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ABSTRACT. We consider random fractals generated by random recursive constructions.
We prove that the box-counting and packing dimensions of these random fractals, K, equals
«, their almost sure Hausdorff dimension. We show that some “almost deterministic”
conditions known to ensure that the Hausdorff measure satisfies 0 < H*(K) < oo also
imply that the packing measure satisfies 0 < P*(K) < oo. When these conditions are not
satisfied, it is known 0 = H*(K). Correspondingly, we show that in this case P*(K) = oo,
provided a random strong open set, condition is satisfied. We also find gauge functions ¢(t)

so that the P?-packing measure is finite.
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1. Introduction

In this paper we consider a general type of random fractal and some dimension prop-
erties associated with it. The random fractals considered are generated by a random

(18) " This consists of a prob-

recursive construction first defined by Mauldin and Williams
ability space (€2,%, P) and a family of random compact subsets of R indexed by an
n-ary (1 < n < oo) tree: J = {J,|o € {1,2,...,n}* = 0L_j>0{1,2, ...,n}"}, where Jy = J,
J =Cl(Int(J)), J,4; is a proper subset of J, for all o € {Vl_, 2,...,n}*and i € {1,2,...,n}
provided J, # (). Although for the general construction, » may be infinite, in this paper
we assume n is finite. These random set constructions satisfy some additional proper-
ties: (i) the sets J,, if not empty, are geometrically similar to the fixed seed set J, (ii)
setting diam(J,4;) = diam(J,)Ty«i, then for every finite word o € {1,...,n}*, the ran-
dom vectors (Ty41, ..., Tyen) are independent and distributed as (T4,...,T,) and finally,
(iii) the construction satisfies a random open set condition: if w and 7 are two words of

the same length, then Int(J,) NInt(J;) = . We study the random limit set or fractal

K(w)= N U Jo(w), w € . We note that this setting allows random placement,
k=1 o'E{]_,Z,...,TL}k
of the sets J,4; within .J,. Thus these constructions include as a special case the random

self-similar sets defined independently by Mauldin and Williams*® and by Graf (™ who
first carefully studied them. These last constructions are obtained by choosing the simi-
larity mappings according to some probability distribution and thus may be regarded as
random iterated functions systems. We also recall that the only interesting case in all of
these constructions occurs when there is a positive probability that a nontrivial limit set
exist, i.e. when E [i T?] > 1, (by convention, 0° = 0); otherwise K (w) is almost surely
an empty set or a };gilnt. We will assume this condition holds throughout the paper.

We will be mainly concerned with the packing dimension and measure of these random
fractals. Packing measure and dimension together with the classic Hausdorff measure
and dimension and box counting or Minkowski dimensions are discussed by Falconer(z),
Mattila(15), Taylor(zo’ﬂ) and Taylor and Tricot(22). But, for the convenience of the reader
we recall the definitions and some basic facts about packing measure and dimension. Let
g :[0,400) — [0,+00) be a gauge function, or a non-decreasing function with g(0) = 0.
The g-packing measures, PY, naturally arose in two different areas. They were defined

by D. Sullivan™® to analyze some problems in dynamics and independently by Taylor
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and Tricot(®?). In their paper not only are packing measures and dimensions defined, but
the exact gauge function for transient Brownian trajectory is calculated. Let A ¢ R4
and 6 > 0. We say that {(x;, )}, is a 0-packing of A, if z; € A, 6 > 2r; > 0, and
ri +r; < dist(z;,x;) for ¢, j =1,...,n, % # j. Then the closed balls B(z;,r;) are disjoint.
We first define the prepacking measures P 5 and Py by

P(i&(A) = sup { Zg(2r¢) | {(z;,r;)}i, is a d — packing of A},
i=1
PY(A) = lim PY 5(A).
Since P§ is not countably subadditive, one needs a standard modification to get an

outer measure out of it. The packing g-measure for A C R is defined by

1nf{ZP5’ )| AcC UA}

Then P9 is a Borel regular outer measure. When g(r) = r®, we denote P9 = P*. In
analogy with Hausdorff dimension, the packing dimension can be defined in terms of the

packing measures:
dimp A = inf{s | P*(A) = 0} = sup{s | P*(A) = oc}.

We note that the two stage definition of packing measure makes it somewhat more
technical to handle than Hausdorff measure. In some sense there is no way around this.
The complexity of packing measures has been analyzed by Mauldin and Mattila®®. For
example, it is shown there that the Hausdorff dimension function is a Borel class 2 mapping
on K(RY), the space of compact sets, whereas the packing dimension function although
measurable with respect to the o algebra generated by analytic sets, is not Borel measur-
able.

Finally, we recall the upper Minkowski (or box-counting) dimension. For K, a bounded
subset of R%, and § > 0, let N5(K) be the smallest number of open balls of radius ¢ that are
needed to cover K. The upper box-counting dimension, or Minkowski dimension, dimg K,

of K is defined by

dimpK = limsuplog N5(K)/(— log d) = lim suplog No—; (K) /(j log 2),

d—0 j—o00
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One very useful fact is that the packing dimension of a set can be calculated from the

upper box-counting dimension:

dimp A = mf{supdlmBK | A C U K;, K; € K(Rd)}

=1

Mauldin and Williams determined the Hausdorfl dimension of the random limit set
K (w) even when n is infinite as follows. Given K(w) # (), the Hausdorff dimension is

n
almost surely «, where a = inf{s : E[)_ Tf ] < 1}. Note that in case n is finite, we have
i=1

E[i T?] = 1. Here the expectation F is taken with respect to P. Gatzouras*) showed
th;?Minkowski dimension of K(w) coincides with its Hausdorff dimension. In Theorem
1 we present another short proof of this fact. Thus if n is finite, all four of the usual
notions of dimension: the upper and lower box-counting dimensions, the Hausdorff and
the packing dimensions, agree. Of course, if n is allowed to be infinite the box-counting
dimension and packing dimension may be greater than the Hausdorff dimension even if
the recursion is deterministic, see Mauldin and Urbanski(17), theorem 2.11.

The situation regarding the a-dimensional Hausdorff measure of these random fractals
is fairly well understood. First, by a 0-1 law (see theorem 2 and the remark following it)
the a-Hausdorff measure of K(w) may be 0, +00, or positive and finite almost surely.
Graf(™ found that in the case of random self-similar sets the a-Hausdorff measure of
K (w) is positive and finite provided the random similarity system is almost deterministic,
specifically in case (i) P(Zi1 T¥ = 1) =1 and (ii)P(1I<nii£nTi > §|T; # 0) = 1 for some
0 > 0. Graf,Mauldin and Williams® extended this result to general random recursive
constructions. The situation is similar for the a-dimensional packing measure. We show
in Theorem 4 that under these same two conditions the a-packing measure is positive and
finite. Moreover, Graf(”) showed that if P(Z T? =1) < 1, then the H*-measure is 0 a.s.
Correspondingly, we will prove in Theorem 5 that the a-packing measure in this situation
is infinite in case a random strong open set condition is also satisfied.

For many of the cases where the a-Hausdorff measure is 0, the exact Hausdorff di-
mension function has been determined. Specifically, Graf, Mauldin and Williams® have
found a gauge function g, so that 0 < H9(K(w)) < oo a.s. provided K(w) # 0. The

corresponding situation for the exact packing dimension function is more complicated and
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largely unsolved. There are only two types of constructions for which the solution has
been determined. They are the almost deterministic case mentioned above and those con-
structions such that the limit set is the image of a subordinator, for example, the zero set
in Brownian bridge. Feng and Sha® showed that in this case there is no exact packing
function in the following sense. If ¢(t) = t*L(t) where L satisfies a doubling condition:
there is some ¢ > 0 such that L(2t) < cL(t) for small t, then either P?(K) = 0 a.s.
or else P?(K) = oo a.s., depending on the convergence of some integral. Also Fristedt
and Taylor® have found criteria when the image of a general subordinator has the ex-
act packing dimesion and when it does not. Other than these cases, the exact packing
measure function problem remains open. Let us comment that Liu*® claimed to have
the exact packing measure gauge function for a Galton-Watson tree in case the number
of offspring is at least 2. However, as we shall show in section 5, there is a mistake in
the proof that this measure is positive a.s. Along these lines Xiao(?®) proved that there
is no exact packing dimension for a branching process in case the number of offspring
has a geometric distribution. The exact packing dimension of many other stochastic pro-
cesses has been investigated, for example, Fristedt and Taylor(4), Gatzouras and Lalley(G),
X. Hu(g’lo), and Y. Hu"Y. In Theorem 6 we find an upper estimate for the exact packing

dimension function for general random recursive constructions.

2. Preliminaries

We will use the following notation:
B(x,7) is an open ball with center z and radius r, D = {1,...,n}Y, for a finite sequence
o€ {l,...,n}* its length is |o| and o|; denotes the first k£ elements of that sequence, for
€D, fuln) = 0 Ty, (w), lp(w) = diam(J,(w)), for I € {1,2,...,n}* , S = P2
Let & be the o-algebra generated by the maps w — [,(w) where |o| < k. A basic

fact is that the sequence (5?1,...,71}’6 , &) forms an LP-bounded martingale for all p > 1. We

denote X = klim Sf‘l ) It is known (see Graf(™ , Graf, Mauldin and Williams®) ,
L P,
Mauldin and Williams"® ) that E[X] = diam(J)®. Similarly, we define X, =

7|

lim > I1 7., It is also known that X, is distributed as X/diam(J)*, E[X,] =
k=00 Ler1 . n}ki=1 ’

1, for o,7 € {1,...,n}* such that 0 £ 7 and 7 £ 0, X, and X, are independent, where

o < 7 signifies that 7 begins with o.
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We call ' C {1,...,n}* an antichain if for all 7,0 € I' 0 £ 7 and 7 £ 0. An antichain
I is maximal, if for all n € D there exists a unique k£ € N such that 5|, € T' (we denote
nlx by n|r), in other words, a maximal antichain is a cut. Especially useful for us will be
antichains of the form I'y(w) = {0 € {1,2,...,n}" [l _,
[, ={o el |dist(J,,J;) <r}. Forne Dlet G.(n,w) =T, . . These last sets reflect

>7r,ly <r}. Fort €T, let

geometric clustering.

Graf, Mauldin and Williams® have demonstrated that with each construction one
can associate 3 measures, denoted v,, (the construction measure), p,, and @ as follows.
First, v, is determined by setting for a compact set A ¢ R4

vy (A) = kl;n;o Z [2(w) Xy (w).

oe{l,..., n}k
Jo NA#D

Second, [, a measure on D, is determined from each set A(c) = {n € D | 0 < n}, a

clopen subset of D, by
pw (A(0)) = 15 (w) X o (w)

and ., is extended to a Borel measure on D. Finally, () is a measure on the product space

D x Q: for a Borel set B, let By, = {n € D | (n,w) € B}. Then

w(Bw)dP(w)-

QB) = ! Mdiam(J)a

Expectations with respect to measures P and () are connected in the following way
(Graf, Mauldin and Williams® ): if T" is a map from € into the countable set of all maximal
antichains in P({1,...,n}*) such that for each maximal antichain A, I'"1(A) is in the o-
algebra generated by {J,|c < A} and Y : D x Q@ — R is a random variable such that
Y(n,w) =Y (n',w) provided n|p@w) = 1'|r(w), then

oel
diam(J)e

. E{ D lf,‘XUY(a,-)} |

In particular, for allp > 0 and o € {1,...,n}*, Eg[X?] = E[Xg“] < 00. Without loss of

generality, we assume that diam(.J) = 1.
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3. Results

Theorem 1. dimp K (w) = dimpK (w) = dimg K (w) = « a.s.
Proof: Let f > « and let p = E[)_ Tf] < 1. Since diam(J) = 1, for each m, we

have Y I8 = p™. Suppose that there exists a set A such that P(A) > 0 and for all
lo|=m

w e A, PJ(K(w)) > ¢ > 0. Therefore for every v > 0 we can find {B;(z;,7;)} — a

7v-packing of K(w) such that }. |Bj|# > c. From this we construct random antichains

F,y = {O’|£L'j € Jyly < T'j,l

oljoj_1 = T4}, where o = o(z) is a code for x = N, J(0|n). Then

> lﬂ| > ¢/2P. Let |T'| = min|o]|. Since for all w € A lim [T (w)| = oo, we can find
oer, 77t o€l ¥—0

a set B C A with positive measure on which the divergence is uniform.

Then for allw € B, ¢ < 2° limsup{ 3_ 1” 0] > m} < 28limsup S 3 18

m—o0o gl 7lio|-1 m—00 k>m |g|=k lio—1

Let Ry = > > 15 . Then E[R,] = ¥ npt~!, lim E[R,] = 0 and since
k2m|o'|:k lo|=1 E>m m—00
R,, is non-increasing, we obtain lim R,, = 0 a.s. which is a contradiction. Hence
m—>00

dimpK (w) = inf{8|P5 (K (w)) = 0} < a and the result follows from the general fact that
a =dimg K (w) < dimp K (w) < dimpK (w). B

Next we prove a 0—1 law for packing measures which can be applied in other situations
as well. Here we assume there are only finitely many offspring a.s., although their number

may be unbounded.

Theorem 2. Suppose P(card({i | T; # 0}) < co) = 1. Then P(P*(K(w)) = 0|K(w) #
f)=0or 1.

Proof: Let C = {w|K(w) = 0}, A = {w|P*(K(w)) = 0}, B; = {w| exactly i among

Ty,Ts,... #0},y = P(A), p; = P(B;). So, P(C) <1 and P(C) < y. Since the sets B;

partition the probability space, P(A) = > P(A|B;)P(B;). Let K;(w) = K(w) N J;(w).
i=0

Then K (w) = ,idlm(w), P(A|B;) = P(P*(K(w)) = 0| exactly i among Ji,Js,... #

0) = y*. Thus y = Y p;y’. Consider the function f:[0,1] — R defined by the formula
i=0

f(x) = po +x(p1 — 1) + 3 2%p;. So, f(y) = 0 and the same considerations show that
i=2

f(P(C)) = 0. Since Y. p; = 1, f(1) = 0. Not all of p;,i > 2 can equal 0 because
i=0
P(C) < 1. Therefore f is positive on the interval and the only root of f on [0,1) is P(C).
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Thus P(A) =1 or P(A) = P(C), and

pAD) = PANC) _ PA) - PANC) _ PA)-PC) _ - g
- PO P(C) R |

Remarks. Similarly one can prove that P(P*(K(w)) < oo|K(w) # ) = 0 or 1. The
proof of Lemma 1 remains valid for any property (or negation thereof) that holds for the
whole construction K (w) if and only if it holds independently for every non-empty first-
level offspring. We also can replace the measure P* with P9 where g is a gauge function
or with prepacking measure Pg, if the number of offspring is finite.

The next theorem states that under a commonly occurring clustering growth rate, the
packing measure is almost surely positive. This growth rate condition was studied exten-
sively by Graf, Mauldin and Williams® in connection with calculating the exact Hausdorff
gauge function.

Theorem 3. If there exist C' > 0 and b € (0,1) such that for every » > 0 and all k € N
Q(card(G,(n,w)) = k) < Cb*, then P(P*(K (w)) > 0|K (w) # 0) = 1.

Proof: Let F = {w|K(w) # 0}. By Lemma 1 it is enough to prove that P(P*(K (w)) >
0|F') > 0. Therefore it is enough to find E such that P(ENF) >0 and for allw € ENF
there exists K'(w) C K(w) such that P*(K'(w)) > 0. For any x € K(w) we can find an
n(z) € {1,...,n}N, so that {} = f,(n). Notice that

I > X,

Vw(B(fw(n),r) N K (w))  IenB(fe(n) 20 . 0€G (nw)

lim < lim < lim

r—0 re r—0 re r—0 re

<lm ) X

0
"0 0eg, (nw)

We will show the expected value of this last limit is finite. This in turn allows us
to apply the density theorem for packing measures (see Mattila(15), Theorem 6.11). We

estimate

Follm ¥ X|<imr| ¥ x|-mY [ ¥ xdos

=0, e6, (n,w) r=0 o€G,(n,w) =0 (G.=A} “EA
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<lim ) > / Xol(g, —aydQ.

r—0 A UEADxQ

For p > 1 and ¢ > 1 with 1/p+ 1/q = 1, we have

S [ Xogoades

A o€Apiq

1/q

<SS Bolxt 7B [1Y, )]

= E[XSH]I/IJ ZQ(QT = A)l/qcard(A) <
A c€EA A

< E[XFHP f: k*Q(card(G,) = k)1 < E[XFH/P i K2CY k1 < M < oo,

k=1 k=1
for some M € R.

Hence, for all 6 > 0 there exist As C D x £ such that Q(As) > 1— 39 and My € R
such that for all (n,w) € As lim vy (B(fw(n),r) N K(w))/r* < Ms. Since Q(As) =
[ 11w (Asw)dP(w), we can find ;;eot Es such that P(Es) > 0, for all w € Es pu(Asw) >
1 — 9 and v, (K(w)) > 0. Let Ks(w) = fu(Asw). Then Ks(w) C K(w) and as 6 N\, 0,
v (Ks(w)) goes up to vy, (K (w)). Thus there is some 6" such that v, (Ks (w)) > 0. We let
K'(w) = Kg/(w) and E = Eg. &

We recall from the monograph of Graf, Mauldin and Williams® that a subset J of
R™ is said to satisfy the neighborhood boundedness property provided that there exists
an ng € N such that for every ¢ > diam(J), if Jy,..., Ji are non-overlapping sets which
are all similar to J with diam(J;) > e > dist(J, J;);i =1,..., k, then k < ng. As shown in
Graf, Mauldin and Williams® , there are several different easily verifiable and commonly
occurring conditions on the seed set J under which this condition is satisfied.

Corollary 1. Suppose J satisfies the neighborhood boundedness property and there exist
k > 0, such that E[1/ minTF|T; > 0] < co. Then P(P*(K (w)) > 0| K (w) # 0) = 1.
Proof: Graf, Mauldin and Williams® have shown in lemmas 4.4 and 4.6 that this condi-
tion implies that the clustering growth rate condition of theorem 3 is satisfied. B
Remark. The corollary holds for many known examples, e.g. the zero set of the Brownian

bridge, Mandelbrot percolation process, etc.
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Next, we turn to the almost deterministic setting, i.e., the sum of the random reduction
ratios is almost surely 1 and the d condition holds: if the reduction ratio is nonzero it is
greater than ¢.

Theorem 4. If P(T{* +---+ T =1) =1 and there is some 0 > 0 so that P(Ti > 0|T; #
0)=1 for all 1 <i < n, then P*(K(w)) < (2/8)* < 0o a.s.

Proof: By definition Pg(K(w)) = limsup{}_|B;|* | B(i,r;) is a d-packing of
K(w)}. For a dé-packing B(x;,r;), consideiﬁtohe szet Lo(w) = {0 € {1,....,n}* | x; €
Jo, lg <1y lg),,_, = ri} and extend it to a maximal antichain I'(w). Then }_|B;|* <

S (20,)%/6%. 1t is known (see Graf(”) | theorem 6.11) that for a maximal antichain A,
o€l (w)

P(zlg:):LThereforeP( > 1321): > P<zzg:1andr:

ocA oel(w) AC{1,...,n}* ogEA

A) = >, P =A)=1. Hence, Y. (20,)*/0%=1(2/0)* a.s. K
AC{1,...,n}* el (w)
As mentioned before it is known that under the hypotheses of theorem 3, H* (K (w)) >

0. Since a-packing measure dominates a-Hausdorff measure, we have:
Corollary 2. Suppose that P(i T¥ =1) =1 and for some § > 0 P(T; > 0|T; #0) = 1.
Then 0 < H*(K(w)) < P“(K(:w)) < oo a.s. Moreover, P*(K(w)) and v, (K (w)) are
absolutely continuous with respect to each other given that K (w) # (.

Now, we show that if there is enough randomness in the reduction ratios and a random
strong open set condition holds then the a-packing measure is infinite.
Definition. The construction satisfies a (random) strong open set condition means there
are po, po > 0 such that P(3z € K(w) N J, and dist(z,dJ,) > poly | J» # D) > po.
Theorem 5. If P(T7*+---+T, = 1) < 1 and the construction satisfies the random strong
open set condition, then P(P*(K (w)) = co|K (w) # 0) = 1.
Proof: First, we deal with the a-prepacking measure. Note that X = i T X; which
implies that essinfX = 0 and there exist ¢, x > 0 such that for all Sufﬁic:itlently large k,
P(S?L...,n}k <1—kK)>e

According to the strong open set condition there exists p > 0, perhaps a smaller
e > 0 and Z, such that P(Z.) > 1 — €¢/2 and for all w € Z, there is 7 € {1,...,n}*
such that dist(J;,0J) > p. Therefore we can find kg € N such that for all & > ko,

PH{ Y T¥ <1—-s}n{37,|7| =k with dist(J,dJ) > p}) > 0 and that event (which will
|o|=k
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be denoted by A) is in the o-algebra & generated by the maps w — [, (w) where |o| < k.
Now let hy,, = sup{SZ|' is an antichain, I' # {0}, Vo € T |o] < m, and Jz €
J, N K (w):dist(z, 0.J,) > ply}. Obviously, hy1 > hy,. Let h = lim hy,. Then it is easy

m—00

to see that

n

hmgr = Y T max(1(3 pek (w)n;: dist(e.07:)>pli}> Pin)-
=1

Therefore

n
h = Z T max ({3 pe i (w)nJi: dist(z,075)>pli}s 1)
i—1

where h? is like A but the supremum is taken over antichains whose elements properly
extend o. Taking the expected value of both sides we obtain that A > 1 a.s. on the

set B = {w |3z € K(w)Nn J: dist(z,0J) > p} and therefore h = > I2h” a.s. Let
lo|=k
(= essBinfh, > 1. Suppose that ( € R. Then for all £ > ko we have >  I2h” > ( a.s. Let
lo|=k
C, = {w|h” < { + K}. These events are independent of each other and of the o-algebra

k. Hence, P( |JP:k C» N A) > 0 and with positive probability we get (¢ + x)(1 — k) > ¢
which is a contradiction. This shows that P(P§ (K (w)) = oo|K(w) # 0) > 0, and hence
equals 1 by the 0-1 law.
Now let {E;}22, be an arbitrary cover of K(w) by closed sets such that E; N K (w) #
(. Since K(w) C RY is compact, one of the E;’s must have a non-empty interior, and
therefore there exists o such that J, N K (w) C K(w)N E;. As it has already been proved,
P(K(w)NJ,) =00 as. on K(w) # (. The result now follows from the definition of the
packing measure. ll
Question: Does theorem 5 still hold if we only assume the random open set condition?
Now we improve the estimates obtained by considering packing measures with respect
to a gauge function ¢(t) = t%g(t). Let D = {1,...,n}N and for k¥ € N define random
variables Ty, [ on D x Q by Ty(n,w) = T, (w) and I} (n, w) = I, (w) respectively. Fix
c > Egl|logTy|] and let N = e°.
Lemma 1. Let {Y;};>1 be a sequence of i.i.d. random variables with expectation 0 and
finite fourth moment and let £ € N. Then for all m € R there exists an M > 0 such that
i Q(ﬁ:i’i<(k+1—j)c+m) < M < .
J_k+%‘he grloof of Lemma 1 is straightforward in the spirit of the strong law of large

numbers.
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In making upper estimates of the Hausdorff measure with respect to a gauge function
Graf, Mauldin and Williams® used antichains consisting of the cells on the same level in
the construction. Here to get upper estimates of the packing measure with respect to a
gauge function, we use antichains consisting of the cells of comparable size. Lemma 2 gives
an estimate on the number of such cells. One can replace the number 2 in the lemma with
any number greater than or equal to 1.

Lemma 2. There is an M > 0 such that for all k € N, E[card{c|N"*" < 2[, <
N~k }] < M Nke,
Proof: Fix k and set A = N‘kaE[card{a|N_k_1 < 2, < N_k}] =

N—ka 5~ 3 E[]l{ka71<2la<N7k}]. Since X, and Mgy —k-1.9;, <n-+} are independent
J=1|o|=j B B
and E[X,] =1, we have

A= ZN"“E{ > ng,,l;an{N_k_ldlagN_k}] —

J=1 lo|=j
= Z N_kaEQ |:lj_a]1{N*k71<2lj§N*k}:| S (2N)aEQ |:]]‘{N7k71<2lj§N*k}:| =

j=1 j=1

=Y (2N)*Q(ke < |logl;| —log2 < (k + 1)c) < 2N)* > Q(|logly| > ke)+

7=1 7j=1
0o 7 ~
+E2N)* Y Q<Z|logTi| < (k+ 1)c+log2> < (2N)*(kbyck + M),
j=k+1 i=1

where the first sum is estimated using inequality (3.30) from the article of
Graf, Mauldin and Williams® and the second sum is estimated by Lemma 1 with Y; =
|log T;| — ¢ and m = log2. The numbers b; > 0 and c¢x € (0,1) depend only on the
construction. The result follows. l

In the proofs and statements of the next two lemmas, we suppose a number M has
been fixed such that lemma 2 holds.
Lemma 3. Let A > 0 and set M(w) = card{c|N=*"1 < 2, < N7F 12X, <
Ap(2ly),,_,)}. Then E[M;] <nMN*P(X <n(2N)*Ag(N~*)).

Proof: Since the gauge function ¢(t) is increasing, we obtain

E[My] =FE {Z Ligx, <xp@,),,  In{N-F-1<al,  <N-k}| <
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SE[ZH{T;YXU<(2N)GA5](Nk)}]l{Nk1<2la| _ SNk }]

—ZE[H{N k—1<2], <N- k}zﬂ{mem<(2N)a,\g(N k)}]

=1
The value of the last sum does not exceed n, and it may differ from 0 only on the set

{w| X, (w) < n(2N)*Ag(N=F)}. We can continue as follows:
E[Mk] < nzE[]I{N*k*1<2l.,§N*k}]1{X.,<n(2N)a)\g(N*k)}] <

<nP(X < n(2N)*Ng(N7%)) E[card{r|[N ' < 2l, < N7*}] <
<nMN*P(X <n(2N)*Ag(N7F)). ®

The next lemma tells us how often the size of a cell can drop significantly from level
to level.
Lemma 4. For kg, k € N let M,gko) = card{o|N7F-1 < 25,2, < N7 0<l, < Nk},
Then for any ¢ > 0, E[M"] < B[1/ min T§|T; > 0]2¢nM Nk N<(ti—ko),
Proof:

k
E[Mlg 0)] S E[Z]1{0<T(,<2Nk+1*k0}H{N*k*1<2la|‘ — 1<N }]

=Y P(0<T, < 2N’“+1—k0)E[n{N_k_1<2,U” MSN"“}] =

_ZE[]I{N k1<l <N- k}] ZP 0<T,,; <2Nk+1- ko) <

=1

< np<lr<m£ T, < 2Nk+i=ko | > o) card{r|N"F~1 < 21, < NF}],

using lemma 2 and Chebyshev’s inequality,
B[/ min TET; > 02 nMNM NP0 m

Theorem 6 (upper bound). Suppose that there exists a ¢ > 0, such that
E[l/ min TS|T; > 0| < co. Then
1<i<n
1. If P(X < a) < CaP as a — 0 and ¢(t) = t*g(t) is an arbitrary gauge function, then
f o (s)ds < 400 implies P(P?(K (w)) = 0|K (w) # 0) = 1.
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2. f0<r= “}}L%lf —a"Blog P(X < a) < oo, then for ¢(t) = t*|log|logt||? = tg(t),
P(P?(K (w)) < oo|K (w) # 0) = 1.
Proof: Fix an arbitrary A > 0. For § > 0, choose ko € N such that N~=% > § > N—ko—1,
Consider a (random) J-packing of K (w) consisting of balls B;(z;,r;). Build an antichain
= {o|Jo(w) > w; for some i and l,(w) < 7,1y, _,(w) > ri}. Then 3 ¢(|B;]) <
> ¢(2l,,,_,) and certainly we have

oel

P (K (w)) < sup { 3" (2L, ,)IT is an antichain¥o € T 0 <1, < N—ko}.
oel’

For such an antichain I, let I'1 = {0 € TIgX, > Ap(2l,,,_,)}, T2 = '\ Ty
Then . ¢(2l,,, ,) < A7 ST 12X, < A71X and using the terminology from lemma 3,

o€l o€l
[log ko] 0o
> 92l ) < gz M N 4 S M)V, Thus PES(K(w) <
o€y =[log Ko
[10 ko]
AXw)+ Y ME )N+ Y M(w)p(N ).
k=1 k>[log ko]

Since ng s(K(w)) decreases as 6 \, 0, we obtain by lemmas 3 and 4 that

E[P{ (K (w))] = E[ligrjng(fa(K(w))] < liminf B[PY 5(K (w))] <

6—0
(log ko]
o -1 k —k —k
glégn_)lgofE[)\ X+ Y MP@N T+ Y My(w)p(NTF)| <
k=1 k>[log ko]
[log ko]
< lim inf {)\ +nME[1/ mln TS|T; > 0] Z NSUkt1=ko) g (N =F) 4
ko—o00 —1
+nM Y g P(X < n(2N)*Ag(N~ ))}.

k>[log ko]

In case 1 we observe that if [ g’ (S)ds < +00, then z gP T (NF) < +00 and the set
0+ k=1

{g(N=F)}22, is bounded. Hence, for all A > 0 E[P¢(K(w))] < A~%. Thus P?(K(w)) =0
a. s., and therefore P(P?(K (w)) = 0|K (w) # 0) = 1.

In case 2 let 0 < ¢t < r. Then by the definition of r, there is some C} > 0 such that for
alla >0, P(X <a) < Cre~t""” so0 that B8 < 0, the set {g(N=F)}2e, is also bounded and

therefore the limit of the sum over first [log ko] terms is 0. The tailsum < Y P(X <
k>[log ko]
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ACRN)*(loghk)?) < C, Y (logk)PE—tACNY? 1f ¢(A(2N)*)1/8 > 1, this is the tail
k> [log ko]
of a convergent series. Hence, P(P?(K (w)) < oo|K(w) # () = 1. W

Based on the articles of Xiao(23), Liu(*3) and examples that follow we conjecture that
there is a corresponding lower bound result:
Conjecture (lower bound). In the setting of theorem 6, we have
1. If P(X < a) > Cd® as a — 0 and ¢(t) = t*g(t) is an arbitrary gauge function, then
f gﬁﬂ(s)ds = +oo implies P(P?(K (w)) = 4+o0|K (w) # 0) = 1.

2. If 0<r= limi(])af—a_l/ﬂ log P(X < a) < oo, then for ¢(t) = t*|log |logt||® = t¥g(t),
a—
P(P?(K(w)) > 0|K(w) # 0) = 1.

4. Examples and Applications.

Example 1. Mandelbrot percolation or canonical curdling.

Mandelbrot introduced the following process which he termed canonical curdling. Fix
an integer » > 1 and a number p with 0 < p < 1. Partition the unit square into n?
congruent subsquares. Let each subsquare survive independently with probability p. For
each subsquare which survives repeat the process. This is a n2-ary random recursive con-
struction. The limit set is nonempty with positive probability provided p > 1/n2. The
Hausdorff dimension in this case is & = 2+ (log p/ logn). The exact Hausdorff gauge func-
tion is ¢*(|log | log t||)}~(*/2) as determined by Graf, Mauldin and Williams® in Example
6.2. By theorem 1, the limit set of the Mandelbrot percolation process provided it is
nonempty also has packing dimension o = 2 4 logp/logn a.s. This also follows from the
results of Gatzouras and Lalley(®. By theorem 5 its a-packing measure is infinite. Tt
is known (see Bingham(®)) that P(X < a) =< a® as a — 0 where § satisfies pym? = 1,
py = P(A:T; # 0) = n?p(1 — p)"2_1 and m = n?p is the expected number of offspring.
In this case, f = —1 — %. Hence from theorem 6, part 1 we deduce that for the
gauge function ¢(t) = t*g(t) such that [, M < 400, P?(K (w)) = 0. We conjecture
that as in the article of Taylor(?Y) there is no exact packing measure function.
Example 2. The zero set of the Brownian bridge.

Graf, Mauldin and Williams® have shown that this set can be represented as a ran-

dom recursive construction and the distribution density of the vector (T7,7T3) has been

found. The Hausdorff dimension of this set is known to be 1/2. Therefore its packing and
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box-counting dimensions are 1/2, and packing measure in dimension 1/2 is infinite.
Using the distribution density it is easy to show that P(T1 2 < a) = O(y/a),a —

0. By a result of Liu®), we obtain that P(X < a) = Of(a),a — 0.

Graf, Mauldin and Williams® in example 6.1 show that the condition of theorem 6 is

satisfied, therefore [ @ds < +4oo implies P(P?(K(w)) = 0|K(w) # ) = 1, and our

0+

hypothesis would say that [ @ds = +oo implies P(P?(K (w)) = +oo|K (w) # 0) = 1.

0+
This is actually proven by Feng and Sha(®) from the view point of subordinators.

Example 3. A random Cantor set.

Choose two numbers independently with respect to the uniform distribution on
Jp = [0,1]. Jq is the left most interval and .J; is the right most interval in the partition of
Jo thus obtained. Its Hausdorff dimension o has been found to be (v/17—3)/2, and the ex-
act Hausdorff dimension function is t*|log | log ||}~ (see Graf, Mauldin and Williams® |
Mauldin and Williams®)). By theorem 1, it has the same packing and box-counting
dimensions and by theorem 5, its packing measure in dimension (v/17 — 3)/2 is infinite.

One can calculate P(T} < a) = P(Ty < a) = 2a — a®>. Hence, P(T1 3 < a) =
O(a),a — 0 and again according to Liu*® P(X < a) = O(a2),a — 0. Therefore by

theorem 6, [ @ds < +o0 implies P(P?(K (w)) = 0) = 1 and our hypothesis would say
o0+

that [ @ds = +oo implies P(P?(K(w)) = +o0) = 1.
Exaroriple 4. Modified Mandelbrot percolation or modified curdling.

This process was proposed by Dekking and Grimmett. It was discussed in detail by
Graf, Mauldin and Williams® in example 6.12 and they found the exact Hausdorff gauge
function for this construction. Fix a positive integer n > 1 and a probability measure p on
the power set of {1,...,n%}. Let Jy, ..., J,> be a labelling of the partition of [0, 1] x [0, 1] into
congruent subsquares. If the square .J, has been constructed, then choose A C {1, ...,n?}
according to p and let J,,.;,7 € A be the subsquares of .J, obtained by scaling .J; into J,
via the natural map. If m is the average number of offspring, then a = logmp/ logn. If m,
the essential infimum of the number of offspring, is at least 2, then according to Liu(*3),
(2.3a) the second case in theorem 6 holds, and for 8 = 1 —logm/ logm, the gauge function

¢(t) = t*|1log |logt||®, we have P?(K (w)) < oo a.s. We conjecture that it is positive a.s.
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5. Connection between random constructions and Galton-Watson trees.

As mentioned before, there is a connection between Galton-Watson tree processes and
random recursive constructions. Let N,, o € {1,...,n}* be a sequence of i.i.d. random
variables with non-negative integer values. The Galton-Watson tree T' corresponding to
this sequence is a subset of {1,...,n}* such that 0 € T and 0 € T <= o *i € T for all
1 <4 < N,. The boundary, 9T, of the random tree is the set of all infinite paths through
the tree. The tree metric on 9T is defined by setting for o, 7 € 9T, dr (o, 7) = ¢/ when
o # 7 and dr(o,7) = 0 if 0 = 7, where ¢ € (0,1) and o A 7 denotes the largest common
subsequence of o and 7. Liu(*?3) has studied the dimension properties of T with respect
to the tree metric.

Suppose the random recursive construction satisfies P(T; = ¢|T; # 0) = 1. To simplify
the matter relabel the cells on each level so that non-empty ones go first. Then a random

map Ky 0T (w) — K(w) can be considered, defined by o — QJU If for some p > 0 for

e+
all 0 and ¢ # j P(dist(Joxi, Joxj) > pdiam(J,)) = 1, then £, is 1-1. The question arises
as to the relationship between the tree metric on the limit set and the usual Euclidean
metric from R?.

Proposition. If for all ¢ P(3z, € J, N K (w):dist(z,,0.J,) > pdiam(J,)) = 1, then these
two metrics are bi-Lipschitz equivalent.

Proof: For all z,y € K(w) we obviously have d(z,y) < dr(z,y). On the other hand,
if there is a point inside each .J, as in the condition of the proposition, then d(z,y) >
cpdr(z,y). A

We note that for the proofs of theorems about the packing and Hausdorff measures
it suffices to have the second condition satisfied and P(X = 1) < 1, then they are valid
(or invalid) for trees and random recursive constructions of this kind simultaneously (see
Graf, Mauldin and Williams® | Liu(12:13)),

Liu(™) on pages 25-26 attempts to show that under certain conditions there exists
the exact packing dimension for the branching process on a Galton-Watson tree when
the number of offspring is at least 2. However the proof that the packing measure with
respect to the gauge function is positive contains a mistake. We consider a gauge function
6(t) = t*g(t). By theorem 5 it is natural to assume that tgrglJrg(t) = 0, otherwise the

corresponding packing measure will be infinite.
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For a natural number £ > 3 and K > 0 one constructs an antichain I'(w) = T'y(w) =
{o||le| = k and for all [logk] < j < k—1 15, Xz > Ko¢(ls1;)} U {o|logk] < |o| <
k—1,19X,» < K¢(l,) and for all [logk] < j < |o| — 112 KXoz > K¢(ls),)} where for

olj

o= (01,...,01-1,07), o is the cyclic permutation of o, given by

ot — {(01,...,01_1,0'14-1), ifop<n

(01,...,00_1,1), if oy =n

It is claimed that E{ > lg‘XU*] = E{ > lg‘] = 1. But because the choice of
7€ (w) o€ (w)
['(w) depends on X,«, we have the following

Theorem 7. For large k and T'(w) = Tg(w), E{ > lg‘XU*] < E{ > lgf] - 1.
oel(w) o€l (w)

Moreover, in the proof of proposition 4.1 in the paper of Liu(*® lim E{ > lg‘XU*] =
k— o0 oecl'y (u))

0.

Proof: This can be seen as follows:

k—1
E[ > ngU*] =Y E[za H Lga Xg*>¢(zaj)}]

el (w) |o|=k =[log k]

k-1 -1

> Y E{l?Xa*]l{ngg*@(la)} 11 ﬂ{lgljxg|;>¢(la|,-)}]-
1=[log k] |o|=1 j=[log k]

SO, for [10g k] S [ S k—1 we let ry = z E |:X ]l{lo‘X <¢(l, )} H ]l{l O'|‘f>¢(l0'|j)}:|7

lo|=I logk
¢ - 2 E{]l{l"‘X <¢(ls )} H ]1{1"‘ jXo12>¢loy, )}]
lo|=l =[log k]
2 E[X T Lae ng>¢<zg|j)}}v%= 2 E{ H e )}]
|o|=k =[log k] J |o|=k =[log k]
k
Then the left-hand side of the inequality becomes Y. 7, and the right-hand side
I=[log k]

k
is > . By independence g = ri. On the other hand for [logk] <1 < k —1 we
I=[log k]

k—1
have r;/q; < sup g(l;) — 0 as k — oo. This gives lim > 7 = 0. Lines (4.3a)—(4.4),
IT|=1 k=00 1-[10g k]

proposition 4.1 in Liu’s paper yield likm infr = 0. The result follows. B
—00
Therefore it remains unknown, if there is a gauge function in the exponential case

(case 2 of theorem 6) that gives a.s. positive packing measure.
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