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Fubini-type theorems for general measure constructions

1. Method I and Method II measures

Throughout this paper (X, d) and (T, p) will be Polish spaces, that is, complete separable
metric spaces. If B C T x X, and t € T, then by By, the t-section or fiber of B, we mean
the set {z € X : (t,z) € B}. It is sometimes convenient to regard By as the set {t} x By;
it should be clear from the context which interpretation is intended.

Let 7 be a nonnegative set function defined on the subsets of X, such that 7(()) = 0,
and 7(F) = oo if E is not compact. Let v be a complete Borel probability measure on
T. This means that ¥, the g-algebra of subsets on which v is defined, includes the Borel
subsets of T and if N C M and v(M) = 0, then N € X. Since v is complete, every analytic
subset of T' is v-measurable and consequently every set in BA(T), the o-algebra generated
by the analytic subsets of T', is v-measurable.

We first consider the Method I measure induced by 7 and then the Method II
measure, see Rogers [Ro] for a general treatment of such measures. Method I measures
will be denoted by an asterisk, *. Thus 7*, the usual Method I measure induced by 7, is
defined by setting

T™(E) = Egbel T(FE;),
for E C X, where, as always, {F;} is a countable cover. (Often Method I measures are
defined in terms of coverings by sets F; from a restricted class of sets C. However, the
same definition of 7* may be achieved by redefining 7(F) for all E ¢ C, for example by
setting 7(E) = oo for E ¢ C, and this allows the convenience of having 7(FE) defined for
all E.)
We define the set function g on T' x X by setting

u(m) = [ (Bt 0

T

where [ * denotes the upper integral. Let p* be the outer measure on T x X constructed
from p by Method I. Thus, for B C T x X,

pr(B) = inf 3" u(B). )

A major aim of this paper is to establish conditions that enable p*(B) to be expressed as
an integral of the sectional measures 7%(B;) with respect to v, that is to obtain identities
such as

p*(B) = / T*(By)dv(t).
T
for certain sets B. There a basic inequality relating these set functions:

Lemma 1. Let B C T x X. Then

/T " (B)dv(t) < p* (B), (3)



/* 7 (By)dv(t) = / <Btén£EtZT(Ef)> dv(t)
Bé%fB | = < it 2 [ sy

where we take the cover of B defined by B; = Uier{t} x Ef. B

We seek conditions for equality in (3). We note that for a given set B C T x X
inequality (3) becomes an equality provided for each € > 0, there is a sequence of sets
{Bi}2, such that (i) B C UB;, (ii) for each i, ¢t — 7((B;):) is v-measurable, and (iii) for
vae. t, Y 7((Bi)t) < 7*(Bt) + €. These are very general conditions and it is desirable to
have some more easily-checked conditions on 7 that lead to equality in (3) for a reasonably
large class of sets B. Thus we list below various verifable conditions on 7. We denote the
space of compact subsets of X endowed with the topology inherited from the Hausdorff
metric by K(X).

(C1) 7 is monotone,

(C2) 7(E) = 7(E),

(C3) for each closed set F, 7(F) = sup{r(K) : K € K(X) and K C F},
(

(

C5) For each compact set K, 7(K) = inf{7(V) : V is open, K C V'},

)
)
C4) K — 7(K) is a Borel measurable map on the space K(X),
)
(C6)

7(E) = 400, if E is not compact.

The best known examples of Method I measures are the pre-Hausdorff measures.
Fixing X = R™ and s, > 0, we define, for £ C X, 7(E) = |E|® if |[E| < 0 and 7(F) = o0
if |E| > ¢, where |E| is the diameter of E. Thus only sets E with |E| < § provide useful
covering sets. (Later on we will consider Method IT where we let § — 0 to give Hausdorff
measures.) This example may be generalised, by taking an outer measure A on X and
s,q > 0, and setting, for E C X, 7(E) = |[E]*A(E)? if |[E| < 6 and 7(F) = oo if |E| > 6.
Then 7 satisfies (C1) and (C3) if A is regular and (C4) and (C5) if A is outer regular. We
note that if condition (C5) holds, then (C4) holds. If fact, if condition (C5) holds, then not
only is K — 7(K) upper semi-continuous, but also K +— 7*(K) is upper semi-continuous.

Theorem 2. Suppose 7 satisfies conditions (C2) and (C4). Let A be an analytic subset of
T x X such that A; is compact for each t € T. Then the map t + 7(A;) is v-measurable.
Indeed, this map is measurable with respect to the o-algebra BA(T) of subsets of T
generated by the analytic subsets of T'.

Proof. Let G be the sectionwise closure of A. Thus (¢,z) € G if and only if there
is some sequence {z,}52; with {z,} converging to x and (t,x,) € A for all n. Since
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G = mrxx({(t,r, 71, 22,23,...) € T x X x XN : Vn(t,z,) € A and z, — x}) where
m denotes projection, the set GG is the projection of an analytic set and so is analytic.
We check that the map g : T — K(X) given by g(t) = G; is BA(T)—measurable. Fix
a nonempty open subset U of X. Let I(U) = {K € K(X) : KNU # 0} and let
CU)={K e K(X): K CcU}. Then g *(I(U)) ={t: G:NU # 0} = 70 ((T x U) N G)
is an analytic set and g~} (C(U)) = T\ {t : GyN X \ U # 0} is a coanalytic set. Since
the sets of the form I(U) and C(U) form a subbasis for the topology of K(X), ¢ is a
BA(T)-measurable function. Finally, ¢t — 7(A;) = 7(G}) is BA(T)-measurable, since it is
the composition of g with a Borel measurable map.

Theorem 3. Suppose X is locally compact and 7 satisfies conditions (C1), (C2), (C3) and
(C4). Let B be an analytic subset of T'x X, then the map ¢ — 7(B;) is BA(T)-measurable.

Proof. Let G be the sectionwise closure of B. Let {U,} be an ascending sequence of
open subsets of X such that U, is compact for each n, and UU,, = X. For each n, let
fn(t) = 7(Gy N T,) for t € T. By Theorem 2, f,, is BA(T)-measurable for each n. Note
that by property (C1) and the local compactness of X, for each ¢, f(t) := lim,, o0 fn(t) =
sup{7(K) : K € K(X) and K C G;}. By properties (C2) and (C3), f(t) = 7(G¢) = 7(By).
Since f is BA(T)-measurable, the proof is finished. W

We use the following theorem of Saint Raymond [Ra] in several places. Let T and
X be complete separable metric spaces and let B be a Borel subset of T' x X such that
for each ¢t € T, the t-section of B, By, is o-compact. Then 77 (B) is a Borel set, and there
exist Borel sets B,, C T' x X such that B = U, B,,, and (B,); is compact for each t.

Theorem 4. Let X be locally compact. Let B be a Borel subset of 7' x X such that each
t-section of B is o-compact. Let

F=F(B)={(t(K,) €T x K(X)":UintK, D> B;}.

Then F' is a Borel set.

Proof. Notice T x K(X)"\F = mpy g (xyv(H), where H = {(t, (K,),z) € TxK(X)"x X :
(t,z) € B and Vn, z ¢ intK,}). Thus, H is a Borel subset of T x K(X)¥ x X Also, for
each (Z, (Ky,)), the section H (k,)) = Bt \ UintK,, is o-compact. So, by Saint Raymond’s
theorem, F' is a Borel set. B

We recall that a map f : D — K(X), where D is a Borel subset of T" is Borel
measurable if and only if the graph of f,Gr(f) = {(t,z) : € f(t)}, is a Borel set in
T x X. This fact also follows easily from Saint Raymond’s theorem.

Theorem 5. Let X be locally compact and let 7 satisfy conditions (C1)-(C6). Let
B be a Borel subset of T" x X such that each t-section of B is o-compact. Then the
map t — 7(B;) is BA(T)-measurable. Moreover, for each ¢ > 0, there are Borel sets
B, C TxX,i=1,23,.., with compact sections, and a Borel set N C np(B) with
v(N) =0, such that if t € T\ N, then By C U;(B;): and X;7((B;):) < 7(By) + €.

Proof. Since the theorem is trivially true if v(7p(B)) = 0, we may assume the projection
77 (B) has positive measure. It follows from assumption (C4) that the map f : K(X)N — R
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defined by f((K,)) = X7(K,,) is Borel measurable. It also follows from (C6) and the local
compactness of X that for each t € T,g(t) = 7*(B;) = inf{f((K,)) : (¢,(K,)) € F(B)},
where F' = F(B) is defined in Theorem 4. If ¢ is a positive rational or oo, F' N (f < q)
is a Borel set, where (f < ¢q) = {(t,(K,)) : >, 7(K,) < q}. Therefore, by the Jankov-von
Neumann Theorem [K], there is a function s, : D, — K (X)Y where D, = n7(F N (f < q))
is analytic, such that s, is a BA(T) measurable selector for F'N (f < ¢). Let s4 be the
i-th coordinate function of s,. Noting that g(t) = inf{q : ¢ € D, and ¢ is rational}, it
follows that g is BA(T)-measurable. Next, fix € > 0 and enumerate the rationals as {g, }.
For each p, let A, = {t : g, is the first rational with s, (t) < g(t) + ¢}. We may find a set
N C 7mr(B) such that ¥(N) = 0 and s4,|(A, \ N) is Borel measurable for each p. Since
for each p and ¢ the map s, ; is a Borel measurable map of A, \ N into K(X), the graph
Bpi = {(t,z) : w € 54,i(t)} is a Borel set. For each i, setting B; = UpZ, By; gives sets with
the required properties.

Remarks
1. Tt is possible to strengthen Theorem 5 if 7* satisfies the increasing sets lemma, that is
if for any increasing sequence A,, of subsets of X we have

™(J4n) = lim 7 (4n).
1

If (C1)-(C6) and the increasing sets lemma holds, then if B is a Borel set in T x X
such that each section By is o-compact, we may conclude that the map ¢t — 7%(B;) is
Borel measurable. To see this, we first apply Saint-Raymond’s theorem to deduce that
B = UB,, for Borel sets B,, where, for each ¢, (B,); is an increasing sequence of compact
sets converging to By. Then for each n the map g, (t) = By is a Borel measurable map of
T into K(X). Since 7* is upper semi-continuous on K(X), the composition f, = 7* o g,
is Borel measurable. By the increasing sets lemma, t — 7*(B;) is Borel measurable as the
limit of the f,,.

We note that if 7 satisfies (i) 7()) = 0, (ii) 7 is monotone, (iii) if diam(A) > 0 then
7(A) > 0, and (iv) 7 is continous in the Hausdorff pseudo metric, and if X is compact,
then 7 satisfies (C1)-(C6) and 7* satisfies the increasing sets lemma by a theorem of Sion
and Sjerve [SS]. Thus if (i)-(iv) are satisfied, the map ¢ — 7*(B;) is Borel measurable.

Sion and Sjerve also show that if X is o-compact and 7* satisfies the increasing sets
lemma for compact sets then 7* satisfies the increasing sets lemma.

We note the following example. Let X = {0,1,1/2,1/3,...}. Define 7 by 7(A) = 2,
if 0 € A; 7(A) =1if0¢ Aand A # 0 and 7()) = 0. Then 7 satisfies (C1)-(C6) and
(i)-(iii), but 7 is not continuous in the Hausdorff pseudo metric.

2. These theorems or variants doubtless hold under more general conditions on X or by
relaxing some of the conditions on 7. We do not know whether the map t — 7*(B;) is
always Borel measurable when B has o-compact sections or whether the set N in Theorem
5 can be eliminated.

What is the situation if we do not require 7 to satisfy condition (C5)? Some further
structure is needed. Consider the example with 7(E) = 0, if E is finite and 7(E) = oo,
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otherwise; then 7 satisfies (C1)-(C4) and (C6). However, since 7*(E) = 0 if K is countable
and is co otherwise, K — 7*(K) is not Borel measurable.

We need a condition such as (C6) for Theorem 5 to hold. For example, let X = N,
the positive integers, and let 7(E) = card(F)/(1 + card(F)). Then 7 satisfies (C1)-(C5),
but if (K,,) are compact sets covering an infinite set F, then 7*(F) = 1 and > 7(K,,) = cc.

We now consider the relationship between the Method I measures of a set and those
of its sections.

Theorem 6. Let X be locally compact and let 7 satisfy conditions (C1)-(C6). Let
B C T x X be a Borel set with each t-section B; o-compact. Then we have equality in

3):
w*(B) = /T *(By)du(t). (4)

Proof. Let € > 0. Let B; be the Borel sets and N the v-null set given by Theorem 5. By
Theorem 2, ¢t — 7((B;)¢) is v-measurable, so by definition

i (B) < Y (B = 3 [ r(Banin(e) < [ 7 (Boav(e) + <

where we have interchanged summation and integration and used the final conclusion of
Theorem 5. Taking e arbitrarily small and combining with Lemma 1 gives the result. B

Equation (4) specialises to the following product fromula for Borel rectangles U x E:
p* (U x E)=v(U)r"(E).

Thus, the outer measure p* on T x X, defined in terms of p using Method I, may be
regarded as a product measure of v and 7*. However, for 7* non-o-finite (as occurs
in many applications) a product measure is generally far from uniquely defined by the
product formula on rectangles. It also follows from (4) that a Borel set B C T x X is
p*-measurable if and only if By C X is 7*-measurable for v-almost all ¢, see Rogers [Ro,
Chapter 1.2].

The following refinement of Theorem 6, which restricts covering sets to Borel rect-
angles, is required for the Method II results which follow.

Theorem 7. Let X be locally compact and let 7 satisfy conditions (C1)-(C6). Let
B C T x X be a Borel set such that each t-section B; is o-compact. Then

p*(B) = inf {Z wu(B;) : B C U;B; and B; are Borel rectangles} . (5)

Proof. Let ¢ > 0. By Theorem 5, there are a Borel set N with v(IN) = 0 and a
sequence of Borel sets G;, such that for ¢ € T \ N, each (G;)¢ is compact, By C U;(G;)¢
and Y, 7((G;)e) < 7°(Bt) + €. Let {Un}2, be a sequence of sets forming a base for the

topology of X such that U, is compact for each n, and with this sequence closed under
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finite unions. For each i,n, let T, = {t € T\ N : n_is the first integer such that U, D
(Gi)¢ and 7(Uy,) < 7((G;)¢) + €}. Then R;, = T}, x U, is a Borel rectangle. By Theorem
6,

n(B) = [ (Bdvt)> [ (X (G~ davlt

2

_ ZZ/T ((G)e)du(t) — ¢
> ZZ/T () — )dv(t) — €
Y ) N % )~ 2

as V(IN) = 0. Since € > 0 is arbitrary, and B C U; U, R;,, U (N x X) is a cover of B by
rectangles,

B) > inf {Z wu(B;) : B C U;B; and B; are Borel rectangles} ,

with the opposite inequality immediate from (2). W

We now introduce Method II constructions which by their definition depend on the
metric structure of the sets. For these constructions we make the additional assumption
that d is a metric on X with the property that for some &y > 0, if |[E| < dp, then E is
compact. We work with the metric dy = max{d, p} on T'x X, and write |- | for the diameter
of a set in any of the metric spaces.

For § > 0, define for F C X

7s(FE) = 7(F) if |[E| < ¢ and 75(FE) = oo if|[E| > 6.

This is equivalent to seeking covers by sets of diameters at most §. As before, we set

75 (E) = _inf ZT(;(E,') inf ZT

ECUE; ECUE;,|E;|<$§
The Method IT measure on X constructed from the set function 7 is then defined by

7 (E) = lim 7 (B).

This is a metric outer measure on X and thus all the Borel sets and analytic sets are
measurable, see Rogers [Ro]. Proceeding as before, we set, for B C T' x X,

/M@ZA%@MW) (6)

and

Wi(B) = inf 3" us(B, (7

BCUB;
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The set function pj may be presented in several different ways for certain Borel
sets.

Lemma 8. Let X be locally compact and let 7 satisfy conditions (C1)-(C6). Let B C
T x X be a Borel set with each t-section B; o-compact. For each § > 0,

ps(B) = inf {Z ps(B;) : B C U;B; and B; are Borel rectangles} (8)

— inf {Z us(B;) : B C U;B; and |B;| < 5} 9)

= inf {Z ps(B;) : B C U;B;, |B;| <6 and B; are Borel rectangles} . (10)

Proof. The equality in (8) is just Theorem 7. Certainly, the right-hand side of (8) is no
greater than expression (10), and if (8) is infinite then these two expressions are equal.
So suppose (8) is finite and B; = T; x E; is a family of Borel rectangles covering B with
ps(Bi) < oo. We may decompose T; = U;?’;ITU, where the Tj; are disjoint Borel subsets of
T with |T;;| <. Then B; = U32.1T5; x E;. Since B, is a rectangle,

ps(Bi) = ZTa(Ei)V(Tz‘j) = 1s(Tyy x Ey). (11)

J=1

If 75(E;) = oo, we must have v(T;;) = 0 for all j, so ps(Ti; x E;) = ps(B;) = 0 for all j.
Otherwise, 75(E;) < 0o, so |E;| < 6 and |T;; x E;| <6 for all j. It follows, using (11) that
the sum in (8) is unchanged if we replace each set B; = T; x E; by the countable union
U;T;; x E; of sets of diameter at most §. Thus expressions (8) and (10) are equal. Finally,
expression (9) lies between p3(B) as defined by (7) and (10). W

We now relate the Method II measure on the sections X; obtained from 7 to the
Method II measure on 7" x X obtained from p. Thus we set

p(B) = lim yi5(B); (12)

this is the Method IT measure on T' x X obtained from p by virtue of (9).

Theorem 9. Let X be locally compact and let 7 satisfy conditions (C1)-(C6). Let
B C T x X be a Borel set with each t-section B; o-compact. Then

u“wwaéewamww (13)

Proof. For each § > 0, applying Theorem 6 to 75 gives

/mmzﬁﬁwmm»
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Letting 6 — 0 we have 75 (B;) — 7*(B;) for all t, and pu}(B) — p**(B). Identity (13)
follows by the monotone convergence theorem. M

Since p** is a Method IT measure, it is a metric measure, and all Borel and analytic
subsets of T'x X are p** measurable. We again have a product formula for Borel rectangles,

p (U x E) = v(U)T™(E),

so p** is a product of v and 7**, though once again extensions to X may be far from
unique given that 7** is likely to be non-o-finite.

Example I Our principle example is Hausdorff measure. For s > 0, setting 7(E) = |E|°,
where, as usual, |-| denotes diameter, we get that 7** is the usual s-dimensional Hausdorff
measure, H® on X, see Rogers [Ro]. Thus, by Theorem 9, if B is a Borel set with o-compact
t-sections,

W (B) = /T O (By)dv(),

where p** is the Method II measure constructed from the set function p(B) = [ |B|*dv(t).
It follows from Lemma 8 that we may use Borel rectangles R; = U; x E; in covers for finding
py and p**, so
pt(B) = limint Y u(Ry)
BCUR;,|R;|<6
= lim i DI E;|®.
lim inf Z v(U;) | Es
BCUR“|RZ|S5

Now let v be the restriction of m-dimensional Hausdorff measure H"™ to a compact set
T C R™ with 0 < H™(T) < oo; we lose little by assuming that H™(T) = 1. By a standard
result on upper densities, see [M], we have that limsup, _,,v(B(z,r))(2r)"™ < 1 for v-
almost all . Thus, if € > 0, we may take an increasing sequence of Borel sets T; — T,
where v(Ty) = 0, and §; — 0, such that v(U) < (1 + €)2™|U|™ if |U| < §; and U NT; # 0.
Then
(BN (T x X)) < liminf Y (142" |Ui|™|Eil*
6—0
BCUR;,|R;|<6

< limi m |m+s

< lim inf Z (14 €)2™|R;|
BCUR;,|Ri|<é

= (14 €)2™H™*(B)

for all . Using Theorem 9 and taking the limit as ¢ — oo, p**(B) < (1 + €)2mH™*$(B)
s0, since € may be taken arbitrarily small,

p**(B) = /T HE(By)dH™(t) < 2™H™F5(B).

The right-hand inequality is well-known, see [M]. Here we have given an alternative deriva-
tion of a somewhat stronger fact, that B— [ }*(B;)dH™ (t) is itself a Method II measure
on T' x E constructed from the set function pu(B) = [ |B|*dH™(t) .
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Example IT Let A be a given probability measure on R® which we assume satisfies
(C1)-(Cb), and let s,q > 0. In connection with multifractal measures, several authors,
for example Olsen [Ol], have considered measures of Hausdorff type which are Method 1T
measures constructed from the set functions such as 7(E) = |E|*A\(E)? for E C R™. (For
certain purposes, this 7 may be modified so that 7(F) = oo unless F is a ball.) This leads
to Borel measures H}'? given by

s,q k% 1 : e \4
HY!(E) = 7 (E) = lim inf > B AE)
ECUE;

Just as in Example I, we get a formula for the integral of sections of a Borel set B with
o-compact sections as a Method II measure. Thus

wt(B) = [ Hy (B

where p** is the Method II measure constructed from the set function
pw(B) = [T|B*A(By)dv(t). Such formulae may be applied to problems on sections of
multifractal measures.

2. Analytic operators and packing dimensions

In this section we use properties of analytic operators to obtain some stronger results
relating to packing dimensions of sections. For our purposes, it is enough to use the
definition of packing dimension via upper box-counting dimension. For K a compact
subset of some seperable metric space Y we set N,.(K) for the least number of open balls
of radius 7 that are needed to cover K. The upper box-counting dimension dimgK of K
is defined by

dimpK = limsup log N,.(K)/ — log . (14)

r—0

We define the packing dimension dimp B of B C Y by
dimp B = inf {squi—mBKi : B C U;K; with K; compact} . (15)

For further properties of these dimensions, and the equivalent definition of packing dimen-
sion via packing measure, see [F,M].

We recall that the Borel operators over a Polish space X are generated in much the
same way as the Borel sets [CM]. Thus, a function A mapping P(X), the power set of X,
into itself is said to be a Borel operator provided it is in the smallest family F of operators
containing the following operators:

(a) A(K)= B, B is a fixed Borel subset of X,
(b) A(K)= f"'(K), where f is a fixed Borel map from X into X,
() A(K)=X\K,
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and such that the family is closed under the operations of composition and countable
unions:

(d) A(K)=A1(Ax(K)), A, AyeF

(e) A(K)=U2AL(K), A,€F.
An operator © : P(X) — P(X) is said to be analytic if and only if there is a Polish space
Y and a Borel operator A : P(X xY) — P(X xY) such that ©(M) = nx(A(M x Y))

for each M C X.
For each d > 0, let T' = T¥ : P(X) — P(X) be the operator defined by

r € (M) < Ve >0 [dimp(M N B(z,€)) > d].

Theorem 10. The operator I' is analytic, that is X;.
Proof. For each n, defining T, : P(X) — P(X) by

r €T, (M) <= dimg(M N B(z,1/n)) > d,

we have -
= (Tn(M
n=1

Since the intersection of a sequence of analytic operators is analytic, it suffices to show
that each operator I',, is analytic. To this end, we consider the Polish space Y = X,

Let D = {(yp) € X" : dimp{y, : p € N} > d}. We note that D is a Borel
subset of Y. There are several ways to prove this. For example, one can easily check that
I ={(yp) €Y :{y,: p €N} is not conditionally compact} is a Borel set and the map
¢ : Y \I+— K(X), defined by ¢((yp)) = {yp : p € N} is Borel measurable. In [MM] it is
shown that the map K + dimp(K) is Borel measurable, and composing these maps gives
that D is a Borel set.

Next, define the operator A over X x Y by:

A(A) = (X x D) ﬁBkﬂfk A)),

where By, = {(z,(yp)) : d(z,yx) < 1/n} is a Borel subset of X x Y for each k, and
f: X xY — X xY given by fi(z, (yp)) = (Yr, (yp)) is a Borel measurable map. Thus
A:P(X xY)— P(X xY) is a Borel operator, see [CM, p. 58]. Since

z€Tn(M) <= I(yp) €Y [(z,(yp)) € AM x Y)],

or

(M) =7nx(A(M xY)),

the operator 'y, is an analytic, that is X;, operator [CM, p. 58]. Therefore, I' = T, is
an analytic operator.
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Let To(M) = M NT(M), so x € T'o(M) if and only if x € M and, for every
neighborhood U of z,dimp(U N M) > d. As the intersection of two analytic operators, I'g
is an analytic, or X1, operator and therefore the dual operator ¥ defined by

V(M) = X\Io(X\M)

is a coanalytic, or II;, operator. The operator ¥ is also monotone, that is M C ¥ (M),
since

U(M)=MU{x € X\M :Jan open set U[x € U and dimg(U N (X \ M)) < d]}.

Thus ¥ adds to M all points z of X \ M at which X \ M is small in the sense that there
is some neighborhood U of z such that U N (X \ M) has upper box counting dimension
less than d. An important feature of this operator is that ¥ adds to M a relatively open
subset of X \ M.

We next consider the effect of iterating the operator ¥. By transfinite recursion, we
set VO(E) = E, and ¥*TH(E) = ¥(¥*(E)) for each ordinal v, and U*(E) = U,y U7 (E)
if A is a limit ordinal. We note some properties of the operator ¥ including a simple
boundedness principle or stabilization property.

Lemma 11. For each M C X, there is an ordinal o < wy, where w is the first uncountable
ordinal, such that W*(M) = ¥*TL(M). If X \ M is compact, then for each ordinal «, the
set X \ U*(M) is compact, and if in addition dimp (X \ M) < d, then there is a countable
ordinal @ such that ¥*(M) = X.

Proof. Let (U,)n,en be a base for the topology of X. Suppose that for each countable
ordinal c, ¥ (M) is a proper subset of U*t1(M). For each such a choose n(«) such that
Un(a) N X \ ¥*(M) C >+ (M). Thus we may choose two countable ordinals o < 8 such
that n = n(a) = n(B), and z € U, N (X \ ¥#(M)), so that z € ¥+ (M) \ ¥ (M). On the
other hand, z € U**+!(M) C WP (M). This contradiction establishes the first part of the
lemma.

For the second part, suppose X \ M is compact. Since ¥ adds to M a relatively
open subset of X \ M, the set X \ U(M) is compact. It follows by transfinite induction that
X\ V(M) is compact for each ordinal . Finally, suppose in addition that dimp(X\ M) <
d, that (M) = U2+ (M) and that Z = X \ (M) # (. Since dimp(Z) < d, there
is a cover of Z by compact sets K, such that for each n, dimp(K,) < d. By Baire’s
category theorem, for some n, the set K, has nonempty interior U with respect to Z.
Then () # U C veH(M)\ U*(M). This last contradiction completes the proof of the
lemma. W

We need a parametrized version of the operator W. Let us define the operator ®
over P(T x X) by:

(M) = | J{t} x T(My).

teT

We note some of the basic properties of this operator.
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Lemma 12. The operator ® is monotone and coanalytic. Let M be a Borel subset of
T x X such that for each t € T, X \ M; is compact. Then ®(M) is a Borel set and for each
t, X \ (®(M)); is compact. Moreover, for each countable ordinal o, ®*(M) is a Borel set,
and for each ¢, X \ (®*(M)); is compact.

Proof. Clearly, ® is monotone and it is shown in [CM] that an operator on a product
space which is the sectionwise application of a coanalytic operator is coanalytic. Let (U,)
be a basis for the topology of X. We note

(t,x) € ®(M) < (t,r) € M or AU, [z € U, N X \ My and dimp(U,, N X \ M;) < d].

For each n, set S, = ((T'x X)\ M) N (T x U,). Then S,, is a Borel subset of T' x X
and each t-section of S,, is o-compact. Thus, D, = 7nr(S,) is a Borel set. So, G,, =
(Dp, x X)NT x X \ M is a Borel set and each t-section of Gy, is compact. Therefore, the
map ¢, : D, — K(X) defined by ¢(t) = (G,,); is a Borel measurable map. Since the map
K + K N U, is Borel measurable and the map K ~ dimp(K) is Borel measurable [MM],
the set B, = {t € D,, : dimp(G,,);NU,, = dimp((X\M;)NU,,) = dimpg(X \ M; NU,) < d}
is a Borel set. Since

O(M)=MUU,(E, xU,)N(T x X\ M),

it follows that ®(M) is a Borel set. This finishes the proof of the middle part of the lemma.
The last part follows by transfinite induction using the middle conclusion of the lemma. B

We now deduce that reasonable Borel sets B C T' x X have a countable decompo-
sition into subsets, such that the packing dimension of the sections of B are determined
by the upper box-counting dimensions of the sections of the subsets.

Theorem 13. Let T and X be Polish spaces and let B be a Borel subset of T' x X such
that for all ¢t € T, the t-section By is o-compact with dimp(B;) < d. Then there is a
sequence of Borel sets {Fy, }52, such that B = J,cn Fn, and for all t € T and n € N the

section (E,); is compact with dimp(E,,); < d.

Proof. By Saint Raymond’s theorem the Borel set B can be expressed as a countable
union of Borel sets each of which have all t-sections compact. Thus it suffices to prove
the theorem under the assumption that each t-section of B is compact. For each ordinal
a, let B, = ®*((T x X)\B) C T x X. For each t € T, Lemma 11 implies that there is
some countable ordinal a(t) such that B, = X. In the terminology of [CM] this means
T x X is the closure of the operator ® on the Borel set T' x X \ B which is defined to
be U, ®*((T x X) \ B). By the boundedness principle for monotone coanalytic operators,
[CM, Theorem 1.6(e)], there is a countable ordinal « such that

T x X = B,,
SO

B =] By+1\B,.
r<a
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By Lemma 12, for each v, the set B,y1\B, is Borel, and for each ¢, the set (B,4+1\B,)+
is o-compact. Also, if K is compact and K C (B11\B,)¢, then dimpK < d. Applying
Saint Raymond’s theorem (see Section 1), we can express each set B,y1\B, as a countable
union of Borel sets each with every t-section compact. The theorem now follows.

We now apply Theorem 13 to give an alternative derivation of a formula for the
essential supremum of the packing dimension of sections of sets, originally presented in
[FJ]. For this illustration we take T'= R"™ and X = R" with v as m-dimensional Lebesgue
measure, although the results extend to other homogeneous metric spaces.

We express our results in terms of a generalised packing dimension defined anal-
ogously to the usual packing dimension, see [FJ]. For K a compact subset of ' x X we
set

i

NI (K) = inf{z v(imp(KNU;)) : K C U;U; with |U;| < r} :

The generalised upper box-counting dimension dimEK of K is defined by

di—m;K = limsuplog N(K)/ — logr.

r—0

Analogously to the usual dimensions, we define the generalised packing dimension dimy B
of BCT x X by

dimp B = inf {su_pdi—m*BKi : B C U; K; with K; compact } .

For further properties and a measure approach to these dimensions see [FJ].
As in [FJ, Proposition 3.5], a straightforward integration argument establishes that
for all B C T x X we have
dimpB; < dimpB (16)

for v-almost all £. Another integration argument gives that for B bounded and analytic,
dim} B < esssup,dimpg(B;). (17)

A much more technical argument is used in [FJ, Proposition 9] to obtain the natural and
useful identity
dimp B = esssup,dimp(B;) (18)

which gives an expression for the packing dimension of a typical section of a compact set
B.

Equation (18) may alternatively be obtained as a simple corollary of Theorem 13.
Let B be a compact subset of T' x X, and let d > esssup,dimp(B;) so dimp(B;) < d for
almost all ¢. Theorem 13 applied to a subset of T' of full measure (noting that dimp(B;)
is measurable) gives a Borel decomposition B = UB,, with dimpB,,; < d for almost all
t, for all n. By (17), dimp B,, < d for all n, so dimpB < sup,, dimpB, < d. This gives
dimp B < esssup,dimp(B;) and the opposite inequality is immediate from (16).
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