a z2 ¢ [;,
2y € L% and a ¢y € Scq not rational with respect to L, with p(z2,c2)? € Q
(necessarily ca # ¢1). Let lo = l(c2, L%%7) be given by lemma 2.4. Continuing,
construct z,, € L% ¢, € S.g if possible so that z, ¢ Iy U---Ul,_1 and
p(2m,cm)? € Q. If the construction fails at some point, then the claim is proved.
Assume toward a contradiction that we continue to produce an infinite sequence
21,C1, Z2,C2, .... Note that the ¢; are distinct. Let Em = (B3, ...,B") be the
terminal index (where [ depends on m) such that ¢, € Nj,.. Thus, Am < &. Easily,
there is a k' < k such that for infinitely many m we have 5" = o, ...,80_; =
ap—1, and B} < ap (we allow k' = 0, in which case we have 57" < ap). Let
¥ = (a0, ...,ax). Thus ¥ < &, and for these infinitely many m we have ¢,,, € M.
Let my, ma, ms be three such m. Let 11 = p(cm,, Zm, ), and similarly for 7o, r3.
We apply lemma B to the circles with centers at ¢, of radii r; and the points zy,,.
Note that we are not in the exceptional case of lemma B, as otherwise we would
have p(2m,, 2ms) = P(CmysCms,)- This contradicts the fact that p(cm,,cm,)> ¢ Z
as they lie in S.g (note that p(2m,, 2m,)> € Z as 2m,, Zm, lie in LE47). From
lemma B, the points z,,,, Zm,, 2m,; are definable from ¢, ¢y, and ¢,,. Since
L, is definable from z,,, , Zm,, 2Zms (in fact, from any two of them), L,, is definable
from ¢y, Cmg, and cp,. It follows from lemma 2.6 that L, lies in some MB—», for

3 < @&. This contradicts L,, € Nx. 0
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We next construct a sequence of points {Z, }mew, which we view as “potential
points” to be added to the set Sc5 to form Sgz. We will in fact have Sz — S<q C
{zm :m € w}.

Let (n,d,i,j,a,b,p) — (n,d,i,j,a,b,p) €w be a fixed bijection between w” and
w. For m € w, let (m)o, (M)1,... be the “decoding functions” for our bijection,
that is, m = ((m)o, (m)1,...,(m)g). If the integer m is understood, we will write
n for (m)o, d for (m), etc. Let M&53a:0 C L45 he the sublattice of points whose
coordinates in the L, system are of the form (é + k,[l; +1), where k = a,l = b
mod d.

We inductively construct the z,, to satisfy the following (here n denotes (m)o,
d denotes (m);, etc.).

(1) z, € MEEIab,

(2) If mq # me, then zpy, # Tpm,-

(3) Suppose my < ms. If x,,, does not have rational coordinates with respect
to L, (= L(m2)0), then z,,, ¢ l(xm,,Ln,), where l(2,,,L,,) is as in
lemma 2.4.

(4) zm ¢ UG (3, 9)-

Since at each step there are only finitely many points and lines to avoid, there
is no problem defining the sequence {z,,}.

Claim 2.8. For each n, there is at most one point in Scgz U {x,,|(m)o # n} having
rational coordinates with respect to L.

Proof. Suppose y and z were two such points. Suppose first both y and z were in
Sc<a. Say y € S-*l — Us<s, Sy, 2z € 53*2 —Us<s, Sy where 1 < B2, If B1 = fo,
then each of y, z lies on a lattice in N G- Since L, is definable from y and z, L, is

definable from two points which lie in some M i for some 5 < @. From lemma 2.6

it follows that L, € UA7< s M5, a contradiction. If 51 < B} then from inductive
property 5 we have either p(y, 2)?> ¢ Q which is impossible (as both y, 2 have rational
coordinates with respect to L), or else y, z both have rational coordinates with
respect to some lattice L in Ng2. This would again imply that L,, € UVS& My, a
contradiction. Suppose next that y € Scz and z = x,,, where (m)o # n. Since y and
z are rational with respect to L, we have p(y,z)? € Q. Since z,, ¢ UG(m)O(g, %)
(where d = (m)1, i = (m)a, j = (m)3), we must have that y is rational with respect
t0 L), (as otherwise p(y,z)? ¢ Q). Thus, both y and z have rational coordinates
with respect to both L, and L(,,),, a contradiction to lemma 2.5. Suppose now
Y = Ty, 2 = Tm,, Where (mi)o, (m2)o # n. Let ny = (m1)g, n2 = (ma)o, and
assume without loss of generality that m; < ms. Again, p(y,z)? € Q, as both are
rational with respect to L,. From the definition of z,,,, we must have that z,,, is
rational with respect to L, (as otherwise p(y,2)? ¢ Q). Thus, both y and z are
rational with respect to Ly, and L,,, a contradiction. a

Let wy,, if it exists, be the unique point having rational coordinates with respect
to L, which is either in Scz or of the form z,, for some m with (m)y # n.

By induction on n we define sets T,, C {z,, : (m)o = n}. Assume Tp,...,Tp—1
have been defined, and for i < n, T; C {zy, : (m)o =i}. Let P, = {x, : (m)o = n}.
Let P, = Py — {w; : i < n}. If w, exists and w, € Scqa U, T, let w = wy, and
P = P, U{w}. If wy, exists, but w, ¢ Sca U, Ti, let P = P> —{wy} and let w
be some point in P. If w, does not exist, let P = P> and let w be some point in
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P. Apply now lemma A’ to the lattice L, the set P, and the point w. Let T}, be
the set produced from lemma A’.

Let Sy = S<ca UU,, Tn. Clearly Sz meets each lattice in each £,, and Sz C
UB<&,k U£g7k. Thus, inductive property 2 is still satisfied. Properties 1 and 3 are
trivially satisfied. By construction, if z € Sg — S<o (say z € T}, — Upmen Tm) and
y € Scg, then either p(y,2)> ¢ Q or y, z are both rational with respect to L,,.
Thus property 5 continues to hold.

To complete the proof, we show that for any y, z € Sy that p(y,z)? ¢ Z. By
induction, we may assume y, z do not both lie in S.5. Suppose first that y € Scg
and z € T), — U;, Ti- Say z = z,,. Note that (m)o = n as otherwise z = w,,
and this is impossible since from the construction w, € T, implies w,, € Ui<n T;.
If y does not have rational coordinates with respect to L,,, then since z,, € P (P
as in the definition of T,,) and P N (UG, (%,2)) = 0, we would have p(y, 2)* ¢ Q.
So, assume y is rational with respect to L,, and hence y = w,. In defining T,
in this case, we took w = w, in applying lemma A’. Since z € T},, we therefore
have p(y,2)? ¢ Z. Suppose next that y first appears in T,,, and z first appears
in Ty,. From the construction it again follows that y = x,,, where (m1)o = nq
and z = x,,, where (m2)p = ns2 (in fact, y # w,, and z # w,,). If ny = no then
from the definition of T},, we have p(y,2)? ¢ Z. Assume without loss of generality
that ny < na. If 2,,,, = wy,, then by definition of T,, we have p(y,z)? ¢ Z, so
assume y = Ty, # Wn,. By construction, z = Ty, 7# Wn,, as n1 < n2 (wy, cannot
first get into Ty, as my1 < ne; recall the definition of P,). Thus, y does not have
rational coordinates with respect to L,,, and z does not have rational coordinates
with respect to L, . If say m; > mg (the other case being identical), it now follows
from the definition of x,,, that p(zm,, Tm,)* ¢ Q.

This completes the proof of theorem 1.2, assuming lemmas A’ and B.

3. PROOF OF LEMMA A’

Our goal in this section is to prove lemma A’. Actually, we concentrate on
proving lemma A, as a minor adjustment to this proof will prove lemma A’.

Throughout we use the following notation. For a,b € Z we write alb for “a
divides b.” If b > 0, we write a mod b for the unique 0 < o' < b with o' = a
mod b. For rationals r, s, let L, s = Z? + (r,s) be the rational translation of Z? by
(r,s).

Recall the statement of lemma A:
Lemma 3.1 (A). Then there is a set S C R? satisfying the following.

(1) For every rationals r,s, SN L, s # 0.
(2) For all distinct 21,20 € S, p(21,22)* & Z.

Let R =Q? N ([0,1) x [0,1)). For each positive integer d let Ry C R be defined
by Rqg = {(3,%):0<4,j <d}.

We may reformulate lemma A as follows. For all (r,s) € R, there are integers
k = k(r,s) and | = I(r,s) such that if S = {(r + k(r,s),s +I(r,s)) : r,s € Q},
then for all distinct 21,20 € S, p(21,22)> ¢ Z (property 2 of lemma A). Thus,
our problem is to define the integer valued functions k(r,s) and I(r,s) satisfying
property 2.

Our plan for defining these functions is to proceed inductively as follows. Assume
we have defined the values k(r, s), I(r, s) for all (r,s) € Ry for some d > 1. Assume
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that the partial functions k,[! so far defined satisfy property 2, more precisely,
assume:

' (%) a: For any distinct (%’%)’ (%,%) in Rd,‘if z1 = (% + ki, % +1y), 29 =
(2 + ko, 2 +15) where ky = k(%, &), [} =1(%,4)) and similarly for ks, o, then
p(21,22)° ¢ L.

Let p be a prime, and d’ = pd. We then show that we can extend the k, [
functions to rational pairs in Ry, maintaining property 2. This clearly suffices to
prove lemma A.

We note that in this inductive step of the proof, it is important that we assume
that the k, [ functions are defined on all of the points (é, %) in Ry (and satisfy
property 2, of course). It is not true in general that functions k, [ which are defined
on a subset of Ry (and satisfy property 2) can be extended to functions defined on
all of Ry also satisfying property 2. ‘

We make the following simple general observation. If x = (% + ki, 5+ 1),

y= (%2 + ko, %2 + 1), then p(z,y)? € Z iff
(3) (i1 —i2)* + (j1 — j2)? + 2d[(i1 — i) (k1 — k2) + (j1 — j2)(lh — 12)] € d°Z.

We use this frequently below. We will also frequently let a denote i1 — i2 and let b
denote j; — j2, in which case our equation becomes

(4) ((12 + b2) + 2d[a(k:1 — kg) + b(ll — lz)] S d’7.

3.1. A Special Case. Since the general inductive step is somewhat technical, we
feel it helps to illustrate the main points involved by considering a special case.
Thus, we first show how to define the k, [ functions on the points in Ry, for p a
prime, and then show how to extend the functions from Ry» to R, .+1. [We could
start with n = 1, but this does not really simplify the argument, and would cause
us to repeat part of the argument.] These arguments are not necessary for the
general case, and the reader may choose to skip down to the general argument.

So, let d = p™. Consider two points of the form z; = (;—},+k1, ;—i +11), 20 = (;—i +
ko, g—ﬁ +13), where 0 < iy,i2, 41,72 < p"™ and ki, k2,1, 2 are integers. Substituting
into equation 4, we see that p(z1, 22)? ¢ Z unless

(5) (a® +b%) + 2p"[a(ky — k2) + b(l; —12)] =0 mod p*".

First note that if p = 2 or p = 3 mod 4, then we may define the k,l values
arbitrarily and equation 5 will have no solutions. For clearly if equation 4 holds
then we must have p"|a® + b?. Since 0 < iy,iy < p", p" does not divide a, and
likewise p™ does not divide b. Say a = p°u, b = p/u, where e, f < n and u, v are
prime to p. Suppose w.l.o.g. that e < f. Dividing equation 5 through by p?¢ we
get u? 4+ p?/=2¢92 = 0 mod p. This implies e = f. Hence, u? +v> = 0 mod p.
Thus, (%)2 = —1 mod p, a contradiction if p =3 mod 4, since —1 is not a square
mod p in this case. If p = 2, then since u,v are both odd, u? + v? = 2 mod 4.
Dividing equation 5 through by p?¢ gives

(u® +v?) + 2p" C[u(ky — ko) + vy —15)] =0 mod p*("~*).

This is impossible, however, as 4 divides the remaining terms in this equation.
Thus, if p = 2 or p = 3 mod 4, we may define the k, [ functions arbitrarily on
Ry~ and property 2 will be satisfied. For the rest of the special case we therefore
assume p =1 mod 4.
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Recall that if p = 1 mod 4, then there are exactly two square roots of —1
mod p™ for any m. Let A, pu, with 0 < A\, u < p™ be the two square roots of —1
mod p". Note that A = —u mod p". Note also that for any & < n, (A mod p*)
and (u mod p*) are the two square roots of —1 mod p*.

As we remarked above, if equation 5 holds, we must have p™|a® + b%. In this
case, if (p,a) = 1 (and hence also (p,b) = 1), this gives (£)> = —1 mod p", and
hence either b = Aa mod p", or b = pa mod p". Suppose now pla (and hence
p|b, or else equation 5 cannot hold). Say a = p°u, b = pfv, where e, f < n, and
(p,u) = (p,v) = 1. Assuming e < f (the other case being similar), putting these
into equation 5, and dividing through by p*¢ we have

(u® + p*=220%) 4+ p"~[u(ks — ks) + p! Cv(ly — 1)) € P *Z.

This clearly implies e = f. Also, using a previous remark, v = Au mod p"~¢ or

v = pu mod p"~¢. Multiplying through by p¢, we conclude that in all cases for
equation 5 to hold, we must have either b = Aa mod p”, or b = pa mod p".

Suppose, for example, that equation 5 holds and b = Aa mod p™. Let j be the
integer, 0 < 7 < p”, such that 7+ Ai; = j1 mod p”. Note that j+ Ai; = j, mod p”
as well. Let 71 = 7+ Aiy, and let m; be such that 7; = j; + p™m;. Likewise define
72 and my. Note that 71 — Jo = A(41 — 42). Also, we may express the points 21, 22
now as

11 J1 12 J2
21 = (E + ki, o + (L —my)), 22= (ﬁ + kz,ﬁ + (la — ma)).

Substituting into equation 3, and dividing through by p™ we obtain:

n

YA RS . n
(Zl — 22)2 < D > + 2(21 — 22)[(]{71 — kz) + /\(ll — lz —ma +m2)] =0 mod p.

Note that this makes sense as p"|(1 + A?). Let r < n be such that i1 — iy = p"u,
where (p,u) = 1. This equation is then equivalent to

(i1 — i2)(1) <1 ;nA

2
Rearranging, this becomes

> + [(k‘l — k2) + )\(ll — 1l —mq + THQ)] =0 mod pn—r_

1 14+ 22
(k1+All)+i1(§)< + >—Am1£

pn

(6)

1 (142 _
(k2+)\l2)+22(§)< e >—)\m2 mod p"~".

This suggests the following definition.
Definition 3.2. A good permutation 7 = (7 (0),7(1),...,7(p" — 1)) of length p”
is a permutation of the integers (0,1,...,p"™ — 1) such that for all i; # iy with
0 <iy,is < p", if i3 —is = p"u where (p,u) = 1, then 7(i1) — 7(i2) Z0 mod p"~".
We use the following simple fact.
Fact 1. There is a good permutation of length p™.

Proof. If n =1, let 7 = (0,1,2,...,p—1). For n > 1, suppose i = by + b1p+ bop* +
v b1 where 0 < b; < p. Set m(i) = bop™ ! 4+ byp” "2 + -+ + b,_y. This
easily works. O
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With the above arguments as motivation, we are now in a position to state
precisely and prove two lemmas which complete the analysis for the special case
d = p" we are considering.

Lemma 3.3. Let p be a prime and n > 1. There are integer functions k, | defined

on Ry~ such that for all distinct (% ]—n) (p—i L2y € Ryn we have p(Zl,ZQ) ¢ 7,

where z; = (;ln +k1,pn +11), 2 = (—2 + ko ]_n +12), and ky = k(% 25), I =
Ji

l(;—i, p—n), and similarly for ks, ls.

n)p

Proof. If p = 2 or p = 3 mod 4, the result is trivial (that is, we may define the
k, I functions arbitrarily) as shown above. So assume p =1 mod 4, and let A, p
be the two square roots of —1 mod p™. Let 7 = (w(0),...,7(p"™ — 1)) be a good
permutation of length p™.

Suppose now 0 < 4,7 < p”, and we define the k, [ values for the corresponding
point (—n,pin). Let 7 be such that 7+ A = j mod p”, and 0 < 7 < p™. Let
7= 7+ Ai. Let m be the integer such that 7 = j+ p”m. Consider then the equation

14+ 22
pn

(7) k+ M =7(i) + Am 2( )z mod p.

Similarly, let j be such that j+ pi = j mod p”, and let 7 = J+ pi. Let m’ be
such that 7 = j + m/p". Consider also the equation
11+ u?
(8) k+ul_7r()+um—§< p
Equations 7 and 8 form a non-singular system mod p”, and we let (k,l) be a
solution (to be specific, say the unique solution with 0 < k,[ < p™). This completes
the definition of the k, [ functions on R,»

Suppose now that (;—;, g—;), and (’—i, ;—2) are given with 0 < i1,i2,71,J2 < p".
Let (ki,01) and (k2,l2) be the corresponding values as defined above. Let z; =
(;—; + k1, Z—; +11) and similarly for z5. We must show that p(z1,22)% ¢ Z.

Again let a = i; — iy and b = j; — j. From equation 4, we must show that

(a® +b%) + 2p™[a(kr — k2) + b(l; —12)] #0 mod p*".

As we have already noted, this inequality is immediate unless b = Aa mod p"™ or
b = pa mod p™. Assume b = Aa mod p", the other case being similar. Let j
be such that 7+ Aiy = 71 mod p™. Let 71 = j+ \i1, and let m; be such that
J1 = J1+p"mq. Since b = Aa mod p", we also have that 7+ Aio = jo» mod p”. Let
J2 = j+ Aia, and let mo be such that 7o = jo + p™ma. Note that 71 — 72 = A(iy —i2).
If we let r < n be such that i; —is = p"u where (p,u) = 1, then as we showed
above, this equation reduces to

(9)

1 (14 X2 1 (14 X2 -
(k1+>\ll)+21(§)(< pn )—)\ml gé (k2+>\l2)+22(§)(< pn >—/\m2 modp .
Substituting in the definitions of k1, I1, ka2, I (c.f. equation 7; note that this equation
holds mod p", and so mod p"~") this becomes 7(i1) Z w(i2) mod p™~". This,
however, follows immediately from the definition of r and the fact that = is good. O

) 7 mod p".

The following remark on the proof just given will be used in the following argu-
ments.
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Remark 3.4. Although we used a single permutation 7 in the proof of lemma 3.3, a
somewhat more general construction could have been used. Namely, suppose that
for each of the two square roots A, p of —1 mod p™, and for each j with 0 < 7 < p™,
good permutations 7r§‘ and 7r;f of length p™ are given. Then in defining k(i, j), I(i, §),
we could have used the analogs to equations 7, 8 where in equation 7 for 7 (i) we

use 7rj3‘(i), and likewise for equation 8 (here 7 is as in the definition of m). This

follows since in the non-trivial case in the proof of lemma 3.3, the points (;—;, i%),

(;—i, ;—i) have the same value of j, and thus the analogs of equation 7 for these two
points are referring to the same permutation (and likewise for equation 8).
The following lemma gives a sort of converse to the argument used in the proof

of lemma 3.3, and of remark 3.4.

Lemma 3.5. Suppose to all 0 < ¢,j < p™ we have assigned a pair of integers
(k, 1) = (k(4,7),1(i,7)) such that for any pair of distinct points of the form z; =
(1% +k(i1,j1), ;-i +l(’i1,j1)), Z2 = (;)—i +k‘(’i2,j2), IJ)—i +l(i2,j2)) we have p(21,22)2 ¢
Z. For each of the two square roots A\, p of —1 mod p™, for each 0 < j < p", and
each 0 < i < p", define 0 < W;‘(’L) < p"™ to be the integer such that

) . . 1/1+ 2%\ . "
wg‘(z) = (k(z,])+)\l(z,]))—/\m+§ < e > i mod p".
Here 0 < j < p" is the integer such that 7+ A = j mod p”, and also j+ \i =

j+mp™. Then, 7r§‘ is a good permutation of p".

Proof. Fix one of the roots, say A, and a value of j. Let iy, i be distinct integers
with 0 < dp,i3 < p". Let ji, j2 be as in the statement of the lemma for iy, iy
respectively. Let zq = (;_i + k(i1, 1), &% + (i1, 1)), and 2, = (;_i + k(ia, j2), &2 +
[(i2,j2)). Note that if a = iy —i» and b = j; — ja, then we are in the case where
b= Xa mod p". Let 71 = j+ \i1, and Jo = j+ Mi2. Since p(z,y)? ¢ Z, equation 3
becomes:

(i1 —i2)® + (i1 = i2) — p"(m1 — m2))*+
2pn[(21 — 22)(]{?1 - k2) + (A(Zl - 22) - p”(m1 - mz))(ll - 12)] :7é 0 mod p2n-
Dividing through by p”, this is equivalent to:

(iy — i2)? (1 ;nA ) —2X\(i1 — i2)(m1 — ma2)+
2[(11 — 'LQ)(kl — k2) + )\(’Ll — ’LQ)(ll — l2)] f 0 mod pn.

Suppose now i; — iz = p"u where r < n and (p,u) = 1. Dividing through by
2(i1 — i2) we have:

14N _r

(i1 — ’L2)§ ( — ) — Amy —ms) + [(kl — ko) + A(lh — l2)] Z0 mod p"".
Using the definitions of 7r§‘(i1) and 7!';\(2-2), this becomes 7r§‘(i1) Z 7{?(2’2) mod p" ",
and we are done. O

Suppose now the k, [ functions have been defined at all points of R,» and satisfy
(%)pn . We now show how to extend these functions to R,n+1 satisfying (x),»+1. We
again assume p = 1 mod 4, as otherwise the extension is arbitrary. Again let A\, u
denote the square roots of —1 mod p™. Let X', 1’ denote the square roots of —1 mod
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p”‘H, chosen so that A = X' mod p", and u = ¢’ mod p”. For each 0 < 7 < p?,
let 7r 7r be the good permutations of length p™ from lemma 3.5.

For each 0 < j < p"*! we define good permutations UJ)‘ , U; of length pnt!. If
p does not divide 7, let these be arbltrary good permutations of length p”+'. It
remains to define the permutations ¢ 27 for 0< < p™

First, for any 0 < ¢ < p", we define apj (pz). This is defined as in the statement

of lemma 3.5, using p"*!. To be specific, let 0 < U;‘Ji(pi) < p™*! be such that

N\ — i [ 1 1+ /\I2 . n+1
(10) o, (pi) = (k+ X)) — X'm' + (5) g pi mod p
where k, [ are the values of the functions at the point (-2~ n“ , pnﬂ) pj = pj+ XN (pi)

mod p"t, and pj+ N (pi) = pj + p"Tim/. Since we also have j = 7+ Ai mod p",
we also have

11422
ﬂ;(i)z(k+>\l)—)\m+(§)< ';HA )z mod p",

where these are the same k, [ values, and 7+ Xi = j + p"m. Say X' = X + ep™.
Then pj +p"im' = pj+ N (pi) = p(j + Xi + ep™) = pj +p"Lm + ep™tti. Hence,
m’ = m + ei. Thus we have

o 1 (1A 4 2eNp .
O';‘J-(pl) =((k+A)—Am+ei)+ (5) <Tp> pi mod p
1. /1 2
(11) E(k+>\l)—)\m+(§)< ;f )z mod p"

= 7r§‘(z) mod p".

We say a map o from the integers i, 0 < i < p"*!, which are divisible by p to the
integers mod p"t! is a partial good permutation if whenever 0 < i1,iy < p™*! are
distinct integers with i; —i» = p"u and (p,u) = 1, then o(i;) # o(is) mod p"*ti=".

A

Since 73 is a good permutation of length p”, it follows now easily from the above

equation that 0’ ; 1s a partial good permutation.

Lemma 3.6. If ¢ is a partial good permutation on p™t', then there is a good

permutation of length p" ™! extending o.

Proof. For i of the form i = iy + pm where 0 < iy < p, extend ¢ by defining

o(i) = a(pm) + igp™. This easily works. O
Extend now each 03" to a good permutation of length p™*!. Likewise we define

the good permutations 0’5 Using these good permutations, remark 3.4 shows that
we may define k, [ functions on R,»+1 which satisfy (*),n+1. Furthermore, for points

of the form ( ﬂl , pfﬂrl) we may take the k, [ values already defined on Ry, since

by definition of the (partial) permutations a)‘j, apj, these values will be a solution
to the two equations for k£ + Al and k + p'l (the equation defining k + NI, for
example, is just equation 10 rearranged). Thus, we have extended k, | functions
satisfying (x),» to functions defined on all of R,.+1 and satisfying (%),n+1. This

completes the arguments for the special case d = p”.
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3.2. The General Case. We now give the general proof of lemma A, and note
at the end how the proof also shows lemma A’. The following lemma, whose proof
occupies the rest of this section, embodies what must be shown.

Lemma 3.7. Let d > 1, and suppose functions k, | have been defined on Ry and
satisfy (%)q. Let p be a prime, and d' = pd. Then these functions may be extended
to Rq so as to satisfy (x)ar.

The proof will use the following definition and lemma, which generalize defini-
tion 3.2 and lemma 3.6.

Definition 3.8. Let d > 1 and d = p{*---p% be its prime decomposition. We
say a permutation m = (7(0),...,7w(d — 1)) of the set (0,1,...,d — 1) is a d-good
permutation if whenever 0 < i1,iy < d are distinct and iy —ip = pgl ...pP»v where
(v,d) = 1, then (i) Z m(i) mod pI'™ ") ... p1* ) Here, p(m) is defined to
be m if m > 0, and 0 otherwise.

Note that the goodness condition is equivalent to saying that if i, —i» = uv where
u is a product of powers of primes dividing d and (v,d) = 1, then n(iy) #Z 7(i2)
mod %, where in writing % we adopt the convention that if any prime divides u
to a higher power that d, then that prime is removed completely from both the
numerator and denominator. We adopt also this convention for the proof of the
following lemma.

Suppose d > 1, p is a prime, and d' = pd. Suppose 0 < ig < p, and by the
distinguished class we mean those 0 < ¢ < d’ with i = ig mod p. If (i) is defined
on the distinguished class and satisfies 7(i1) Z 7(i2) mod % whenever i; # iy are
in the distinguished class (recall here our convention above) and i; —is = uv where
(v,d') =1, then we say 7 is partially d’-good.

The next lemma is a general extension lemma which allows us to extend partially
d'-good permutations to good permutations.

Lemma 3.9. Let d > 1, p be a prime, and d' = pd. Let 0 < iy < p represent
a distinguished class mod p. Let m be defined on the distinguished class and be
partially d'-good. Let u be defined by d' = up™, where (u,p) = 1. Let s: d' — d' be
a function satisfying the following:

(1) If iy = i> mod p, then s(i1) = s(i2).

(2) s(i) is divisible by u for all i.

(8) For i in the distinguished class, s(i) = 0.

(4) For all i, i+ s(i) = iq mod p.

Define o by o(i) = (i + s(i) mod d') + iui)d mod d'. Then o extends © and
is d'-good.

Proof. From (3) it is clear that o extends m. To show goodness, suppose 0 <
i1,i2 < d'. Let if =41 + s(i;) mod d', i} =iz + s(iz) mod d'. Suppose first that
i1 = i2 mod p. Then by (1), i} — i, =iy —i» mod d'. Also, from the definition
of o, 0(i1) —o(iz) =7n(i}) — 7(iy) mod d'. Since 7 is partially d'-good, the result
follows.

Suppose now i; — is is not divisible by p. Say, i1 — i2 = uiv where (v,d') =1
and (u1,p) = 1. Consider first the case where i} = 4}, with i}, i, as above.
Then o(i1) — o(i2) = Wd Since s(i1) — s(iz) Z 0 mod p in this case,
we have o(i1) # o(iz) mod p” (note: d = up™~!). Since p" divides 3—; (using
our conventions), the result follows. Suppose finally that i} # i5. From (2) it
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follows that u1|(i] — i). Also, p|(i} — i}). So by partial goodness, o(i}) # o(i})

mod 4- = L. Since o(iy) = o(i}) mod d, and likewise for iy, it follows that
puy u1 , ,
o(i1) # o(iz) mod 1%1, and hence are not equivalent mod 3—1. O

Let us say that a prime is trivial if p = 2 or p = 3 mod 4. Otherwise, we say
p is non-trivial. The next lemma shows that we need only consider the non-trivial
primes.

Lemma 3.10. If lemma 3.7 holds for all d which are divisible by only non-trivial
primes, then the lemma holds for all d.

Proof. Let d = pi* ---pirqi* -+ ¢S, where the p; are non-trivial, and the g; are
trivial. We assume the k, | functions are defined on Ry and satisfy (x)g. Let
d" = pd, and assume first that p is non-trivial. Let P = p{*---p», P’ = pP,
and Q = ¢;'---q». Let G be the subgroup of Q/Z x Q/Z of elements of the
form (5 + Z,%l + Z), and likewise define G using d'. Let H be the subgroup of
G consisting of elements of the form (5 + Z, % + Z), and likewise define H' using
P'. Let K be the subgroup of elements of the form (é + Z,% + Z). Note that
the given k, [ functions may be viewed as selector functions on the group G, that
is functions on G with (k(r + Z,s + Z),l(r + Z,s + Z)) € (r + Z,s + Z). We
extend these selector functions to the group G'. The cosets of H' in G' are exactly
enumerated as H' + (r + Z,s + Z), where r + Z,s + Z € K/Z. Consider such a
coset of H' in G', say C' = H' + (r + Z,s + Z). The k, [ functions are already
defined on the corresponding coset C = H + (r + Z,s+ Z) of H. Since C,C'
are translations of H, H', we may by assumption extend the k, | functions from
C to functions k', I’ on C" so as to satisfy (%) on C’ (that is, for any distinct
cosets ¢ = (ry + Z,s1+Z),y = (ra + Z,s2 +7Z) € C', p(z1,22)* ¢ Z, where
z1 = (k' (x),l'(x)), 22 = (K'(y),1'(y))). Doing this for each coset of H' in G' defines
the &', I’ functions on G'.

To see this works, let z = (r1 +Z,s1+2Z),y = (r2+7Z, so+7Z) be distinct elements
of G'. Let z1 = (K'(x),l'(z)), 22 = (K'(y),1'(y)), and we show that p(z1,22)* ¢ Z.
We may assume that z, y are in distinct cosets of H'. Thus (a,b) =2z — 22 ¢ H'.
The result now follows from the fact that if a,b € Q and a® + b> € Z, then a,b
(when reduced) have denominators divisible only by non-trivial primes.

The case where p is trivial is similar but easier. Briefly, view G’ now as a union
of cosets of H, with H as above. For those cosets which are subsets of G, the
k, I functions are already defined, and for the other cosets they are defined easily
using the fact that these cosets are translations of H (we do not use in this case
our assumption that the result holds for d divisible by only non-trivial primes). As
above, the resulting k', I’ functions satisfy (x)g . d

Returning to the proof of lemma 3.7, by lemma 3.10 be may assume that d and
d' are divisible by only non-trivial primes. We make this standing assumption for
the remainder of the proof of lemma 3.7.

Let d = pi*---p%, where all of the p; are non-trivial primes. We prove two
lemmas which characterize the existence of the functions k, I on Ry satisfying (¥)q
in terms of the existence of a family of permutations satisfying certain properties.

Suppose k, [ functions are given on Ry. Since all of the p; are non-trivial primes,
there are exactly 2" classes A mod d such that A> = —1 mod d. We refer to such
a A as a d-root. For each d-root A\, each 0 < j < d, and each 0 < i < d, define
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(12) 7r§‘(z) =(k+Al)—2Am + % (1 tlA ) (1) mod d,

where (k,l) are the values associated to (g, f—;), where 0 < j < d, and j, m are
defined by

j=7+ X —md.

We introduce two conditions on the 7rJ3‘.

(d-goodness) For each 0 < j < d, and each d-root A, 7rJ3‘ is a d-good permutation.

(d-consistency) Suppose 0 < j1,j2 < d and A1, A2 are both d-roots. Suppose p®
is one of the prime factors pi*,...,p%* and Ay = Xy mod p®. Then

(13) AN (i) — 2 (i) = —@ mod p°

for any 0 <4 < d such that
(14) Z(Al — )\2) = _(jl —jg) mod d
(in equation 13, A could be either A; or As; note that this expression makes sense

since p®|(J1 — J2))-

Note that the values of ¢ satisfying equation 14 are precisely those 0 < i < d
such that if we define 0 < j1, j» < d (and mq,ms) by
J1 =7 + At —mad
J2 = J2 + A2t — mad,
then j; = 7.
Lemma 3.11. Let d = p' ---pi~ where each p; is non-trivial. Assume the k, |

functions are defined on Ry and satisfy (x)q4, and the 7TJ3‘ are defined by equation 12.
Then the 7rj3‘ satisfy the d-goodness and d-consistency conditions.

Proof. Fix 0 < j < d and a d-root A\. We show that 71'; defined by equation 12 is
d-good. Let 0 < 41,15 < d be distinct. Let 0 < 71,72 < d and m1, ms be defined by
Jj1 =7+ Xy —myd
(15) .1 - .1 '

J2 =1 + )\7/2 — de.
Let k1, I; be the values associated to the point w; = (%, %), and ks, > the values
associated to wy = (%, %) If 2y = wy + (k1,01) and zo = we + (ka2,[2), then since
p(z1,22)% ¢ 7 we have
(il — i2)2 + (]1 — j2)2 + 2d[(21 — Z2)(k71 — k2) + (]1 — ]2)(l1 — lz)] gé 0 mod d2.
Substituting from equation 15 we have
(’il — 'L‘Q)z(l + )\2) — 2(’L1 — ig)(ml — THQ)dA

(16) S S >
+ 2d[(21 - 22)(]{?1 - k2) + )\(Zl - Z2)(l1 - 12)] gé 0 mod d”.
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Since d divides 1+ A2, we may divide through by d to get
. 14\ o
(’Ll — ’L2)2 ( ) — 2(11 — 12)(m1 — m2))\

+ 2[(11 — ’LQ)(k‘l — k2) + )\(’Ll — ’LQ)(ll — l2)] 5_/-' 0 mod d.
Say i) — iy = p’* -+ - pbru, where (u,d) = 1. Dividing through by 2(i; —i») we have

(17)

A D ar—b o
(h—m)( o )—(ml—mg)A+[(k1—k2)+A(ll—12)];7éo mod pj(* ) . pnlan—bn)

where we recall n(r) = rifr > 0, and n(r) = 0for r < 0. Since py(al_bl) - pian=bn)

divides d, we have

7 2d
1+ A2
2d
(a1—b1) _pz(anfbn)‘

1422 _
7r3‘(i1)5(k1+/\l1)—/\m1+< ha )h mod pJ(* ") ... prlen=be)

(18) $_é (k2 + Alz) - /\m2 —+ < ) Z'2 mOd p717(a1—b1) . -pz(an_b")

= 7r§‘(i2) mod p]
Thus, 72 is d-good.

To verify d-consistency, suppose A; and Ay are both d-roots, and Ay = A»
mod p®, where p® is one of the prime powers occurring in d. Let 0 < 71,72 < d, and
0 <i < d be such that i(A; — X3) = —(j1 — J2) mod d. If we let 0 < j1,j2 < d and
my, mo be defined by

j1 = j1 + )\1’L - mld
J2 = J2 + Aot — mad,
then j; = j», which we now denote by j. Say A2 = A\ + ep®. Thus,
n—J= —’i()\l — )\2) + d(m1 — THQ) = iep® + d(TH1 — m2).
Let k, | be the values associated to the point (é, %) From the definition of the 7TJ3‘
we have:

1 /14 X2
k+ X\ Ewg‘ll(i)+)\1m1—§< tl 1)2’ mod p®
1 /14 X2
k+A215w;;(i)+A2m2—§< tl?>i mod p®
1 /14 X2
E7r§‘22(i)+)\1m2—§< tlz>z mod p°
— oy ept 1= e L1+ A +ep?)? .
:7r522(z)+)\1m1+/\1< T4 >—§<f i mod p®
1/1+ X M — 7
E7r§‘2(z)+)\1m1—§< _21)2'—% mod p*

Note that p® divides j; — J2, so the last two equations make sense. Thus, we
have: MGt - 72)
A1 s A2 (s 1UJ1 — 72
w2 (0) — () = ~ AR o e

This verifies d-consistency. O
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We now establish a converse to lemma 3.11. Suppose that for each d-root A, and
each 0 < j < d, a d-good permutation 71']3‘ is given, and these permutations satisfy
the d consistency condition. We show how to define the k, [ functions on R4 so as
to satisfy (%)4. Fix a point (Cil, %l), where 0 < i,j < d, and we define the values of
k, I associated to that point. Let p® be one of the prime powers occurring in d. For
any d-root A, Ap,e = A mod p® is one of the two square roots of —1 mod p®. Fix

for the moment such a A and Ap«. Define 0 < j < d and m by
Jj=7+ X —md.

Consider the following mod p® equation

1/1 2
(19) k+ApalEﬂ;(i)+Apam—§< tlA >z mod p®.

We claim that the right-hand side of this equation depends only on A,«. For let
A1 = A, and suppose A, is also a d-root with As = A\; mod p®. Say, Ay = A1 + ep®.
Let 71, my be the values using A1, and J2, mo the values using A,. Since

J=n+Ai—mid=Js+ Aai —mad,
we have i(A; — A2) = — (71 — j2) mod d. Therefore, by consistency we have
(G — 3
M (i) — w2 (i) = —% mod p°.
Thus
] 14+ A2\ .
wg‘ll(z) + Apamy — < 5 1) i
J: Ji— e .>\1—/\2)

+ Apa (Mo + 7 +1 7

_ . oep” [(1+ (A —ep”)?
= 71';-\22 (Z) —+ Apamz — ZAp“? — (2—d
1+ 23

2d

This verifies the claim. Thus, for each of the two square roots Ape, —A,» of —1
mod p® we have unambiguous values, say vy and vs, for the right-hand sides of
equation 19. For each prime factor p®, and each of the two roots £A,« mod p*, we
solve the system

)i mod p®

E7r§‘22(i)+)\pam2— ( )z mod p°.

k+ Xpal =v1 mod p°
k—Xpal =vs mod p°

From the Chinese remainder theorem, we may choose (k,l) so that all of these
systems for the various p® are simultaneously satisfied. This completes the definition
of the k&, [ functions.

To verify (x)4, let 0 < i1, j1,i2,j2 < d, and let w; = (%, %), we = (%2, %) let
z1 = w1 + (k1,11), 22 = wa + (ko, l2), where kq, [; are the values as defined above for
w1, and similarly for ks, lz. We must show p(z1, 22)> ¢ Z. Toward a contradiction,

assume p(z1,22)? € Z, which becomes as usual
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(21) (i1 —i2)> + (j1 — j2)? + 2d[(i1 —i2) (k1 — k) + (j1 — j2)(lh —12)] =0 mod d>.

Consider for the moment one of the prime powers p® of d such that if p° is the
exact power of p dividing i; — 42, then e < a (such a factor must clearly exist as
iy —i2] < d). Write i3 —is = p®u where (u,p) = 1. Let f be the exact power of p
dividing j; — j2, and write j; — jo» = p/v, where (v,p) = 1. Since e < a, it follows
easily from equation 21 that e = f. Dividing through by p?¢ shows that u?+v? = 0
mod p®~¢. Thus, there is a square root A of —1 mod p®~¢ such that v = Au
mod p® ¢. There is a square root Ay« of —1 mod p® such that A = A mod p®e.
Thus, v = Apau mod p® ¢ as well. Hence j; — j2 = A\pa(iy —i2) mod p®.

If p® is a prime power occurring in d for which e > a, equation 21 implies that
f > a as well (using the notation above). Thus, for any square root A\p» of —1 mod
p® the equation j1 — jo = Apa (i1 —i2) mod p® holds trivially.

Let now A be a d-root such that for any prime power p® occurring in d, A = Ap»
mod p®, with Ap« as in the cases above. It follows that j; — jo = A(iy —i2) mod d.

Let 0 < 7 < d and m; be defined by

(22) jl - j+ /\il — mld.
Since j; — j2 = A(i1 — i2) mod d, it follows that there is an mqy such that
(23) jo = J+ Aiz — mad.

From the definitions of ki, I; (in which we use the above values of 7, A; this is
permissible by d-consistency) we have

14+ A2

(24) by + My = 7 (1) + Amy — ( ;Ld ) it mod d,

since this equation holds mod each prime power p;* occurring in d. Likewise,
14+ A2

(25) ko + Ao = F;‘(ZQ) + Ama — ( _;_d ) i3 mod d.

Substituting equations 22, 23 into equation 21 and dividing through by 2d we obtain
(26)

(il—i2)2 <1 —;_dA )—)\(il—iQ)(ml—mg)-l-[(il—ig)(kl—kg)-f-)\(il—ig)(ll—l2)] =0 modd.

Dividing through by i; — i2 gives
(27)

NSRS a1— -
(i1—i2) < 5 >—/\(ml—m2)+[(k1—k2)+/\(l1—l2)] =0 mod p?( 17b1) oo pl(an=bn)

where i; — iy = pgl ---pbry and (u,d) = 1. Substituting equations 24 and 25 now
gives w2 (i1) — 73 (i2) = 0 mod pter =t pnen=ba) This however, contradicts
the assumed d-goodness of the 7r§‘.

Summarizing, we have shown the following converse to lemma 3.11.

Lemma 3.12. Let d = p$* - - p% be a product of non-trivial primes. Assume that
for each 0 < j < d and each d-root A a d-good permutation 7rJ3‘ is given, and these
permutations satisfy the d-consistency condition. Then we may associate to each
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(é, %), 0 <i,j < d, integer values k, | such that for all d-roots A, and all 0 < j < d
satisfying 7 =7+ X mod d (say j = 7+ i —md), we have

1+ )2
— A/ .
k+ M =75(i) + Am — ( 57 )z mod d
Furthermore, these k, | functions satisfy (x)4.

To unify notation, let us write now d = p{*---pe», and d' = p* T'p3> ... pon

(thus we do not assume these primes are in increasing order, and we allow a; = 0).
The case a; = 0 differs in only trivial notational ways from the case a; > 1, so we
assume below all of the a; are positive. Recall we are assuming the k, [ functions
have been defined on Ry and satisfy (x)g4, and we must extend them to functions
k', 1" on Ry satisfying (x)g .

For each 0 < j < d, and each d-root A, let 7rJ3‘ be as in lemma 3.11 using the given
k, [ functions. Thus, each 71']3‘ is a d-good permutation, and this family satisfies the
d-consistency condition.

For each j with 0 < p;j < d', each d'-root X' (that is, M2 = —1 mod d'), and
each 7 with 0 < pyi < d’, define

. 1[(1+A? .
(28) U;‘lj(plz) = (k? + /\Il) - Xm + 5 (T) (plz) mod d’

where (k, 1) are the values already assigned to the pair (%, %) = (pdl,i, ”dl,j), and j,m
are defined by

(29) pij =pij+ XN (pii) —md'.

This makes sense since the right-hand side is divisible by p;. Thus, each a;‘i ; 1s
a partial function in that it is only defined on the 0 < i < d' which are divisible
by p1. We will momentarily extend these to fully d’-good permutations satisfying
the d’-consistency condition, but first we catalog the properties satisfied by these
partial functions.

First note that if A = X' mod d, then o) ;(p1i) = 72 (i) mod d. To see this, let
N =MX+ed. Thus, j =7+ Ni—md=7+ i — (m — ei)d. Hence, if k, | are the

values associated to the pair (4, %) then

, 114X
A N )
op3(p1i) = (k+X1) = XN'm + 3 (T) (p17) mod d

14+ \? :
5 (T) (p1i) mod d

E(Ic-%)\l)—)\m-%1
(30) 2
E(k+>\l)—/\(m—ei)—ie/\+%<#>i mod d

2
E(k:+)\l)—/\(m—ei)+%<ltl>\ )z mod d

= 7r§‘(i) mod d.

We introduce now the following “partial” goodness and consistency conditions

AI
for the On 5
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(partial d’—goodness) Ifo<pj< dl, 0 < pii1,pris < d and (plil - p1i2) =
pit - pbru, where (v,d') = 1, then Ug‘lj(plil) 2 O'I))‘lj(plig) mod p]

(partial d'-consistency) If 0 < p171,p1j2 < d', A}, A5 are d'-roots with \] = A}

mod p® where p® is one of the prime factors p‘““, ..., pi of d', then for any

0 <pri <d with (p13)(A] — Ay) = —(p1J1 — p1j2) mod d’ we have

oM X o N —piJe)
P1J1 (pll) p1252 (pll) - _T mod pa.

Lemma 3.13. The partial functions 0 5 satisfy the d'-partial goodness and d'-
partial consistency conditions.

Proof. The proof is essentially identical to that of lemma 3.11. For example, to
verify partial d'-consistency, let j, m}, m} be defined by

p1j =pij + Ay (pri) —mid'
= pija + Ay (p1i) — myd'

Let (k,1) be the values associated to (%,i, p;,j), and let A, = A| 4+ ep®. Then we
have:

14+ X2

’

02‘1151 (p1i) = (k+ X{1) — Ximq + = 5 (

)plz mod p®

= (k4 Xyl) — My — 2P =) + (2 = X5) 1)
+1 <1+()\’2 — ep?)?

5 7 > (p1i) mod p*

11+X° Ny (piji — pij
= (k4 Ayl — Nymo + 3 ( +d’ : ) (p1i) — —2(p1]1d, p1j2) mod p®
, N (o1 7o —
= I))\uz (;D1l) 2(p1.71d, p1]2) od pa
g

We now define the permutations a~ "(i) for all 0 < j < d', all d'-roots X, and all

0 <i < d', and which extend the partlal permutations so far defined (the aplj(plz)).
Since we do not need to refer to the d-roots anymore, we will henceforth use A to
refer to the d' roots. Also, we refer to the 7,7, 7 which are divisible by p; as “old,”
and the other ¢, j,7 as “new.” Thus, ajf‘(i) is currently defined for the old j and 4,
and we wish to extend to the new values.

We introduce two families of functions, rj and sj- from d' to d’. These “shift”
functions will tell us how to extend certain partially defined permutations to fully
good permutations. These functions are defined for each d’ root A. The r functions
are defined for old 7, and the s functions for new 7. Actually, for the construction
below it suffices (though it is not necessary) to take rjf‘ functions which are inde-
pendent of 7 and A, that is, we have a single function r : d' — d'. In general, the
properties we desire of the r and s functions are described in the following lemma.

(a1+1—b1) .. ‘pz(anf

bn)
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Definition 3.14. Let A be a root mod d', and 0 < j < d'. By the A, j-distinguished
class we mean the equivalence class mod p; of 0 < i < d' satisfying i(A — X) = —j
mod p;, where X is a root not equivalent to A mod p; (so, A = —A mod p).

Note that for a given j, there are really only two distinguished classes, one for
each of the two possible values of a root mod p;, and each of these classes is the
negative of the other, mod p;.

Lemma 3.15. There are functions r, s§‘ :d' — d' satisfying the following:

(1) Foreach 0 <i<d,i+r(i) is divisible by p1. Further, if p1|i, then r(i) = 0.
(2) For each root A\, new j, and 0 <i < d', i+ s%‘(z) is in the A, j-distinguished

class. Further, if i is in the X, j- distinguished class, then s%‘(z) =0.
(i), s%‘(z) only depend on the classes of 7 and i mod p; .

s%‘(z) depends only on the class of A mod p;.

—~
- W
-

—
ot
~~

r(i), s%‘(z) are divisible by u (recall u = p3? - - - pi ).

For the remaining statements we fix some notation. Let 0 < 71,72 < d',
with 71, 72 new. Let A1, Ay be d' roots with A\ = —Xy mod p;. Let 0 <i <
d'. Suppose i(A — A2) = —(71 — J2) mod p;.

(6) s;‘ll (i) +r(i + s;‘ll (1)) = sg‘; (0)+r(i+ sg‘; (7)) mod d'.

(7) 820 (i) = r(i + s32(i)).

With the notation as fixed in the statement of the lemma, if we let s; abbreviate
sjf‘l1 (@), ro =r(i + sjf‘l1 (1)), s2 = s;‘; (1), and 7y = r(i + sg‘; (1)), then the last two
statements become

(6) s1 +710=82+71
(7) s1 =11.
Of course, we also have in this case that s; = rs.

Proof. We give an algorithm for constructing the r, sJ%‘ functions. First, let r(i) =
(—% mod p;)u, where u = p§? - - - pr. Clearly (1) is satisfied.

Suppose that A is a root and 7 is new. Let 0 < iy < p; represent the A,j-
distinguished class. Let s?(z) be the unique value in {r(0),...,r(p1 — 1)} such that
i+ s%‘(z) =i4 mod p;.

This completes the definition of the r and s; functions. Property (2) is clear,
and (3) is also since the A, -distinguished class depends on the class of 7 mod p;.
Likewise, this class depends only the value of A mod p;, and so (4) follows. (5) is
immediate from the definitions.

To see (6), fix ’i, jl; jQ, )\1, )\2 with )\1 = —)\2 mod P1 and ’L()\l —)\2) = _(jl —jg)
mod p;. Let s1, ra, s2, 71 be as above. Let 4y = ¢ +s; mod d', so 71 is in the
A1, J1-distinguished class. Likewise, let i = ¢ + s mod d’, which is in the Ay, jo-
distinguished class. Since i; is in the distinguished class we have i1 (A; — \2) = —J1
mod p1, and likewise we have iz(A2 — A1) = —J2. Subtracting these equations gives

(’il + ’L2)(>\1 — )\2) = _(jl — jg) = ’L()\l — )\2) mod p1-

Thus, i = i1 + i mod p;. Also, by definition of the r function we have ry = —i;
mod p;, and r; = —iy mod p;. Thus, ¢ + 72 = ¢ — 43 = is mod p;. From the
definition of sy it now follows that sy = r». Similarly, r; = —i» mod p; and so
i+7r =i—is =11 mod p; from which it follows that s; = ry. This verifies (7) as
well. O
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2(i) is already
defined for the old i. We extend the partial function ag‘ to all values of i using

lemma 3.9 and the r function. Thus,

We now define the ajf‘. First assume that j is old. In this case, o

o3 (i) = o (i +r(i) modd')+ (@)d mod d'.
U
It is immediate from lemma 3.9 that o3 is d’-good.

Suppose now j is new. Let iy represent the congruence class mod p; of the
distinguished class. We first define Ujf‘(i) for i =i4 mod pq, that is, in the distin-
guished class. Fix such an i, and we define ajf‘(i) by defining its congruence class
mod p‘l“H, ..., p% . Consider one of these prime powers p®, and suppose first that
p # p1- Let Az be a root with Ay =X mod p® and A2 = —A mod p;. Define j» by
i(A—A2) = —(7—J2) mod d'. Note that since i is in the distinguished class, p; |72,
that is, j» is old. Define then

(G5
20) =22 (0) - 2= o e,
We check that this is well-defined, that is, it does not depend on the choice of \s.
Suppose A3 is another root with A3 = A mod p®* and A3 = —\ mod p;, so A3 = )Xo
mod p{* T as well. Let j3 be such that i(A — \3) = —(j — 73) mod d’. Since

Z(A—A2) = —(j—jz) and Z()\—A3) = —(j—jg) mod dl,
it follows that
’L()\Q — )\3) = _(jQ — j3) mod dl.

Let i’ =i+ (i) mod d'. Then we also have i'(A2 — A3) = —(j2 — 73) mod d’ since
(1 —1") (A2 — A3) is divisible by d' (recall r(7) is divisible by u). Since @', 2, j3 are
old, by partial d'-consistency we therefore have

. ) A(J2 — J: a
O';‘; (i") — 0;33 (") —7(]260 Js) mod p®.

: A2/ A3/ — _Aa/s A3 /- .

Since 037 (i) — 037 (i) = 057 (i) — 037 (i') mod d', it follows that
Ay — 7

o2 (i) - o2 (i) = - 22— B) ~ B o pe.

Consequently, U;\; (i) — @ = 0;33 (i) — @ mod p®, and we are done.
For ¢ still in the A, j-distinguished class, we now define ag‘(i) mod p*tt. Let
7 be a fixed good permutation of length pi*. For ¢ in the distinguished class let

R PO ag+1
il = i—(d r;lod p1)- Define then Uje‘(l) = (i) — AF=(F m;d ') ‘1“+1.
This defines a?‘(i) for ¢ in the distinguished class. We extend this to a full

permutation using the s function. Thus,

mod p

53(0)

o} (i) = 03 (i + s}(i) mod d') + ( "

J

)d mod d'.

This completes the definition of the a?‘ functions. It remains to verify that they
satisfy the goodness and consistency conditions.

Lemma 3.16. The 0’;‘ satisfy the d'-goodness condition.
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Proof. We have already observed that this is the case for old 7, so assume j is
new. It is enough to check that ajf‘ restricted to the distinguished class is a par-
tially good function. To see this, suppose iy, ip are in the distinguished class
(in particular, i1 = i3 mod p;). Let iy — iy = pgl ...pbv where (v,d') = 1.
Suppose first that by < a; + 1. Let i}, i}, correspond to i, i2 as in the defini-

. A a1+1 . o (i1—i2) i il
tion of o5 mod pi*™". So, i} —i5 = . By goodness of m, m(i}) # m(i5)
a1+1—by

“0ml) — plat b and so 03 (i1) # 03 (i) mod pf , and thus also

inequivalent mod p?(aﬁl_bl) o pplan=be)

Assume next that b; > a; + 1. We must show that U;‘(il) = ajf‘(ig) mod w =

plte2=b2) @ =be) et A, be the root with Ay = —A mod p® ™!, but Ay = A
mod pj* for i > 2. Let j» be defined by i1(A — X\2) = —(j — 72) mod d’. Note
then that we also have iy(A — \2) = —(j— j2) mod d', as p{* ™ divides i; —is. By
the well-definedness noted above, we may use As and j» in the definitions of both

a?‘ (i1) and ag‘(zj) modulo any of the powers p{‘, i > 2. Let p* denote one of these

mod p;’

powers. From the definition of the Ujf‘ we have

A(J = J2)

Ue\(il) = 0-3\2 ('Ll) - d’

mod p?,

and
mod p?,

and thus

o (i1) — 02 (i2) = 032 (i1) — 032 (i2) mod p°.

Since this is true for each of the prime powers p?®, we also have

02 (i1) — 02 (i2) = 022 (i1) — 032 (i) mod u,
where u = p3? - - - p&~. Hence it is enough to show that 0%2 (i1) # 0%2 (i2) mod w.
Since i1 =iy mod py, r7(i1) = r(iz). If if denotes i; + r(i1) mod d' and likewise
for i3, then if — i3 = iy — iy mod d', and also 0% (i1) — 032 (i2) = 032 (i) — 052 (i)
mod d’ from the definition of Ujf‘ for the old 7. So, it is enough to show that

0’;‘22 (i) # 0’;‘22 (13) mod w. This, however follows immediately from the partial
goodness of og‘; and the fact that i} — i3 =4, —i» mod d'.
We have now shown that a?‘ restricted to the distinguished class is partially good.
A

The goodness of the full function o3 now follows immediately from the extension

lemma 3.9. g
Lemma 3.17. The 0’;‘ functions satisfy the d' consistency conditions.

PTOOf. Fix ’i, j1, jQ, )\1, )\2 with ’L()\l — )\2) = _(jl — jQ) mod d'. Let pa be a
prime power with A\; = Ay mod p®. We may assume that j;, j» are not both
old, and without loss of generality that 7; is new. For if 7;, j» are both old, then
as in an argument above we would have i'(A\; — A2) = —(j1 — j2) mod d’' and
ajf‘ll (" — og‘; (" = a%l (i) — og‘; (i) mod d', where i =i+ r(i) mod d'. The result
then follows.

Agsume first that 7, is old. In this case we must have i is new and Ay = —)\;

mod p;. In particular, p # p;. From well-definedness, we may use ja, A2 in the
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definition of ajg‘ll (i) mod p®. However, it is then immediate that

02\1 (Z) _ 0,3\2 (Z) = _A(jl _jZ)

a
J1 J2 d’ mod D,

where X\ denotes either A; or As.
Assume henceforth that j;, jo are both new. Consider first the case p = p;.

Thus, \; = Ay mod p*** and so j; = j» mod p{***. Thus, s} = $22 = g,

1
J1 J2
say. Let ¢/ =i+ s(i) mod d'. Then ¢’ is in the Ay, ji-distinguished class, which is
the same as the Ag, jo-distinguished class. From the definition of the permutation
extension, it follows that
A1y, A2/ — A1/, Ao /-
o3} (i) — 052(i) = 051 (i') — 052 (i") mod d'.
Thus, it suffices to show that ajg‘ll (i") — 0’;‘22 (" = —W mod p*tt. Let i* =
i=(i mod p1) hen
p1 :

AG1— (i mod p{*th)

A1/ — - % 1
o5l (i) = 7w(i") - 7 mod p*
where again A denotes either A\; or As. Likewise
A(Jo = (j2_mod pi**1))
Ao /1N - 1 1
052 (i") = w(i") - 7 mod p&*
and so ajf‘ll (i") — ajf‘; (" = —7>‘(51(1,_52) mod p{*t.
Consider finally the case p # p;. First, we argue that we may assume A; Z Ay
mod p’l“‘H. For assume we can prove consistency in this case, and suppose A\; = Ay

mod p* . Let A3 = A\ = A2 mod p®, but A\3 = —\; = -\ mod p;. Define j3
by ’L()\l — )\3) = _(jl — j3) mod d’. Since l()\l — )\2) = _(jl — jg) mod dl, it also
follows that i(A2 — A3) = —(j2 —j3) mod d'. By assumption we can show that that

0’;‘11 (1) — 0;‘33 (1) = _led’_ Js) mod p°,
and also
0’;‘22 (1) — 0;33 (1) = —Lbdl_ Js) mod p°.
Subtracting, it follows that
0’;‘11 (1) — O';‘; (1) = _led’_ 1) mod p°.
So, we may assume A\; = —Xs mod p;. Consider first the definition of a;‘ll (7).

Let s1 = 53! (i). Let iy =i+ s mod d'. Thus,

- . S1
U;\ll (i) = 033‘11 (i1) + (;)d mod d'.
Recall iy is in the Ay, 7;-distinguished class. In defining g';‘ll (i) mod p*, we may

use the root A2 as A\s = Ay mod p® and Ay = —A; mod p‘l“H. Let j3 be defined

by i1(A — A2) = —(71 — 73) mod d'. We then have
Az A1 — J3)

A1 (s T
o (i) = 32 (i) = ~ S o g
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where again A denotes either A\; or \s. Note that 73 is old. Let 7o = 7(i1). Let
i' =11 + 1 mod d'. Then again by definition we have

o2 (ih) — o2 (i) = (%)d mod d'.

J3 J3
Combining these, we get
VPN Vo 51+ 1o A1 — Js)
o (i) = o) + (e - S

Now consider 0’;‘22 (7). Let so = sj;f (1), and ix =i + s2 mod d'. So,

mod p°.

o2 (i) — 022 (i) = (2)d mod d'.
u

J2 J2

In defining 0';\22 (i2), we may use \; as the auxiliary root. Let j4 be defined by
7:2()\2 — )\1) = _(jQ — j4) mod d’. Thus we have
A(J2 = Ja)

dl
Let r1 = r(i2). Let i’ = ix + 7 mod d'. Since i’ = i+ s1 + ro mod d’, and
i" =i+ s2 + 7 modd, from (6) of lemma 3.15 it follows that i’ = . We
therefore have

022 (iy) — 02 (i) = — mod p®.

J2 Ja

o2 (in) — o (") = (2)d  mod d'.
u

A5y —
022 (i) = o2 (i) - (J2d, ) 42 L0 mod p.
Thus,
oM () — 022(i) = 022 (i") — 022 (') + AUs = J1) _ AU = J2) mod p®.

d d

We now claim that ¢’ satisfies the hypothesis of the consistency condition for Az, j3
and A, 74, that is, we claim that i'(As — A1) = —(j3 — 74) mod d'. If so, then by
partial consistency (note: i', j3, j4 are old) we have

A(Js = J)
A A a
o352 (i") — o3} (i) g mod p%,

and it then follows that

2 (5) —o2(i) = _L]ld/_ 1) mod p°,

and we are done.
It remains to show the claim. Collecting the above definitions we have (all the
following equations are mod d'):

iA1= X2) = —(71 — J2)
iA1= A2) = = — Js)
i2(A2 — A1) = —(Jo — Ju)
1 =1+ s1

i2:Z+82

Y A — -
i =1+81+rs=t+82+1r
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Thus,
Do —M)=(i+s2+7m) A= M) =1 — o) + (s2+71) (A2 — \1).
On the other hand,
—(G3 —J1) =— [ +i1(A1 = A2) = J2 —i2(A2 — A1)
= —(J1 = J2) — (i1 +i2)(A1 — A2)
=—(1 —J2) = (2i + 51 +52) (A — A2) mod d'.
Thus,
i'(A2 = A1) + (73 = Ja)
201 — ) — (s2+ 1) (M = A2) + (20 + 514 82) (A1 — A2)
—2i(A1 — A2) — (s2+7r1) (A — A2) + (20 + s1 + s2) (A1 — A2)
(A1 = X2)(s1 —r1) mod d

From (7) of lemma 3.15 we have s; = rq, and so i’ (A2 — A1)+ (Js —Jj4) =0 mod d',
which gives the claim. O

We now summarize and finish the proof of lemma 3.7. Let d = p{* ---pi~, and
d" = pid. Assume the k, [ functions are defined on R, and satisfy (x)4. From
lemma 3.10, we may assume all of the p; are non-trivial (congruent to 1 mod
4). By lemma 3.11, we get d-good permutations 73 for all 0 < j < d and d-
roots A which satisfy the d-consistency condition. From lemmas 3.16, 3.17, the
family 0’;" for 0 < j<d', X a d'-root, satisfies the d'-goodness and d'-consistency
conditions. From lemma 3.12, we have functions k', I' defined on Ry which satisfy
()¢ . Finally, without loss of generality, we may assume the &', I’ functions extend
the k, [ functions. This follows from d'-consistency, since for points of the form
(fl, %) = (%,i, p;,j), by definition of the O’I))‘l’j the given values of k, [ for this point
satisfy the defining equations for k' + A'I’ mod each prime power of d'. More
specifically, for any d' root )\, the definition of the a;‘i ;> equation 28, rewritten
becomes

o 11+ .
(31) (k+N1) = 03, 5(p17) + A'm — 3 (T) (p1i) mod d',

where 7 and m are such that 0 < j < d and p1j = p1j+ Npri —md'. If p* is a prime
power occurring in d', and Aj,. = A" mod p?, then

. L1+ . .
(32) (k+XN.al) = az‘lj(plz) + Xjam — 3 ( 7 ) (p1i) mod p°,

and this is precisely equation 19 (with a;‘i ; replacing 73, and X' replacing X), which
is a typical defining equation for &', I'.

This completes the proof of lemma 3.7, and of lemma A. We now indicate the
minor adjustments necessary to get lemma A’. There are two differences between
lemma A and lemma A’. First, in lemma A’ there is a distinguished point (r, s) €
@ N R for which there are prescribed values for the k, | functions. Secondly, in
lemma A’ we must arrange that all of the points 2 + (k(2),1(2)) for 2 € Q% N R lie
in the set P as in the statement of lemma A’.

Fix i, j, d such that r = g, s = %. Let kg, [ be functions on Ry satisfying (x)q4. If
we add constant values ko, ly to the kg, [; functions respectively, the new functions
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n, U, also satisfy (x)g. We choose ko, lo so that k!, I/} take the prescribed values
at (r,s). Inspecting equation 3, we see that if functions k, )] satisfy k/(z) = kJ,
mod d, l'/(z) = I}, mod d for all z € Rgq, then £/, I/ also satisfy (x)4. From the
assumed property of P, we may choose kf, I] so that z + (k//(2),1}(z)) € P for all
z € Ry. Similarly, at each step when we extend the k, [ functions from Ry to Ry,
only the values of the extended functions mod d' matter in determining (x)q4 . We
may therefore adjust these values mod d' so that z+ (k(2),1(z)) € P forall z € Ry .
This completes the proof of lemma A’.

4. PROOF OF LEMMA B

In this section we prove lemma B, which completes the proof of theorem 1.2.
First, we note that a weaker version of lemma B due to Komjdth (lemma 1.1 of
[13]) would suffice for our main theorem. Specifically,

Lemma 4.1. (Komjath) There is bound s € w such that if c1,...,cs are points in
the plane with p(c;,c;)? & Z for distinct ¢;,c;, and if z1,. .., zs are colinear points
with p(ci,z;)? € Q and p(zi,2;)* € Z, then the z; are definable from {c1,...,cs};
in fact, for fized c1,...,cs, distances p(c;, z;) and p(zi, z;), there are only finitely
many such {z1,...,2s}.

To see this suffices, consider (in the notation of claim 2.7) The set E, of points
z having rational coordinates with respect to L, such that for some ¢ € Sz,
p*(c,z) € Q, where c is not rational respect to L,. Using lemma 4.1 it is easy to
see that E, is semi-small respect to L,. By this we mean that for any rational
translation L of Ly, there is a finite set F' of lines such that for any line | ¢ F,
INLNE, is finite. Then at each stage in the construction of the points z;, (following
claim 2.7) we must have z,, avoid a certain semi-small set, which is no problem.

As we mentioned earlier, lemma B is implicit in the analysis of Gibson-Newstead
[8], although it is not explicitly stated there. Newstead (private communication)
pointed out the following argument. Consider the coupler curve traced out by the
point ps3, where triangle Ap;paps is rigid, and py, p2 are constrained to lie on circles
(4, C, respectively. From [8], the complexification of this curve is a degree 6 curve
C in the complex projective plane. They show it is the projection of a higher
dimensional curve (the “residual curve”) also of degree 6, whose singularities they
analyze. Thus, the irreducible components of C' precisely correspond to those of R.
The components of R are analyzed in [8]. The list on pp. 119, 120 gives two cases
where R (and thus C) can have a component of degree two, namely:

(i) c1copapy is a parallelogram.

(ii) pr = c2 or py = ¢y.
The second case forces ¢ = ¢y or ¢3 = ¢, which is forbidden as we require ¢y, ¢,
c3 be distinct. The first case is our exceptional case of lemma B.

We now present two elementary proofs of lemma B. The first is a short algebraic
proof using some computer algebra, and the second a purely geometric argument.

4.1. An Algebraic Proof. The following algebraic computations were performed
using Maple.

We assume without loss of generality that C} is the circle centered at ¢; = (0,0)
of radius 1, C5 is the circle centered at ¢y = (a,0) of radius r, and Cjs is the circle
centered at (b,c) of radius s. Let p; = (z,y) be a point on Cy. If we let d denote
the fixed distance between p; and the point p; on Cs, then we may coordinatize
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P2 = (552,3/2) by

To = x + dcos(f

(33) 2 . (9)
y2 =y + dsin(f),

where 6 denotes the angle p;p» makes with the horizontal, measured in the usual
way. Let a denote the fixed angle of the triangle pipaps, and let e = p(p1,p3)-

Thus, the coordinates of p3 are of the form
24 x3 = x + ecos(a + 0) = = + ucos(d) — vsin(f)
(34 ys =y +esin(a +0) =y + vcos(f) + usin(F),

where we let u = ecos(a) and v = esin(a). Since pi, p2, p3 lie on Cy, Co, C3 we
have

4+ —1=0
(35) (2 —a)’ +y5 —r> =0
(3 —b)? + (y3 —c)* — s = 0.

Subtracting the second, third equations from the first gives two linear equations for
z, y in terms of 6:

36
( —)1 —2xdcos(§) +2xa+2dcos(f)a — a® —2ydsin(f) —d* +r* =0
—1—2cos(8) ux + 2cos(8) ub—v? + 2sin(f) ve — 2sin(f)vb+2xb — b> — u?
—2sin(@) uy + 2sin(@) ue — 2cos(@) vy +2cos(@)ve+2yc—c + 52 = 0.
Solving these two equations for x, y gives:
(37)
xr=- %(—d sin(f) — cos(@) vr? + cos(@) vd® + cos(9) va® — ¢ — v* dsin(f) + sin(6) u
+ cos(8) v — sin(#) ur? + sin(8) u d* + sin(f) ua® + s* dsin(d) — c* dsin(f)—
u? dsin(f) — b*> dsin(f) + 2cdcos(f) a — ca® — cd® + cr? —2vda+
2cos(f) vedsin(f) — 2sin(f) udcos(d) a + 2vdasin®(f) — 2sin*(0) vbd+
2sin?(f) ucd + 2cos(f) ubdsin(f))/(ca + bdsin(f) —sin(f) ua — cos(d) va
—cdcos(f) +vd)

(38)

y :%(—dcos 0) +a— b+ cos(f) u — sin(f) v — v d? sin(#) + v r? sin(f) — va®sin(h)
— cos(f) ur? + d? cos(#) u + cos(d) ua® — dcos(8) ¢ — dcos(8) b* — dcos() u?
+ dcos(#) s2 — dcos(f) v? — 2asin(f) uc —2ubdsin’® () — 2v cdsin®(h)
+2sin?(A) uda — 2dcos(f) sin(f) vb — 2acos(@) ub — d? b+ av? + au®
+act—as®—a’b+r’b+ab® —2uda+2ubd+2ved+2dcos(d)sin(f) uc
+2dcos(f)vasin(f) + 2asin(f)vb —2acos(f)ve+ 2dcos(d) ab)/
(ca+bdsin(f) — sin(f) wa — cos(f) va — cd cos(f) + v d)
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Substituting these expressions back into the equation x2 + 32 — 1 now gives a large
rational function of sin(f), cos(f). Setting the numerator of this expression to 0
now gives an equation of the form

(39)
200 + 201 5in(#) + 210 cos(8) + 211 cos(8) sin() + 229 cos?(A) + za1 cos?(8) sin(H)
+ 230 cos(6) = 0,
where all of the z;; are polynomials in a, b, ¢, d, u, v, r, and s.

The exceptional case of lemma B corresponds to a motion of py, p2, p3 where 6
remains constant. Assuming we are not in this case, there will be infinitely many
values of 0 satisfying equation 39. Thus, the function of equation 39 is identically 0.
Since the trigonometric polynomials of equation 39 are linearly independent, this
implies that all of the z;; are 0.

In fact, just the last two equations z3; = 0, z3p = 0 suffice to finish the proof.
These two expressions are:

40

221):8va2d2b— 16va’ubd+ 16aucd®b—8v?dca® +8u?dca® — 8V d%va
—16cu’dab—8uad’cd* +8c?d*va—16duc’av+16dvb’au+ 16 v> dbac

230 = —32vaucbd+16cavd’*b+8dct au® —8va’cd® —8dv*a’b
+16ua’ved+8dv?ab® —8dc?av? —8ua’d*b+8a*u’db -8 d*ua
—8du*ab® +8d* b ua
Computing a list of reduced Grobner bases for this pair of equations yields the

following (this means that the variety determined by the system zo; = 230 = 0 is
the union of the subvarieties determined by the polynomials in each basis listed):

41

Ed],)[a],[cuda—advb—2cubd+2dvb2 —ulac+2uavb+viac+2cu®b
—4vb?u—2v2be,aubd+cavd —2ub’d—2bved —bau® —2vauc+bav®
+2u?b* +4vuch—2v2 b2, & + b7, [v, ¢, b], [d—2u, ¢, b],
[uda —ved+2av? +2uve, vda+duc—2uva+2v° ¢, u® +v2, b,
[d—u,v,b],[uda —au®+uve, vda—uva+v’c, —uc—av+cd, +a?, b,
[cuda—cubd—c*dv+2vac+2uc’v—2v’be,
aubd—ub’d—bved+2bav? +2vuch—20v? b2,
vda+duc—dvb—2uva+2vub+2vic, u? +v%, [u, v, d, [a—b, v, d,
[d—u,v,c,[d—u,v],[aubd —ub*d —bau® +vucb+u’b*, vda
—dvb+vub—uva+vic,—uc+vb—av+cd, b2—2ab+02+a2]

Recalling that u? +v? = €2, inspecting the bases in this list shows that they imply,
in succession: d =0,a=0,b=c=0,b=¢c=0,b=¢c=0,e=0,e=0,b=¢c=0,
e=0,e=0,b=aandc=0,e=0,e=0,b=aand c =0. We have used here the
fact that the equations d = u and v = 0 imply that p3 = p»2, and hence e = 0. Since
the centers ¢y, ¢, c3 are distinct, all of these cases are forbidden. This completes
the algebraic proof of lemma B.
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4.2. A Geometric Proof. Let C; be the circle with center ¢; and radius ry, and
Cs5 the circle with center ¢o and radius rs. Let p1, p2 be distinct points with p; € Cy
and po € Cs. Let f = p(p1,p2). By a “motion” of (p1,p2) we mean continuous
functions p (t), p2(t) for 0 < ¢ < 1 such that p;(0) = p1, p2(0) = p2, and for all ¢
from 0 to 1 we have py(£) € C1, pa(t) € Ca, and p(py (£), pa (1)) = f. We say (q1, )
is in the motion of (py,p2) if there is a motion from (p1,p2) to (g1,q2). We will also
say ¢; is in the motion of p; (and likewise for ps, g2) if there is a motion from py,
p2 to some pair (q1,q2). For a given motion, let 6;(t) (and likewise for 65(t)) be
the continuous function such that 6:(0) € [0,27), and 61 () mod 27 is the angle §
such that p;(t) = ¢ + (r1 cos(8), 71 sin(h)).

We say a motion (p1(¢),p2(t)) is analytic if the coordinate functions p;(t) =
(z1(t),y1(t)), p2(t) = (z2(t), y2(t)) are analytic functions of ¢.

Definition 4.2. We say (¢1,¢2) is an extreme point in the motion of (py,ps) for
¢1 (and likewise for ¢2) if it is in the motion of (p1,p2), and any motion of (g1, ¢2)
has, for sufficiently small ¢, ¢; moving in at most one of the two possible tangential
directions on C; (we refer to this side as the allowable side of ¢;). We will also
refer to g; as being an extreme point in the motion of p;. We say an extreme point
(¢q1,q2) is non-trivial if there is a non-constant motion from (g1, ¢2).

If (¢1,g2) is an extreme point in the motion of (p;, p2) for g1, then ¢ g2 must pass
through co. In fact, the non-trivial extreme points can be characterized as those
points (g1, ¢2) such that ¢;¢» passes through one of the centers ¢y, ¢2, but not the
other.

Figure 1 illustrates a possible extreme configuration (it is also possible that go
lies on the other side of ¢y from ¢y ).

The following lemma is not required for the proof of lemma B, but it helps to
put the above definition in perspective.

Lemma 4.3. Suppose ¢y lies outside of the circle Cy, or c; lies outside Cy. Then
except for the exceptional case where r1 = ro and p(p1,p2) = p(c1,c2), there must
be an extreme point in the motion of (p1,p2).

Proof. Without loss of generality we may assume ¢; = (0,0), and ¢z = (¢,0) is on
the z-axis and to the right of C; (¢ > r1). First assume r; > ro. We show there is
an extreme point in the motion of p;. If not, then there is a motion of p; to the
point (—r1,0), and also a motion to the point (ry,0). Note that C> lies entirely
to the right of the line x = 0. The fact that p; can be moved to (—r1,0) shows
that f > ¢+ ry — ra. The fact that p; can be moved to (r1,0), however, shows
that f < ¢+ ro — ry, a contradiction. Assume next that r; < rs, and we show
there is an extreme point in the motion of ps. Suppose not, so ps can be moved to
both (¢ + r2,0) and (¢ — r2,0). From the first fact it follows that f > ¢+ ro — rq.
If ¢ — ro < 0, then the second fact implies f < r;1 + ro —¢. Hence ¢ < rq, a
contradiction. If ¢ — ro > 0, the second fact implies f < ¢—rs + 1. Hence ry < rq,
also a contradiction. Finally, if r; = r, then the argument of the first case also gives
a contradiction unless f = ¢, that is, p(c1,c2) = p(p1,p2). This is the exceptional
case of lemma B. O

Definition 4.4. We say a point (g1, ¢2) in the motion of (p;,p2) is a double point
for ¢y if for all ¢ in a one-sided neighborhood of ¢; on C; (which we call an allowable
side; this may include both sides) except perhaps for g; itself, there are two distinct
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points ¢4, ¢4 on Cy such that p(qi,¢5) = f, p(¢},dy) = f and there is an analytic
motion from (g1, q3) to (¢1,q5)-

If (g1,¢2) is a non-trivial extreme point for ¢; in the motion of (p;,p2), then
it is a double point for ¢;. For if ¢; # ¢ is sufficiently close to ¢; and on the
allowable side of ¢q, then there will be two distinct ¢4, ¢4 such that p(q},d) = f,
play,¢4) = f, with ¢}, ¢§ close to g2 and lying on opposite sides of ¢2. If ¢2(t) is an
analytic function moving from ¢} to ¢4 along C>, then the corresponding motion of
¢1 is also described by an analytic function ¢ (¢). [In general, if g2(¢) is an analytic
motion along Cs, and ¢ (¢) is a motion along C such that p(qi(t),q2(t)) = f for
all ¢, then ¢ () is necessarily analytic provided ¢; (t)g2(t) does not pass through ¢;
for all ¢.]

Note that in the definition of a double point, we do not require that in the analytic
motion from (gi,qg5) to (qi,q5) the function ¢ (¢) stay in a small neighborhood of
¢i. This is the case, however, if (¢1,¢2) is an extreme point in the motion of ¢;, as
the above argument shows.

We turn now to the proof of lemma B. Fix circles Cy, Cy with centers at ¢,
co and radii ry, ro, and we assume ¢; # co. Fix p1 € C1, po € Cs, and let
f = p(p1,p2) (we assume f > 0). Fix a triangle abc with f = p(a,b). We henceforth
assume we are not in the exceptional case of lemma B, so either r1 # ry or f #
p(c1,¢2). It suffices to show that for any analytic motion p; (t), p2(t) of (p1,p2), the
corresponding motion p3(t) does not lie entirely on a circle C5. Here p3(t) is the
point such that the triangle p; (¢)p2(t)ps(t) is congruent to abe. To see this, suppose
(pY, P, py) were infinitely many triples with p; € C; and p}pyp} congruent to abe.
Let py € C1, p2 € Cy, ps € Cs, be such that (p1,p2,ps) is a limit of a subsequence
of the (p?,p%,p%). Consider an analytic motion p;(t) on Cy nearby p;. If pipo
does not pass through ¢, then the corresponding motions po(t), p3(t) are uniquely
determined and also analytic. Since p(p3(t), c3)? is analytic and has infinitely many
zeros in a neighborhood of t = 0 (we assume p;(0) = p;), this function must then
be identically zero, and thus ps(t) lies entirely on C3. Suppose p;ps passes through
co. Let py(t) be an analytic motion on C} nearby p; moving in a direction from p;
such that there are infinitely many p} in any interval [p;(0),p;(t)) for any ¢ > 0.
There at two analytic functions pa(t), p4(t) such that p2(0) = p2 and pa2(t) € Cs,
p(p1(t),p2(t)) = f for all t. Furthermore, all (g1, ¢2) close enough to (p1,p2) with
¢1 on the appropriate side of p; and such that ¢ € Cy, g2 € Cs, and p(q1,q2) = f
must be of the form (pi(t),p2(t)) or (pi(t),p5(t)) for some ¢t. Without loss of
generality, assume for infinitely many n that (p},p%) = (p1(tn), p2(tn)). Let ps(t)
be the analytic function corresponding to pi(t), p2(t). Considering the function
p(p3(t),c3)? as before now shows that p3(t) lies entirely on Cs.

We will consider several cases in the proof of lemma B.

Case L. There is a double point (g, ¢2) in the motion of (py,p2).

If z; € C is sufficiently close to ¢g; and on an allowable side of g, then there are
two points za, z4 which lie on Cs and satisfy p(z1, 22) = p(21, 25) = f. Furthermore,
there is an analytic motion from (g1, ¢2) to either (21, z2) or (21, 23). Note that z2, 24
are symmetrical with respect to the line from z; to c;. See figure 2. Let 23, 25 denote
the corresponding values of z3. Since z3, z§ both lie on Cjs, clearly the line through
z1 which bisects the segment 23z} passes through c3. In other words, if [(z;) denotes
the line through z; such that the angle between [(z1) and z1cs is @ = the angle cab,
then I(z1) must pass through c3. To express this analytically, we coordinatize the
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circles by letting (without loss of generality) ¢; = (0,0), ¢o = (a,0), and r; = 1.
Let ¢3 = (¢,d), and v = tan(«). Let § be the angle between the segment zjco
and the horizontal line from z;. Let z; = (cos(f),sin(f)). Thus, tan(8) = —2@)

a—cos(f) "
Note that o — 8 is the angle between the horizontal and the segment z1¢3. If m(6)
denotes the slope of the line through z; and c3, then we have

B . tan(a) — aiiso(f()g) _ (a —cos(f)) —sin(6)
m(0) = tanle =) = 1+ (tan(a) (ajig)(f()e)) ~ (a—cos(d)) +ysin(6)”

Thus, the equation of the line I(z;) is

_ ~v(a — cos(f)) — sin(6)
(a — cos(#)) + ysin(6)

~v(a — cos(f)) — sin(6)
(a — cos(#)) + ~vsin(f)

z+ {sin(&) — (cos(h))

Since all of these lines pass through (¢, d), it follows that

v(a — cos()) — sin(f)
(a — cos(8)) + ysin(h)

(¢ — cos(8)) + sin(f) — d

is identically 0 for # in some interval. This simplifies to
(v + vac — ad) + (a — ¢ — yd) sin(#) + (—ya — yc + d) cos(f) = 0.
Since 1, sin(f), cos(f) are linearly independent, we have
cya—ad+~v=0
(42) —c+a—vyd=0
—cy+d—va=0
From the first and third equations it follows that either y =0 ora = 1. If y =0,
then from the second equation we have ¢ = a. Since @ = 0 or 7 in this case, we

must therefore have d = 0. That is, ¢3 = ¢3, a contradiction.

Agsume now that a = 1. Solving the second and third equations for ¢ and d
2

%, = 1_?_12. Thus, ¢35 = (¢,d) lies on the circle Cy of radius 1.

Since a = 1, ¢y also lies on C;. Recall f = p(p1,p2), and let e = p(p1,p3). Let

r = ry be the radius of the second circle, and s = r3 the radius of the third. Using

gives ¢ =

FIGURE 1
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FIGURE 2

the same coordinatization and notation as above, except § now denotes the angle
Lzoz10o = L2323, the law of cosines gives

(43)
r? = f2 4+ sin%(8) + (cos(d) — a)? — 2f1/sin*(#) + (cos(#) — a)? cos(3)
52 = e + (sin(f — d)* + (cos(d — ¢)? — 2e+/(sin(f) — d)2 + (cos(f — ¢)?) cos(3)

This becomes

u + a cos(h) _ v + dsin(#) + ccos(9)
Fi/sin?(0) + (cos(0) —a)? €V (in(0) — d)* + (cos(6) — )

(44)

)

where 2u = r2 — f2 —a? — 1 and 2v = s? — €2 — ¢® — d?® — 1. Substituting a = 1,
cross-multiplying and squaring, this becomes
hi+hy cos(8)+hs cos? (8)+hy cos® (6)+hs sin(#)+he sin(#) cos(§)+hy sin(f) cos®(§) = 0,
where

hi =e*u?d* +e2uc? —2 202 —2f2d% + €2 u?

hy =2f20v° +2e%u+2e2uc® + 2 ud> + 2 f2d®> —4 fPvc—2e2u’c

hs =2f2d?> —4eluc—2f2+e2+d>e2+4f2ve+eé?
(45)  hy=-2fd> —2e*c+2f*c

hs = -4 fPvd—2e*u’d

he = —4e*ud—4f3de+4f>vd

hy = —-2e>d+4f*de
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By linear independence, hy = --- = hy = 0. From h; = 0 we have either d = 0, a
contradiction as then c3 = ¢, or €2 = 2f2¢. Substituting into the fourth equation
we have f2(c? + d?) = 0, hence f = 0, a contradiction.

This completes the proof of lemma B in case L.

Case II. There is no point (g1, ¢2) in the motion of (p1,p2) such that g;g2 passes
through both ¢; and c».

We may assume by case I that there is no double point, and hence no extreme
point in the motion of (p1,p2). Let p!|,p, denote the reflections of p;, ps about the
x-axis, where we again assume ¢; = (0,0) and ¢z = (a,0). Let a denote the acute
angle between pyp> and the ray cyp2. See figure 3.

Consider an analytic p2(t) where p2(t) moves from p» to p,. Note that in any
motion of (pi,p2) to a point (¢1,¢2), ¢1g2 cannot pass through either ¢; or ¢y. For
if it passed through exactly one of these, (¢1,¢2) would be a (non-trivial) extreme
point in the motion of (pi,p2). Also, by the assumption of the case, g1¢2 cannot
pass through both centers. This implies that there is a uniquely determined analytic
function p; (t) describing the corresponding motion of p;. Let a(t) denote the angle
between pa (t)p1(t) and e1p2(t) (so a(0) = a). Thus, a(t) # 0 for all ¢ € [0,1]. Tt
follows that the terminal value of p;, namely p; (1), is not the reflected point pi,
but rather the point p} which is the reflection of p| about the line ¢;p5. Thus, pY
is obtained from p; by two reflections, first about the z-axis, and then about the
line ¢;p). Let ps3(t) be the analytic function corresponding to pi(t), p2(t). Since
the composition of two reflections is orientation preserving, it follows that ps(1)
is obtained from p3(0) by the same two reflections. In particular, this shows that
p3(0), p3(1) are equidistant from ¢;. Let [ = I(p1, p2) be the perpendicular bisector
of p3(0)ps(1). Thus, I passes through ¢; = (0,0) as well as through cs.

Consider now another point (g1, ¢2) in the motion of (p1,p2), and let I(q1,¢2)
be the corresponding line. If I(q1,q2) # I(p1,p2), then ¢z = ¢, a contradiction.
Thus, I(q1,¢2) = [ is independent of (g1, ¢2). This can be seen to be impossible.
For example, we may argue as follows. By taking a motion of (p;,p2), we may
assume py is on the z-axis. It follows that [ is the line through the origin and
p3. Since the composition of the two reflections described above is just a rotation
about the origin, it follows that if we move (p1,p2) to any (qg1,¢2), then the angle
that ¢1q3 makes with [ is the same as gzc; makes with the z-axis. Thus, if we

FIGURE 3
p1
D2
C1 =CQ
/
D> P1

"

P1
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rotate triangle ¢1¢2q3 about the origin by this angle, the resulting triangle ¢} qghq}
will be such that ¢} is on the z-axis, ¢} is on C}, and ¢4 is on [. This implies (for
sufficiently small non-zero motions) that (¢f,q5,¢3) = (p1,p2,p3). In other words,
(q1,92,q3) is obtained from (p1,p2,ps) by a rotation about the origin. This shows
that c2 = ¢; = (0,0), a contradiction.

Case III. There is a point (g1, ¢2) in the motion of (p1,p2) such that g;go passes
through both ¢; and cs.

Again, we may assume that in any analytic motion of (p1,p2), there is no extreme
point. Thus, as we take an analytic motion of p; to the point ¢ = (1,0), po
moves in an analytic manner to a point of intersection go of Co with the z-axis.
It suffices to show that no analytic motion (q(t),¢2(¢)) of (¢1,¢2) can have the
corresponding gs(t) lying entirely on a circle Cs. In fact, it clearly suffices to show
that if (q1(¢),¢2(¢)) is an analytic motion in which ¢;(¢) moves at a uniform rate
(say, q1(t) = (cos(wt),sin(wt))) to the opposite point (—1,0), then ¢3(¢) cannot lie
entirely on C5. The reader can also check that the only case where there is not
an obvious extreme point in the motion of (¢1,¢2) occurs when ¢o = a — ro and
a—ry <O0.

The analytic motion (g (), g2(t)) can be extended to ¢ < 0 so that (g1 (—t), g=(—t))
is the reflection of (¢i (t), ¢2(t)) about the z-axis for 0 < ¢ < 1. Thus, for 0 <¢ <1,
¢1(t) moves counter-clockwise from (1,0) to (—1,0), and for ¢ from 0 to —1, ¢ (t)
moves clockwise from (1,0) to (—1,0). The two terminal positions of ¢»(t), namely,
¢2(1) and g2(—1) lie on C5 and are reflections of each other about the z-axis. By
continuity, for each ¢] near (—1,0), there are points ¢, ¢5 on Cy with p(q},q)) =
p(q1,44) = f, and such that there is an analytic motion from (q},q}) to (¢}, %)
(note that this motion involves moving ¢ a full revolution around C}). This shows
that (q1(1),¢2(1)) is a double point for ¢; (1), contrary to hypothesis.

5. CONCLUDING REMARKS AND QUESTIONS

An immediate consequence of the existence of a Steinhaus set is the existence of
an “n-point” Steinhaus set.

Theorem 5.1. For each integer n > 1 there is a set S,, C R? such that for every
isometric copy L of 7.2 we have |S,, N L| = n.

Proof. Let S; = S be the Steinhaus set from theorem 1.1. Let zy,...,2, be n
distinct points in Z*. Let S,, = |7, S + z;. Since S is a Steinhaus set, the sets
S + z; are pairwise disjoint. Each lattice L clearly meets each S + z; in exactly one
point, and the result follows. a

There are many problems about Steinhaus sets that remain open. As we men-
tioned in the introduction, a Steinhaus set S C R? cannot be both bounded and
measurable.

Question 1. Can a Steinhaus set S C R? be bounded? Can it be measurable?

It is still unknown whether the analog of a Steinhaus set can exist in dimensions
3 or higher. That is,
Question 2. Does there exist a set S C R" such that |SNL| = 1 for every isometric
copy L of Z™? More generally, does there exist an S C R” such that |[SNL| =1
for every copy L of Z™, where m < n?
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One can also ask for which lattices Ly (in R or R") there is a corresponding

Steinhaus set.
Question 3. For which lattices Ly C R™ does there exist a set S C R" such that

|S

(2,

N L| =1 for every isometric copy L of Ly?

This question seems to be open even for the sublattice Lo of Z2 with basis vectors
0), (0,1).
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ABSTRACT. It is shown that there is a subset S of R? such that each isometric
copy of Z?2 (the lattice points in the plane) meets S in exactly one point. This
provides a positive answer to a problem of H. Steinhaus.
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