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Abstract. We consider subshifts of finite type on the symbolic space generated by inci-
dence matrices over a countably infinite alphabet. We extend the definition of topological
pressure to this context and, as our main result, we construct a new class of Gibbs states of
Holder continuous potentials on these symbol spaces. We establish some basic stochastic
properties of these Gibbs states: exponential decay of correlations, central limit theorem
and an a.s. invariance principle. This is accomplished via detailed studies of the associated
Perron-Frobenius operator and its conjugate operator.

60. Introduction. Preliminary notation. This paper has emerged as a natural
consequence of our interests in geometrical and dynamical properties of the limit sets of
conformal graph directed Markov systems, a generalization of infinite conformal iterated
function systems systematically studied in [MU1], [MU2] and subsequent papers. Although
our paper is self-contained, it could also be considered as the first step to developing the
theory of conformal graph directed Markov systems. The central point of this paper, the
existence of Gibbs states (and eigenmeasures of the operator conjugate to the Perron-
Frobenius operator) for the shift map on the symbolic space generated by an infinite
alphabet, and a Holder continuous potential, is contained in Section 2. This is accomplished
by producing Gibbs states for symbolic subspaces generated by finitely many elements of
the alphabet and then demonstrating their tightness. In the first section we generalize the
concept of topological pressure to the context of symbolic space over an infinite alphabet
and we provide there several variational principles. Section 3 is devoted to systematic
studies of Gibbs states and their relations with equilibrium states. In Section 4 we introduce
the Perron-Frobenius operator and its conjugate. We deal here with their properties and we
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establish basic relations between Gibbs states and eigenmeasures of the conjugate Perron-
Frobenius operator. In Section 5, following a classical approach, we investigate the Perron-
Frobenius operator from the point of view of the Ionescu-Tulcea and Marinescu inequality.
This is the key point to establish in the next section, Section 6, the stochastic properties of
the Gibbs states. We obtain the weak-Bernoulli property, exponential decay of correlations,
a central limit theorem, and an a. s. invariance principle. In the last section, Section 7,
we compare our approach with that of O. Sarig.

Let us now present the general notation used throughout the whole paper. The letter
I always means a countably infinite set, frequently called the alphabet, and sometimes
identified with the set of positive integers IN. Any function A : I x I — {0, 1} is called an
incidence matrix. The set

E* ={wel>*:A,u,, =1 foralli>1},

the space of all A-admissible infinite sequences with terms in I is frequently called the
symbol space (or the shift space) generated by the matrix A. By E* we mean the set of
all finite A-admissible sequences (words) and for every n > 1, E™ denotes the set of all
A-admissible words of length n. Given w € E°°UFE*, the symbol |w| represents the number
of letters forming w. If n < |w|, then w|, = wiws ...wy, is the restriction of w to its first n
letters. Finally o : I°° — I°° is the (one-sided) shift map (cutting off the first coordinate),
i.e. o0({wn}tn>1) = {wn}n>2. Notice that (E>) C E* and therefore we can consider the
map o : E°° — E* called in the sequel the subshift of finite type generated by the matrix
A. We finally take 3 > 0 and consider the metric dg on the space I°°by setting

dg(w, 7) = e PlwnTI=1)

where w A 7 is the maximal initial common block of w and 7 (we use the convention
e~ = 0. We consider the same metric on the space £*°.

§1. Topological pressure and variational principles. We call the incidence matrix
A irreducible if for all 4, j € I there exists a path w € E* such that w; = 7 and w,| = j.
We call it primitive if there exists p > 1 such that all the entries of AP are positive, or in
other words, for all 4, j € I there exists a path w € E? such that w; =i and w,,| = j. The
matrix A is said to be finitely irreducible if there exists a finite set A C E* such that for
all 7,7 € I there exists a path w € A for which iwj € E* and finally A is said to be finitely
primitive if there exists a finite set A C E™* consisting of words of the same length such
that for all 7, 7 € E there exists a path w € A for which iwj € E*. Notice that a finitely
irreducible matrix does not have to be primitive nor conversely. Notice also that the set A
(associated either with a finitely irreducible or finitely primitive matrix) can be taken to
be empty provided E°° is the full shift. Given a set F' C I, we put

E¥ =FINnE*={weFl:A =1 foralli>1}.

Given additionally a function f : Ef’ — IR we define the topological pressure of f with
respect to the shift map o : EFY — E3° to be

Wi Wi+1

(1.1) Pr(f) = lm Slog [ 3 e s @) |
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where [wN F] = {7 € EF : 7||,| = w}. If F' =T we simply write [w] for [w N F]. Since the
sequence n — log Z, (F, f) is subadditive, where

Zn(F7f): Z exp sSup ZfO'J

wEF™ TE[WNF] =0

the limit in (1.1) exists. If F' = I, we suppress the subscript F' and write simply P(f) for
Pr(f) and Z,(f) for Z,(I, f).

There are several things concerning the pressure function which may differ radically from
the case when the alphabet is finite. However, there is a reasonably wide class of functions
introduced in [MU3]| for which the pressure function is fairly well behaved.

Definition 1.1. (see [MU3]) A function f : E*° — IR is acceptable provided it is uniformly
continuous with respect to the metric dg for some 8 > 0 and

osc(f) == sup{sup(f|f;)) — inf(f[p;))} < oo.

i€l
We shall prove the following.

Theorem 1.2. If f: E°° — IR is acceptable and A is finitely irreducible, then

P(f) = sup{Pr(f)},

where the supremum is taken over all finite subsets F' of I.
Proof. The inequality P(f) > sup{Pr(f)} is obvious. To prove the converse suppose first
that P(f) < co. Put p = max{|w| : w € A} and T = min{ian'J.‘io_lfoaj“w] twE A},

where [w] = {7 € E* : 7||,| = w}. Fix ¢ > 0. By the acceptability of f, there exists
[ > 1 such that |f(w) — f(7)] < &, if w|; = 7|; and M = osc(f) < oco. Now, fix £ > [. By
subadditivity, 1 log Z,(f) > P(f). For each F C I and m € N, set

Tm(F,f)= Y  exp(sup Zf (0(r

weFm™NE™ TE[wW] 7=0

Then there exists a finite set F' C I such that

(1.2) %long(F, f)=P(f) -

We may assume that F' contains A. Put

k—1
=Y roc
Jj=0



Now, for every element 7 = 71,7y, ...,7, € FENEF x ... x FF N E* (n factors) one can
choose elements o, as,...,a,_1 € A such that 7 = mai1mas ... 7,10y _17, € E*. Then
for every n > 1

kn+p(n—1) k—1 .
S 4Nz Y | S oo
i=kn r€(FkNEk)n [TNF] j=0
k—1
> exp | inf oo’
P R (%0
Te(FFNEFk)n Jj=0
> Z exp Z inf f|i,; +T(n — 1))
TE(FkNEk)" 1=1

=exp(T'(n — 1)) Z exp Z infﬂ[n]
i=1

TE(FkNEk)"

>exp(T(n—1)) > exp (Z(Supfl[n] — (ke - Ml))

Te(FkNEk)n =1

=exp(T'(n—1) — (k—1)en — Min) Z exp Zsup Flim
TE(FENEk)" 1=1

= e Texp(n(T — (k — l)e — M1)) > exp(sup fli)
Te(FkNEF)

Hence, there exists kn < i, < (k + p)n such that

Z, (F.f) > ie—T exp(n(T — (k — I)e — MI))Ti(F, )"

and therefore, using (1.2), we obtain

im —|T| le Ml
Pr(f) = lim -—logZ; (F.f) 2 —= —c+ e

provided that k is large enough. Thus, letting € \, 0, the theorem follows. The case
P(f) = oo can be treated similarly. W

We say a o-invariant Borel probability measure ;i on E*° is finitely supported provided
there exists a finite set F' C I such that a(E%) = 1. The well-known variational principle
(see [Wa), comp. [PU]) tells us that for every finite set F' C I

Pr(f) = sup{ha(o) + / fdii),
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where the supremum is taken over all g-invariant ergodic Borel probability measures ji
with fi(F>°) = 1. Applying Theorem 1.2, we therefore get the following.

Theorem 1.3.(1st variational principle) If A is finitely irreducible and if f : E*° — IR is
acceptable, then

P(f) = sup{hy (o) + / fdii),

where the supremum is taken over all g-invariant ergodic Borel probability measures i
which are finitely supported.

We would like to note that Theorem 1.2 and Theorem 1.3 have been proved in [Sa| as
Theorem 2 for locally Holder continuous potentials. We would like however to add that
in [Sa] the shift map is only assumed to be topologically mixing whereas we need finite
irreducibility. Let us also add that theorem similar to our Theorem 1.2 appeared in [Za]
as Theorem 1.3. In [Za] however the author assumes that the potential has a continuous
extension on a compactification of the coding space, hence, inparticular, it must be bounded
whereas we allow unbounded potentials.

Now, given n > 1 let ag—l be the standard partition of £°° into cylinders of length n:
ap "t = {[w] : |w] = n}.
We put

n—1
Snf=) fool
§=0

If n = 1 we write also « for ). Our next theorem is the following.

Theorem 1.4.(2nd variational principle) If f : E* — IR is a continuous function and f
is a o-invariant Borel probability measure on E° such that [ fdi > —oo, then

halo) + [ fdi < P(f)

In addition, if P(f) < oo, then Hj(a) < 0.

Proof. If P(f) = 400 there is nothing to prove. So, suppose that P(f) < oco. Then there
exists ¢ > 1 such that Z,(f) < oo for every n > ¢. Also for every n > 1 we have

S il sww(Suflleh > [ Surdii=n [ jai> .

|w[=n



Therefore, using concavity of the function h(xz) = —z log z, we obtain for every n > ¢

Hp(ol™") + / Sufdii < 7 a((w])(sup Sufli) — log [w])

|w|=n

= Za(f) 3 Za(f) " h(e™P Sl ji([w]) ) P Sa )

|w|=n

<2 | 3 Zaf) e S (] P ST

|lw|=n
= Zo(F)M(Za(f)7Y)
= log( Z exp(sup Sy, flwy)) = log Z,.(f)

|lw|=n

Hence Hy(af™") <log Z,(f) + n [(=f)dfi < oo for every n > q. Thus Hj(a) < oo. Since
in addition ag_l is a generator, we therefore get

o)+ [ s < it (4 (a(a )+ [ 5070) ) < tin 1o 2,(5) = P9

n—o00 n—oo N
The proof is complete. H
We would like to remark that under some additional assumptions, implying in particular
that the potential f has a continuous extension on a compactification E°°, this theorem
follows from Theorem 1 in [PP].

As an immediate consequence of Theorem 1.3 and Theorem 1.4, we get the following.

Theorem 1.5.(3rd variational principle) Suppose that the incidence matrix is A is finitely
irreducible. If f: E°° — IR is acceptable, then

P(f) = sup{hy (o) + / fdii),

where the supremum is taken over all g-invariant ergodic Borel probability measures ji
such that [ fdp > —oo.

We would like to notice that the same theorem under weaker assumptions on the shift map
and stronger assumptions on the potential f has been proved in [GS] and [Sa].

We end this section with the following.

Proposition 1.6. If the incidence matrix is finitely primitive and the function f is ac-
ceptable, then P(f) < oo if and only if Z;(f) < oc.
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Proof. Let ¢ > 1 and A C E9 be the objects resulting from finite primitivness of the
incydency matrix A. Let

q—1
M = min < inf fool a €A
[o] z_:
7=0
Forn>1and w e I™ let w = wiaiwaay . .. Wp—10n_1Wy, € E”+q(”1), where all aq, ..., a,

are appropriately taken from A. Since f is acceptable, we therefore get

q—1 n+q(n—1)
Zptqn-1) = Z exp | sup Z fool > Z exp | sup Z fool
weEn+a(ny) W] | =0 weln (@] §=0

n

> exp Zinf(f“wj]) + M(n—-1)

= exp(—M + (M — osc(f))n) <Z eXp(Sup(f|[wj])))

= exp(—M + (M — osc(f))n) Z1(f)™.

Thus P(f) > M — osc(f) + log Z1(f). Hence, if P(f) < oo, then also Z;1(f) < oco. The
opposit implication is obvious since Z,(f) < Z1(f)™. The proof is complete. H

62. The existence of eigenmeasures of the conjugate Perron-Frobenius operator
and of Gibbs states. Here we prove the main result of our paper. It concerns the
existence of eigenmeasures of the conjugate Perron-Frobenius operator and Gibbs states.
If f: E* — IR is a continuous function, then a Borel probability measure m on E*° is
called a Gibbs state (comp. [Bo], [HMU], [PU], [Ru], [Wa] and [Ur]) for f if there exist
constants () > 1 and P,; such that for every w € E* and every 7 € [w]

1 m([w])
2.1) M G CE T

If addtionally m is shift-invariant, it is then called an invariant Gibbs state.

Remark 2.1. Notice that the number Sy, f(7) in (2.1) can be replaced by sup(Si,|f/|w)
or by 1nf(S|w|f|[w])

For the sake of completeness we provide a short direct proof of the following folklore result
(see [Bo]) which wwill be needed in the sequel.
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Proposition 2.2.

(a) For every Gibbs state m, Pz = P(f).

(b) Any two Gibbs states of the function f are equivalent with Radon-Nikodym derivatives
bounded away from zero and infinity.

Proof. We shall first prove (a). Towards this end fix n > 1 and, using Remark 2.1, sum
up (2.1) over all words w € E™. Since },,,_,, m([w]) = 1, we therefore get

Q_le—PﬁLn Z exp(sup Snf|[w]) <1< Qe_Pmn Z exp(sup Snf|[w]).

lw|=n |lw|=n

Applying logarithms to all three terms of this formula, dividing all the terms by n and
taking the limit as n — oo, we obtain —P,; + P(f) <0 < —Py + P(f), which means that
P = P(f). The proof of of item (a) is thus complete.

In order to prove part (b) suppose that m and v are two Gibbs states of the function f.
Notice now that part (a) implies the existence of a constant T' > 1 such that

(%
m([w])

for all words w € E*. A straightforward reasoning gives now that v and m are equivalent

and T-1 < 42 < T. The proof is complete. B

We say that a function f : F°° — IR is Holder continuous with an exponent o > 0 if it is
Lipschitz continuous with respect to the metric d,. We then denote the minimal Lipschitz
constant of f by V,(f). Note that each Hilder continuous function is acceptable.

Lemma 2.3. If g : E*° — € and V,(g) < oo, then for all wr € E* with wy = 71, all
n>1,and all p € E™ with A, ., = A;, o, =1 we have

|Sng(pw) — Sng(p7)| < oo _ lda(w7 7)
Proof. We have
1500(0)  Sug (7)< 3 190 () — 9(0*(r)| < 3 Valg)dalor (), (7))
< V(o) i e~y (w,7) < Valg)5 f_ea_a do(w,7) < ;“Eqi do(w, 7).

The proof is complete. B

We set




From now throughout this section f : E*° — IR is assumed to be a Holder continuous
function with an exponent 3 > 0 and is assumed to satisfy the following summability
requirement

(2.2) > exp(sup(f]e))) < oo

ecl

This requirement allows us to define the Perron-Frobenius operator L : Cy(E>) —
Cy(E°), acting on the space of bounded continuous functions Cy(E°), as follows

Li@)w)= > exp(f(ew)g(ew).

e€l:Acu, =1

Then |[L¢llo <D crexp(sup(ffe))) < oo and for every n > 1
LHw) = > exp(Snf(rw))g(rw).
TEE™:Ar 0wy =1

The conjugate operator L3} acting on the space Cy (E*°) is defined as follows.

L) (g) = n(Ls(g))-

From now throughout this section we assume that there exists a Borel probability measure
m which is an eigenmeasure of the conjugate operator £} : Cy(E>) — Cy(E*). The
corresponding eigenvalue is denoted by A. Since Ly is a positive operator, A > 0. Obviously
L3"(m) = A"m. The integral version of this equality takes on the following form

(2.3) /

exp (Sn f(Tw))g(Tw)dm(w) = A" /gdfn
TEE™:A, o, =1

for every function g € CIEEOO). In fact this equality extends to the space of all bounded
Borel functions on E°°. In particular, taking w € E*, say w € E™, a Borel set A C E*
such that A, r, =1 for every 7 € A, and g = 1y, 4), we obtain from (2.3)

widoA) = [ Y e(Suf(o) o (rodin(o)

TEE™:Arp,p =1

= / exp(Sy f(wp))dm(p)
PEA: AL, p =1
(2.4 = [ exp(Sus ()il
Remark 2.4. Suppose now that (2.4) holds. Representing then any Borel set B C E* as

a union |J,cgn[wB,], where B, = {a € E* : A, o, = 1 and wa € B}, a straightforward
calculation based on (2.4) demonstrates that (2.3) is satisfied for the characteristic function
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15 of the set B. By the standard approximation argument (2.3) is therefore satisfied for
all m-integrable functions g. As the final conclusion we obtain that m is an eigenmeasure
of the conjugate operator L3} if and only if formula (2.4) is satisfied.

An alternative proof of the following theorem is included in the proof of Theorem 8 in [Sa]
under the weaker assumption that the shift map has the big images property.

Theorem 2.5. If the incidence matrix is finitely irreducible, then the eigenmeasure m is
a Gibbs state for f. In addition A = eP(f).

Proof. It immediately follows from (2.4) and Lemma 2.3 that for every w € E* and every
T € (W]

m([w]) < ATT(f) exp (S f (1)) = T(f) exp(Sy f(1) — nlogA),
where n = |w|. On the other hand, let A be given by finite irreducibility of A. For every
a € A let

E, ={r € E® :war € E*}.

By the definition of A, |J,cp Fa = E*°. Hence, there exists v € A such that m(E,) >
(#A)~1. Writing p = |y| we therefore have

() > llor) = X0 [ (S ()i

= A~ (tp) / exp (Sn f (wyp)) exp(Syf (vp))din(p)
PEE>:A, 5, =1

> A7" exp(min{inf(S|a| f|a]) : @ € A} — plog A) / .\ exp (S f (wyp))dm(p)
peEoo "/pPlZ]‘

— oA [E exp(Suf(wyp))din(p) > CT() ™ A" m(E,) exp(S, /(7))

Y

> CT(f) " (#A) ™  exp(Sa f (1) —nlog A),

where C = exp (min{inf(S||f|ja)) : @ € A} — plogA). Thus riv is a Gibbs state for f. The
equality A = eP(f) follows now immediately from Proposition 2.2. The proof is complete.
|

In order to simplify notation we will skip in the rest of this section the subscript f. We

begin our ”existence” considerations with the following result whose first proof can be
found in [Bo].

Lemma 2.6. If the alphabet [ is finite and the incidence matrix is irreducible, then there
exists an eigenmeasure m of the conjugate operator L’JZ.

Proof. By our assumption L is a strictly positive operator (in the sens that it maps
strictly positive functions into strictly positive functions). In particular the following
formula



defines a continuous map of the space of Borel probability measures on E°° into itself.
Since E°° is a compact metric space, the Schauder-Tichonov theorem applies, and as its
consequence, we conclude that the map defined above has a fixed point, say m. Then
L%(m) = Am, where A = L3(m)(1). The proof is complete. B

In Lemma 2.8, actually the main result of this paper, we will need a simple fact about
irreducible matrices. We will provide its short proof for the sake of completeness. It is
more natural and convenient to formulate it in the language of oriented graphs. Let us
recall that an oriented grapph is said to be strongly connected if and only if its incidence
matrix is irreducible. In other words, it means that every two vertices can be joined by a
path of admissible edges.

Lemma 2.7. If ' =< E,V > is a strongly connected oriented graph, then there exists
a sequence of strongly connected subgraphs < E,,V,, > of I' such that all the vertices
V, C V and all the edges FE,, are finite, {V;,}22, is an increasing sequence of vertices,
{E,}22, is an increasing sequnce of edges, | J;—; V, =V and ., E, = E.

Proof. Indeed, let V = {v, : n > 1} be a sequence of all vertices of I". and let E = {e,, :
n > 1} be a sequence of edges of I'. We will proceed inductively to construct the sequences
{Vp}52, and {E,}2 . In order to construct < F1,V; > let a be a path joining v, and
ve (i(a) = vy, t(a) = v9) and let 5 be a path joining vy and vy (i(8) = va, t(B) = v1).
These paths exist since I' is strongly connected. We define V; C V' to be the set of all
vertices of paths a and # and E; C E to be the set of all edges from « and 3 enlarged
by e; if this edge is among all the edges joining the vertices of V7. Obviously < Fq,V; >
is strongly connected and the first step of inductive procedure is complete. Suppose now
that a strongly connected graph < E,,V,, > has been constructed. If v,41 € V,,, we
set V41 = V,, and E, 41 is then defined to be the union of E,, and all the edges from
{e1,e2,...,€n, €41} that are among all the edges joining the vertices of V,,. If v,11 ¢ V,,,
let a,, be a path joining v, and v,4; and let (3, be a path joining v,y and v,. We
define V,, 11 to be the union of V,, and the set of all vertices of a,, and (,. E,41 is then
defined to be the union of FE,,, all the edges building the paths «, and 3, and all the
edges from {ey,es,...,€y,,e,41} that are among all the edges joining the vertices of V1.
Since < E,,V,, > was strongly connected, so is < E,, 11, V,,41 >. The inductive procedure
is complete. It immediately follows from the construction that V,, C V41, By, C Epgr.
Ur—, Ve =V and J,—, E,, = E. We are done. B

Our main result is the following.

Lemma 2.8. Suppose that f : £ — IR is a Holder continuous function such that
> ecr €xp(sup(flry)) < oo, and the incidence matrix is irreducible. Then there exists a
Borel probability eigenmeasure m of the conjugate operator L£%.

Proof. Without loosing generality we may assume that I = IN. Since the incidence
matrix is irreducible, it follows from Lemma 2.7 that we can reorder the set IN such
that there exists an increasing to infinity sequence {l,},>1 for every n > 1 the matrix
A|{1,...,ln}><{1,...,ln} is irreducible. Then, in view of Lemma 2.6, there exists an eigenmeasure
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my, of the operator L, conjugate to Perron-Frobenius operator
Ln:C(ETY)— C(ET)
associated to the function f| B, where, for any ¢ > 1,

Ego:E‘x’ﬂ{l,...,q}‘x’:{(ek)k21:lgekgqandA =1 for all £k > 1}.

€CEker+1

Occasionally we will also treat £,, as acting on C'(E*°) and L}, as acting on C*(E>°). Our
first aim is to show that the sequence {mn}nzl is tight where m,,, n > 1, are treated her
as Borel probability measures on E*°. Let P,, = P(‘7|E?Z’fE?Z)' Obviously P,, > P; for
all n > 1. For every k > 1 let m, : E°° — IN be the projection onto k-th coordinate,
i.e. m({(ew)u>1}) = ex. By Theorem 2.5, e is the eigenvalue of £}, corresponding to the
eigenmeasure m,. Therefore, we obtain for every n > 1, every k > 1, and every e € IN
that

mn(m €)= Y (W) < Y exp(sup(Skflw) — Puk)

wEEl’“ Wi =e wEE’lk wi=e
n n

<ePE N exp(sup(Si—1fliw) + sup(flie)

""EElkn W =e
k-1
< o P1k (Z esup(fl[i])) eSup(flrer)
i€IN

Therefore

k—1
(7 (e 4 1,00))) < o~ ToE (z esup<flm>> S et

= j>e

Fix now € > 0 and for every k > 1 choose an integer ny > 1 such that

k—1
o~ P1k (Z esup(fl[n)) Z esup(fl) < 2€_k_

i€EIN j>ng

£

Then, for every n > 1 and every k > 1, v, (m}, " ([ng + 1,00))) < &. Hence

~ ~ _ €
i | BN L] | = 1= i (m; ([ + 1,00))) > 1 — 22—k =1—c¢.
E>1 E>1 E>1

Since E* N[ [,~;[1,ng] is a compact subset of E>°, the tightness of the sequence {rmy, },>1
is therefore proved. Thus, in view of Prochorov’s theorem there exists m, a weak-limit point
of the sequence {my, },>1. Let now Lo, = e P, and Lo = e P L be the corresponding
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normalized operators. Fix g € Cp(E*°) and € > 0. Let us now consider an integer n > 1
so large that the following requirements are satisfied.

(x.1) >~ llalloexp(sup(flia) — P()) < -
(2.6) >~ llalloexp (sup(flg) e~ (P(f) = Po) < .
(2.7) i (9) —1il9)| < 3.

and

2.8) [ coarin~ [ ooy, < ;.

It is possible to make condition (2.6) satisfied since, due to Theorem 1.2, lim,, o, P, =
P(f). Let gn = g|lme~. The first two observations are the following.

C5iitn(9) / S giw) exp(f(iw) — Pr)diing (@)

i<n:A;,, =1

- > g(iw) exp(f(iw) — Pp)diin, (w)

In z<n Aiw,=1

/ ST galiw) exp(f (iw) — Po)ding ()

l i<n:Aj,, =1
(2.9) = Eo,nmn(gn) = 1M (gn)
and
(2.10) ia(an) = in(9) = [ (g0~ g)din, = [ odii, = 0.
In In

Using the triangle inequality we get the following.

Lom(g) —m(g)l < |Lom(g) — Loma(g)] + [Lomn(g) — L5 1 (9) 1+
(2.11) + L5 20 (9) = M (gn) | + (M0 (gn) — Min(g)| + |Mn(g) — m(g)]
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Let us now look at the second summand. Applying (2.6) and (2.5) we get
[Lomn(9) = Lo nmn(9)] =
| [ 5 st)ennrtio) - PU) - expls) - Pt
+ /Em > gliw) exp(f (iw) — P(f))drig (w)

i>n:Aiwn =1

< 3 Nlglloe e (P(£) = Pu) + > llgllo exp(sup(£]s — P(£))

<n >n
_ €
< >_llalloexp(sup(flg))e™" (P(f) = Pn) +
i>1
9 9 9
2.12 < =-4+-=-==.
( ) ) + 6 3

Combining now in turn (2.8), (2.12), (2.9), (2.10) and (2.7) we get from (2.11) that
.~ N €
[Lom(g) —m(g)| < 5 +

Letting € N\, 0 we therefore get Lim(g) = m(g) or L3m(g) = ePPr(g). Hence Lim =
eP(Nm and the proof is complete. W

As an immediate consequence of this theorem and Theorem 2.5, we get, the following.

Corollary 2.9. Suppose that f : F>*° — IR is a Holder continuous function such that
> ecr €xp(sup(flry)) < oo and the incidence matrix is finitely irreducible. Then there
exists a Gibbs state for f.

As an immediate consequence of Theorem 2.8, Theorem 4.3, Theorem 2.5, and Theo-
rem 3.2, we get the following.

Corollary 2.10. Suppose that f : E°*° — IR is a Holder continuous function such that

> ecr €xp(sup(flry)) < oo and the incidence matrix is finitely primitive. Then

(a) There exists a unique eigenmeasure my¢ of the conjugate Perron-Frobenius operator
E} and the corresponding eigenvalue is equal to eP(f),

(b) The eigenmeasure my is a Gibbs state for f.

(c) The function f: E* — IR has a unique o-invariant Gibbs state fif, this Gibbs state
is completely ergodic and the stochastic laws presented in Section 6 are satisfied.

The character of the following chapters is somewhat different. We mainly examine prop-
erties of Perron-Frobenius operators, Gibbs states and eigenmeasures of the conjugate
Perron-Frobenius operators assuming the existence of these measures and imposing some
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additional requirements, frequently weaker than those needed in Section 2 for the proof of
the existence of such measures.

63. Properties of Gibbs states and equilibrium states. As an immediate conse-
quence of (2.1) and Remark 2.1 we get the following.

Proposition 3.1. Any uniformly continuous function f : £°° — IR that has a Gibbs state
is acceptable.

Given w € E* and n > 1 let

By ={r€E": A, ,, =1}and EY ={r€ E*: A; ,, = 1}.

We shall prove the following result which is well-known (see for ex. Lemma 2.1 in [ADU])
except the right-hand side inequality in formula (2.1).

Theorem 3.2. If an acceptable function f has a Gibbs state and the incidence matrix
A is finitely primitive, then f has a unique invariant Gibbs state. Moreover, this invariant
Gibbs state is exact.

Proof. Let m be a Gibbs state for f. Since the matrix A is finitely primitive, inf{m (o ([i])) :
i € I'} > 0 and it therefore follows from Lemma 2.1 in [ADU] that there exists a o-invariant
Borel probability measure ji absolutely continuous with respect to m and even more, the
left-hand side inequality in formula (2.1) holds. Let now the finite set A and the integer
q > 0 be given by finite primitiveness of the incidence matrix A. By acceptability of f,

T = min{inf (S, f|ja]) : @ € A} > —o0.
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Fixing w € E*, using (2.1), Remark 2.1 and Proposition 2.2(a) we get for everyl n > ¢

me (W)= Y w(re) = Y Y (raw)

TeEy aEAﬂEéwl) TEEg_q

> Z Z Q_l exp(inf(5n+|w|f|[7'aw]) - P(f)(n + |w|))

acAnEY TEED
> > ) exp(inf(Sn_gflm) — P(H)(n—g)+
aEAI"lEéwl) TEEg_q
+ inf(SQf|[a]) - (]P(f) + 1nf(5|w|f|[w]) - P(f)|w|)
> Q1T e P exp(inf(Siu) fluy) — P(F)|])
x> > exp(inf(Su—gflim) — P(f)(n - q))

aEAﬂEéwl) TEEs_q

>QPexp(T - P(Hgym(lw]) >, Y exp(inf(Su_gflir) — P(f)(n - q))
aEAﬂE’éwl) TEEziq

> Q2 exp(T - P(f)g)m(w))Q™" D m([r]) = Q% exp(T — P(f)q)m([w])

|T=n—q

Since ji([w]) > liminf,, o Mm(c~"([w])), we therefore conclude that ji([w]) > Q3 exp(T —
P(f)q)m([w]) and consequently fi is a Gibbs state. Exactness of such a measure is well-
known (see Theorem 3.2 in [ADU] for ex.) and uniqueness follows immediately from
ergodicity of any invariant Gibbs state and Proposition 2.2(b). The proof is complete. B

We say that two functions f,g : E°° — IR are cohomologous in a class H if there exists a
function u : F°° — IR in the class H such that

g—f=u—uoo.

We shall provide now a list of necessary and sufficient conditions for two Holder continuous
functions to have the same invariant Gibbs states. The proof is analogous to the proof of
Theorem 1.28 in [Bo] (see also [HMU])

Theorem 3.3. Suppose that f,g : £ — IR are two Holder continuous functions that
have invariant Gibbs states fiy and fi4 respectively. Suppose also that the incidence matrix
A is finitely irreducible. Then the following conditions are equivalent:

(1) fif = fg-
(2) There exists a constant R such that if 6™ (w) = w, then

Spf(w) — Spg(w) =nR

(3) The difference f — g is cohomologous to a constant in the class of bounded Hoélder
continuous functions.
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(4) The difference g — f is cohomologous to a constant in the class of bounded continuous
functions.

(5) There exist constants S and T such that for every w € F* and every n > 1
|Snf(w) — Spg(w) — Sn| < T.

If these conditions are satisfied then R =S = P(f) — P(g).
Proof. (1) = (2). It follows from (2.1) that

o _ exp(Spf(w) — P(f)k))
@S (Seg@) — Plg)h))

for every w € E*° and every k > 1. Suppose now that ¢”(w) = w. Then for every k = In,
I>1,
Q™" < exp(I(Snf(w) = Sug(w)) — (P(f) — P(g))n) < Q™.

Hence, there exists a constant 7" > 0 such that
USnf(w) = Sng(w) = (P(f) = P(g))n| < T

—P(g))n. Thus,

and therefore, letting [ 0o, we conclude that S, f(w) — Spg(w) = (P(f)
(2).

putting R = P(f) — P(g) completes the proof of the implication (1) =
(2) = (3). Define
n=f-g—R.
Since the incidence matrix A is irreducible, there exists a point 7 € E°° transitive for the
shift map o : E*° — E°°. Put
T'={ok(r):k>1}

and define the function u : I' — IR by setting
u(o®(r)) =Y (o’ (7)).

Note that the function u is well-defined since all points o*(7), & > 1, are mutually distinct.
Taking the minimum of exponents we may assume that both functions f and g are Holder
continuous with the same order (3. Let A be the set coming from finite irreducibility of the
incidence matrix A. Let |A| = sup{|e|: a € A} and S = sup{[S|on| : « € A}. Fix k >1
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and consider periodic point w = (7|xa)>°. Then by our assumption

k—1
u(e® (1) = | Y _(n(e? (7)) = (f(o7 (W) — g(0? (w))) + Rk+
|| —1
+ 3 (9(0*) — f(e*)) + Rla
= ._ ((f(e? (1)) = f(o? (W))) = (g9(¢? (7)) — g(0? (w))) = Sjan(c” (w))
kj—l k—1
< 2_@(n)) = flo? ()| + Z l9(a?(7)) — g(o? (w))]
;:1 " k-1
<D V(e P (S (o (W)|2Vﬁ( Je D 4 5
e B

Assume now o*(7)|, = o!'(7)|, for some k < [ and some r > 1. Let w = 7|p(c*(7)|;_x)>
By our assumption Zé;k n(c7(w)) = 0. Hence,

[u(e (1)) — u(o®(1))| = gn(aj(ﬂ) = gn(a”’(f))—n(aj(w))
< :(If(o—”( )) = f(o? (W))| + lg(0? (7)) — g(o7 (w))])
:%m + Va(g))e Plrt=i=b
(3.2) < e P (Va(f) + V(g Ze—ﬁf I_J;Vg( ) o—pr

In particular it follows from (3.2) that w is uniformly continuous on I'. Since I' is a dense
subset of EF°° we therefore conclude that w has a unique continuous extension on E°.
Moreover, it follows from (3.1) and (3.2) that u is bounded and Holder continuous. The
proof of the implication (2) = (3) is therefore complete.

Now, the implications (3) = (4) and (4) = (5) are obvious.

(5) = (1). It follows from (5) and (2.1) that for every w € E*, say w € E™

(3.3) Q%7 T exp((S’ + P(g) — P(f))n) < g;&:}; < Q2T exp((S + P(g) — P(f))n)
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Suppose that S # P(f) — P(g). Without loosing generality we may assume that S <
P(f) — P(g). But then it would follow from (3.3) that that for every n > 1

L=jp(B®) = > fif([w]) < Q%" exp((S+P(g) — P(f))n)

|w|=n

which gives contradiction for n > 1 large enough. Hence S = P(f) — P(g). But then (3.3)
implies that the measures jiy and fi, are equivalent. Since, in view of Theorem 3.2 these
measures are ergodic, they must conincide. The proof of the implication (5) = (1) and
simultaneously of the whole Theorem 3.3 is complete. B

We call a o-invariant probability measure i an equilibrium state of the potential f if

[ —fdp < +oo and
+ [ ran=p)

We end this section with the following two results.

Lemma 3.4. Suppose that the incidence matrix A is finitely primitive and that a contin-
uous function f : F*° — IR has a Gibbs state. Denote by fis its unique invariant Gibbs
state (see Theorem 3.2). Then the following three conditions are equivalent:

a) ono —fdﬂf < Q.

(b) > ier inf(—flf) exp(inf f[f;) < oo.

(¢c) Hgz, () < oo, where o = {[4] : 4 € I} is the partition of £° into initial cylinders of
length 1.

Proof. (a) = (b). Suppose that [ —fdjiy < oo. This means that ., f[i] —fdpy < o0
and consequently

00 > inf(—fl)is([i]) > Q™" inf(—f|g) exp(inf £l — P(f))
i€l el
= Q_le_P(f) Z 1nf(—f|[,]) exp(1nff|[z])

i€l

(b) = (c). Assume that Y, inf(—f|;) exp (inf(f[j))) < co. We shall show that Hy, (o) <
00. By definition,

Hy, () =Y —fig([il) log fig([i]) <Y —fip([i]) (inf(f]) — P(f) — log Q).

el el

Since >, iy ([i]) (P(f) +log Q) < oo, it suffices to show that Y-, ; —fis([i]) inf(f|n) <
And indeed,

> =g () inf(fl) =Y g ([A]) sup(—flip) < > fup ([i]) (inf (= £ ) + ose(f)).

1=y 1€l i€l
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Since Y .o ity ([i])osc(f) = osc(f), it is enough to show that
> g ([i]) inf(—f]p) < oo
iel

Since fif is a probability measure, lim;_,« fif([¢]) = 0. Therefore, it follows from (2.1) that
lim;_ o0 (sup(f|p) —P(f)) = —oc. Thus, for all i sufficiently large, say i > k, sup(f|n;) < 0
Hence, for all ¢ > k, inf(—f]p;) = —sup(f]p ) > 0. So, using (2.1) again, we get

> g ([i]) inf (= fli) <D Qexp(inf(f|p) — P(f)) inf(— fli)

1>k 1>k

= Qe P() Z exp(inf (f|p7)) inf(—f|g)

i>k
which is finite due to our asssumption. Finally ), ; fif([¢]) inf(—f];)) is finite.

(¢) = (a). Suppose that H;, (@) < co. We need to show that [ —fdjiy < co. We have

00 > H, (@) = ) — g ([i]) log (s ([i])) < D —ig ([i]) (inf(flr) — P(f) — log Q).

Hence, >, —fis([1]) inf(f|;7) < oo and therefore
[ —rdns =3 / —fdity < 3 sup(= iy () = 32 — int(flis (1) < .

1€l el i€l

The proof is complete. H

Theorem 3.5. Suppose that the incidence matrix A is finitely primitive. Suppose that
f+ E*° — IR is a Holder continuous bounded function that has a Gibbs state and that
[ —fdiiy < oo, where fiy is the unique invariant Gibbs state for the potential f (see
Theorem 3.2). Then fis is the unique equilibrium state for the potential f.

Proof. In order to show that fip is an equilibrium state of the potential f consider
a = {[i] : i € I}, the partition of E* into initial cylinders of length one. By Lemma 3.4,
Hj, (o) < co. Applying the Breiman-Shanon-McMillan theorem, Birkhoff’s ergodic theo-
rem, and (2.1), we get for fip-a.e. w € B

by, (0) = by, (0.0) = lim _%mggf([mn])

> lim ——(10gQ+S f(w) =P(f)n)

n— 00

— tim LS, fw) £ P(f) = / ~fdiiy + P(f)

n—oo N

which, in view of Theorem 1.3, implies that jif is an equilibrium state for the potential f.
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In order to prove uniqueness of equilibrium states we follow the reasoning taken from the
proof of Theorem 1 in [DKU]. So, suppose that 7 # fis is an equilibrium state for the
potential f : E*° — IR. Applying the ergodic decomposition theorem, we may assume
that © is ergodic. Then, using (2.1), we can write for every n > 1 as follows.

0 =n(hs(o) + /(f —P(f))dr) < Hz(a,) + /(Snf — P(f)n)dv
1 .
== > i <logu [w]) = m/[w](snf—f)(f)”)d”>

|lw|=n
<= ([w) (log #([w]) = (Snf(rw) — P(f)n)) for a suitable 7, € [w]
|lw|=n
= _ Z logy [w]) exp(P(f)n — Snf(Tw)))
|lw|=n
<= Y o(w]) (log o (W) Q™ ial[w]))
|w|=n
v([w])
=los@ = 2 Pl lox (m([w])) |

Therefore, in order to conclude the proof, it suffices to show that

o (5 o (ZED )
nhl%o( > wlebios (375 ]))) |

|w|=n

Since both measures v and fif are ergodic and v # [if, the measures 7 and fiy must be
mutually singular. In particular

(e g <)) o

for every S > 0. For every j € Z and every n > 1 define now

Then



and we have for each k = —1,-2,-3,...

- 3 otyos () = 1 (%) i)
<Y U(Fug) S kY p(Fag)+ Y je T

jez i<k i>1
= kv ({w € B> % > e—k}> + Zje—j—i—l

i>1
—>k+2je_j+1 as n — o0.

g1

The proof is complete. H

64. Properties of the Perron-Frobenius operator.
Let
Lo=e"D L,

The first result concerning the Perron-Frobenius operator is the following.

Theorem 4.1. If a function f : E°° — IR has a Gibbs state, then for every n > 1 and
every w € I"™

L5(1)(w) < Q.

Proof. Let v be a Gibbs measure for f. In view of Lemma 2.3 and the definition of Gibbs
states we get

Li)w) = Y en(Suf(r)=P(n) < DY Qulrl]) < Quie™(w]) < Q.

TEOT " (w) TET " (w)
The proof is complete. B

We would like to emphasize that in in Theorem 4.1 we assumed only the existence of a
Gibbs state and not an eigenmeasure of the conjugate Perron-Frobenius operator. We shall
now prove the following.

Theorem 4.2. If the incidence matrix is finitely primitive, then there exists a constant
R > 0 such that

Lo(1)(w) 2 R
foralln > 1 and all w € E.

Proof. It follows from (2.3) and Theorem 2.5 that [ £{(1l)dm =1 for all n > 1. Hence
for every n > 1 there exists w(n) € E* such that LF(1)(w(n)) > 1. Let now A C E? be
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the set given by finite primitivness of the incidence matrix A. Since A is finite and f is
Holder continuous, we have

N = min{exp (inf(Sy f|a)) — aP(f)) : @ € A} > 0.
Applying now Lemma 2.3, we get for every n > ¢ + 1 and every 7 € E° the following

Ly(W)(r) =
= Z €xp (Snf(WT) - P(f)n)

WEEn:Awnrl =1

> 3 exp(Sufwaw)r) - P(f)n)

> o AZ exp(Snf(wa(w)T) - P(f)n)
WEBMTAy  (n—q), =1
> AZ exp(Sn—qf (wa(w)7) — P(f)(n — q)) exp(Syf(a(w)T) — P(f)a)
WEBMTA,  (n_q), =1
2> exp(Sn—of (wa(w)7) — P(F)(n — q))
WEBN=TAy,  (n_q), =1
> NT(f)~ > exp(Sn—qf (ww(n —q)) = P(f)(n—q))

weEn_q:A“’n—q“’(n*q)l:l

= NT(f)"' L (1) (w(n — q)) > NT(f)"},

where a(w) is an element of A such that A, 4w), = Aaw),n = 1. Since by finite primi-
tivness of A, sup,c{inf{i € I : A;; = 1}} < oo, we deduce that min,<,{inf(Lg (1))} > 0.
Combining this and the last display we conclude the proof. B

Theorem 4.3. If the incidence matrix is finitely primitive, then there exists at most one
Borel probability fixed point of the conjugate operator L.

Proof. Suppose that m and m; are such two fixed points. In view of Proposition 2.2(b)
and Theorem 2.5 the measures m and m; are equivalent. Put p = dd%I. Fix temporarily
w € E*, say w € E™. It then follows from (3.1) and Theorem 2.5 that

/eEoo-A B exp (Snf(wT) — P(f)n)dfn(T)

wn Tl

[ ep(Salen) - P D)esp(ier) - Pt

Wn Ty

[ exp (S0 f (0(wr))) — P(f)(n — 1)) exp(f (wr) — P(f))din(r).
TEE>:A,

(@))p_1m =1
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Hence

inf (exp (£l — P(/)))ri((ow]) < ril(w]) < sup(exp(flw) — P()))in((ow]).

Since f: E*° — IR is Holder continuous, we therefore conclude that for every w € E*

(4.1) lim (1))

n=20 11([0(w)]n—1]

and the same formula is true with m replaced by m;. In view of Theorem 2.5 and Theo-
rem 3.2 there exists a set of points w € E°° with m measure 1 for which the Radon-Nikodym
derivatives p(w) and p(o(w)) are both defined. Let w € E* be such a point. Then using
(4.1) and its version for m; we obtain

p(w) = lim (ml([w|”])) = lim ( mafwl]) o)) -m([a(w”n_ﬂ))

N i ([0(w)ln-1])  m([o
= exp(f(w) = P(f))plo(w)) exp(P(f) = f(w)) = p(o(w
But since, in view of Theorem 3.2, o : E°° — E° is ergodic with respect to a o-invariant

measure equivalent with m, we conclude that p is m-almost ewerywhere constant. Since
m1 and m are both probabilistic, m; = m. The proof is complete. B

n—>00 n— 00

65. Ionescu-Tulcea and Marinescu inequality. Alternative proofs of most results
of this section can be found in Chapter 4 of [Ar] and in [AD] (for ex. Proposition 1.4
in [AD] states the same as our Lemma 5.1). In particular the reader should notice that
Gibbs-Markov maps considered in [AD] are a generalization of our subshifts with finitely
irreducible incidence matrix and Holder continuous potentials.
Let
Ho={g:1°° — C: g is bounded and continuous}

and for every a > 0 let
Ho = {9 € Ho : Valg) < o0}.

The set H, becomes a Banach space when endowed with the norm
lglla = llgllo + Va(g).

The main technical result of this section, called Ionescu-Tulcea and Marinescu inequality,
is the following.

Lemma 5.1. Suppose that a Holder continuous function f : E*° — IR, say with an
exponent 3 > 0, satisfying (2.2) has a Gibbs state. Then the normalized operator Ly :
Ho — Ho preserves the space Hg and moreover there exists a constant C' > 0, such that
for every n > 1 and every g € Hp

1£5(9)lls < Qe™""lglls + Cllgllo-
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Proof. Let 7,p € E*®, 7|, = p|r and 741 # pg+1 for some k > 1. Then for every n > 1

Ly@)p) = Lo)m) = > exp(Saf(wp) = P(f))g(wp)-

WEE™: AL, p =1

_ Z exp(Snf(wr) = P(f))g(wT)

weE™: Ay, p; =1

= Y exp(Saf(wp) — P()(g(wp) — g(wr))+

weE™ :Awnpl =1

(5.1) + Y glwr)(exp(Snf(wp) — P(f)) — exp(Suf(wT) — P(f)))

WEEn:Awnpl =1

But |g(wp) — g(wT)| < Vs(g)e Pm*F) and therefore, employing Theorem 4.1 we obtain

> exp(Sn f(wp) — P(f)n)|g(wp) — g(wr)| < LE(1)(p)Va(g)e PHF) <

weE™: Ay, p; =1
(5.2) < QVi(g9)e Pt < e=AnQ)|g]|5ds(p, T)

Now notice that there exists a constant M > 1 such that |1 —e®| < M|z| for all z with |z| <
log(T'(f)). Since by Lemma 2.3, |Sy f(wp) — Sy f(wT)| < dg(p,7) log(T(f)) < log(T'(f)),

we can estimate as follows.

|eXp(Snf(WP) - P(f)n) - eXp(Snf(w - (

7) = P(f)n)| =
= eXp(Snf(wp) - P(

f
F)n)1 — exp(Sn f(wT) = S f(wp))|

< M exp(Spf(wp) = P(f)n)|Snf(wp) — Snf(wr)]
< M exp(Syf(wp) — P(f)n) log(T(f))ds(p, )
= M log(T(f)) exp(Sn f(wp) — P(f)n)ds(p,7)

Hence, using Theorem 4 again, we get

Y. lg@n)llexp(Suf(wp) = P(f)n) — exp(Suf(wr) — P(f)n)|

weE™: Ay, p; =1

<|lglloMlog(T(f))ds(p,7) > exp(Saf(wp) = P(f)n)

wEE”:Awnplzl
= llglloM log(T'(f))dp(p, 7) L5 (1) (p)
< MQ1og(T(f))llgllods(p,T)

Combining this inequality, (5.2) and (5.1), we get

1£5(9)(p) = L5 (9)(7)] < e Qllgllads(p, 7) + MQlog(T(£))l|gllods(p. 7).

Combining in turn this and Theorem 4.1 we get

1£5(9)llp < Qe™lglls + Q(M log(T(f)) + Dllglls-

25



The proof is finished. W

Remark 5.2. We would like to remark that in fact in the proof of Lemma 5.1 we used
only “weaker” property of Gibbs states, namely the right-hand side inequality of (2.1).

If the unit ball in Hg were compact as a subset of the Banach space Hy with the supremum
norm || - ||p, we could use now the famous Ionescu-Tulcea and Marinescu Theorem (see
[ITM]) to establish some useful spectral properties of the Perron-Frobenius operator L.
But this ball is compact only in the topology of uniform convegence on compact subsets
of E°° and we need to prove these properties directly ommitting the Ionescu-Tulcea and

Marinescu Theorem theorem. Beginning with Lemma 5.5 we develop the approach from
[PUJ.

Theorem 5.3. Suppose that a Holder continuous function f : EF*° — IR, say with an
exponent [ > 0, satisfying (2.2) has a Gibbs state and the operator conjugate to the
normalized Perron-Frobenius operator £y has a Borel probability fixed point m. Then the
operator Lo : Hg — Hp has a fixed point 1) < @ such that [dm = 1. If, in addition, the
incydence matrix A is finitely primitive then ¢ > R, where R is the constant produced in
Theorem 4.2.

Proof. In view of Lemma 5.1, ||£{(11)|[g < @ + C for every n > 0. Hence

(5.3) %z_j <Q+cC
=0
B8

for every n > 1. Therefore, by the Ascoli-Arzela theorem there exists an increasing to in-

finity sequence of positive integers {ny}r>1 such that the sequence { 1 Z?ko Yol o(1 )}
k>1

converges on compact sets of E>, say to ¢ : E* — IR. Obviously |[¢|lzs < Q + C
and, in particular 1 € Hg. Since m is a fixed point of the operator conjugate to Ly,
[ Li(1)dm = 1 for every j > 0. Consequently [ >is o Lh(M)dm =1 for every n > 1.
Hence, applymg Lebesgue’s dominated convegence theorem along with Theorem 4.1, we
conclude that [¢dm =1 and ¢ < Q. Assuming in addition that the incydence matrix A
is finitely primitive, using Theorem 4.2, we simultaneouslu get 1y > R. We are left to show
that Lo(¢) = ¢. And indeed, using Theorem 4.1, we get for every k > 1 that

ngp—1 ngE—1

co n—kzc —n—k]ZO” = (W) - o))y < Q.
Hence
(5.4) Lo inilcj(n) —inilcf(n)%o
e = 0 e 4= 0
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uniformly. Therefore, in order to conclude the proof it sufficies to show that if a sequnce
{9k}32, C Ho is uniformly bounded and converges uniformly on compact sets of E°,
say to a function g, then Lo(gx), k¥ > 1, converges uniformly on compact sets of E* to
Lo(g). And indeed, first notice that ||g||o < B, where B is an upper bound of the sequnce
{gr}32 - Fixnow e > 0. Since f has a Gibbs state, the series M = ., exp(sup(f|[,~])—P)
converges and there therefore exists a finite set I. C I such that

(5.5) Z 2B exp(sup(f|s;) — P) < g

ieI\I.

Fix now an arbitrary compact set K C E°. Then for every i € I, the set iK = {iw :
w € K and A;,, = 1} is also compact and so is the set | J;c; iK. Since {gx}z>, converges
uniformly on compact sets to g, there exists ¢ > 1 such that for every n > q, ||(gn —

)|U =7+ Applying this, Theorem 4.1 and (5.5), we get for every n > ¢ and every

< Z |gn(w> —g(w)|exp(fiw) =P)+ > |gn(iw) — g(iw)| exp(f(iw) — P)
’L'EIE:AZ'“,I:]. ’iEI\IE:Aiwlzl

< Y o) —P) 3T Jgaliw) + g(iw)|exp(f(iw) ~ P)
iEIEZAiwl—l iEI\IE:Aiwlzl

< gz o exp(sup(fl) ~P)+2B > exp(sup(fl) - P)

i€l i€IN\I: A, =1
< € g€
~ 5 + 5 =&

The proof is complete. H

From now on we assume in this section that the incidence matrix A is finitely primitive.
Then ¢ > R and therefore the operator £ : Hyo — Ho, given by the formula

(5.6) £(g) = iz()(gw)

is well-defined. Tt is straightforward to check that £(Hg) C Hg (i.e. 1/¢) and the product of
any two functions in Hg are again in Hg. The basic properties of the operator L following
from Lemma 5.1, Theorem 4.2 and Theorem 5.3 are listed below.

Theorem 5.4. Writing

un(w) = exp(Sp f(w) — Pn)———=



we have for all g € Hg and all n > 1

(@) £7(0)(0) = sy LB @) = Xrepnan,, ., oy (o).

(b) £7(1) = 1 and ||£"||p = 1.

() M = sup,,{|[£"]} < oo.

(d) £*(fif) = fif. In particular the closed subspaces Hy = {g € Ho : fif(g) = 0} and
Hy = {9 € Hp : fig(g) = 0} are L-invariant.

(e) Hp = RUDHY (9= jif(9)L+ (g — fif(9)1)).

Denote
0,1 )
Hy = {g € HY - lgllp < 1)

We shall prove the following.

Lemma 5.5. For every n > 0 define

b = sup{[|L7 ()]s : 9 € HG'}.

Then lim,,_, - b, = 0.

Proof. Define for every n > 0

ap = sup{||L"(9)|lo : g € Hy'}.

It immediately follows from Theorem 5.4(b) that the sequence {a,}n>1 is (weakly) de-
creasing. We shall show first that

lim a, = 0.
n—0o0

Suppose on the contrary that a = limy, 00 an > 0. By Theorem 5.4(c), sup,>qbn < M <
0o. There therefore exists 6 > 0 such that if dg(w, 7) < 6, then L™ (9)(1) =L (g)(w)| < a/2

for all g € ’Hg’l and all » > 0. Since A is finitely primitive, there exists p > 0 such that
for every w € E°,

(5.7) Up(B(w?5)) =

Fix now g € Hg’l and n > 0. Since fﬁ”gdﬂf = 0, there exists 7 € I°° such that

ﬁ:”(g)(T) < 0. By (5.7) for every w € I there exists p € B(7,0) N 0~ P(w). Then
L"(g)(p) < L™(g)(7) + & < & < ap — %. Thus

Lr(Lrg)(w) =L (p)up(p) + Y L"g(n)up(n)
nea=r(@)\{p}

< (an_ %) up(p)+an Z
neo~?(w)\{p}
g a

— 5 lnf(up)



Similarly we get ﬁp(ﬁ”g)(w) > —ap + §inf(u,) and in consequence, ||ﬁp+”g||0 < ap —
§ inf(u,) or

~ a .
1£%gllo < an—p — ) inf (up)

for every n > p. Taking the supremum over all g € ’Hg’l, we thus get ap, < an_p—§ inf(uy).
So, a = lim, o0 ay, < limy_yo0 ap—p — §inf(u,) = a — §inf(u,) < a. This contradiction
shows that lim,,_, . a,, = 0.

Fix now € > 0 and then an integer v > 1 so large that a, < 55 and Qe PrM < e/2

for all n > v. Then, in view of Lemma 5.1 for every n > 2v and every g € ’Hg’l we get
A Am— s A (o)1 A A €
1£7g]ls < [1£77(L79)llp < Qe =||L%||5 + C||LVgllo < M +Ca, <e.

So, b, < e and the proof is complete. B

Theorem 5.6. Suppose that a Holder continuous function f : E*° — IR, say with
an exponent 3 > 0, satisfies (2.2). Suppose also that the normalized conjugate Perron-
Frobenius operator £ has a Borel probability fixed point m. Assume that the incidence
matrix A is finitely primitive. Then there exist constants M > 0 and 0 < v < 1 such that
for every g € Hg and every n > 0

(@ 1£7) = [ aditslla < ¥"llgls
and
(v I1€3(9) ~ [ gdmsila < T2 gl

where £ is the operator defined by (5.6) and fi¢ is the unique invariant Gibbs state of the
potential f whose existence and uniqueness follow from Theorem 3.2 and Theorem 2.5.

Proof. Lemma 5.5 says that lim,, ||,CA|?{%||5 = 0. There thus exists ¢ > 1 such that
£A|;I{%||g < (1/2). So, by an immediate induction, ||£A|g%||g < (1/2)™. Consider now an

arbitrary n > 0 and write n = pg+r, 0 < r < g—1. Then, using in addition Theorem 5.4(c),
we get for every ( € ’H%

n

—r
q

1£7¢lls = [1EP(L7O)ls < (L/2)PIL7¢]|p < M(1/2)P = M(1/2)

< M(1/2)"5° = M(1/2) 7 (1/2)F

and therefore for every n > 0, ||£A|;1_t0 g < M(1/2)%7", where v = (1/2)Y/7 < 1. If now
8

g € Hp, then g — fif(g) € Hp and |lg — jir(9)llg < llglls + [liz£(9)lls < 2llgl|s. Thus, for
every n > 0

1£7(9 = Ag(9))lls < 2M~"(1glls
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and the proof of Theorem 5.6(a) is complete. Part (b) is an immediate consequence of
part (a). H

The next proposition, the last result of this section, explains the real dynamical meaning
of the fixed points of the normalized Perron-Frobenius operator Ly.

Proposition 5.7. Assume that the operator conjugate to the normalized Perron-Frobenius
operator Ly = e_P(f)ﬁf has a Borel probability fixed point m. Let

Fix(Ly) ={g € L1(m) : Lo(g9) = g, /gdfn =1, and g > 0}

and
Al(m) = {g € Li(m) : gimoo t = gfn,/gdm =1, and g > 0}

Then Fix(Ly) = AI(m).
Proof. It follows from (4.1) that for every ¢ € I and every w € E* with A4;,, =1, we

have o
dm o1

(w) = exp(f(iw) — P(f)),

where we treat i : {w € E* : A;,, = 1} — E° as the map defined by the formula
i(w) = iw. Therefore, the Perron-Frobenius operator £y sends the density of a measure [
absolutely continuous with respect to m to the density of the measure fioo~!. Hence, the
proposition follows. l

dm

§5. Stochastic laws. In this section we closely follow §3 of [DU1]. Let ' be a finite
or countable measurable partition of a probability space (Y, F,v) and let S : Y — Y be
a measure preserving transformation. For 0 < a < b < oo, set Fg = \/a<l<b S—IT. The
measure v is said to be absolutely regular with respect to the filtration defined by T, if
there exists a sequence (3(n) \, 0 such that

[ sup sup pAIL) = vy < o).

Y a AEI‘g‘jrn

The numbers ((n), (n > 1), are called coefficients of absolute regularity. Let o be the
partition of I°° into initial cylinders of length 1. Using Theorem 5.6, and proceeding
exactly as in the proof of [Ry, §3 of Theorem 5] we derive the following (with the notation
of previous sections).

Theorem 6.1. The measure jif is absolutely regular with respect to the filtration defined
by the partition a. The coefficients of absolute regularity decrease to 0 at an exponential

rate.
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Theorem 6.1 says in particular that the dynamical system (o, fif) is weak-Bernoulli (see
[Or]). As an immediate consequence of this theorem and the results proved in [Or] we get
the following.

Theorem 6.2. The natural extension of the dynamical system (o, fif) is isomorphic with
some Bernoulli shift.

It follows from this theorem that the theory of absolutely regular processes applies ([IL],
[PS]). We sketch this application briefly. We say that a measurable function g : I* — IR
belongs to the space L*(o) if there exist constants «, v, M > 0 such that [ [|g||3t* dji; < oo
and

[ g = B, (gl [ dis < a2

for all n > 1, where Ej, (g|(a)”_1) denotes the conditional expectation of g with respect
to the partition (a)"~' and the measure jif. L*(o) is a linear space. It follows from
Theorem 5.1, [IL] and [PS] that with fif(g) = [ g djiy the series

7t =oo) = | =iga) i +23 [ (0= is@)aoo" — isla) dis

is absolutely convergent and non—negative. The reader should not be confused by two
different meanings of the symbol o: the number defined above and the shift map. Then
the process (g o o™ : m > 1) exhibits an exponential decay of corellations and if o2 > 0, it
satisfies the central limit theorem. More precisely, we have the following.

Theorem 6.3. If u,v € L*(0) then there are constants C, 0 > 0 such that for every n > 1
we have

/(g — Eu)((g — Ev) oa™) duy < Ce ",
where Eu = [wdfiy and Ev = [vdfy.

Theorem 6.4. If g € L*(0) and 02(g) > 0, then for all r

n—1 i _ r
v a(9)V2r ) -

The most fruitful in geometric applications is a.s. invariance principle and therefore we
would like to devote it more time. This principle means that one can redefine the process
(go o™ :n > 1) on some probability space on which there is defined a standard Brownian
motion (B(t) : t > 0) such that for some A > 0

> Lo’ —iip@)] - Blo®) = 0(*7) iy ae.
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Let h : [1,00) — IR be a positive non-decreasing function. The function A is said to
belong to the lower class if

/100 @ exp(—%h(t)z)dt < 00

and to the upper class if

/100 @ exp(—%h(t)z)dt = 00.

Well-known results for Brownian motion imply (see Theorem A in [PS]) the following.

Theorem 6.5. If g € L*(0) and 02(g) > 0 then

n—1

fif <{w eI>: Z(g(aj(w)) — fig(g)) > o(g)h(n)y/n for infinitely many n > 1})
j=0
B { 0 if h belongs to the lower class,
1 ifh belongs to the upper class.

Our last goal in this section is to provide a sufficient condition for a function ¢ to belong
to the space L*(0).

Lemma 6.6. Each Holder continuous function which has some finite moment greater than
2 belongs to L* (o).

Proof. It suffices to show that any Holder continuous function 3 : ¥ — IR satisfies the
requirement [ ||¢p — Eg, (¥[(a)")||3 diiy < Mn~2~7 which will finish the proof. So, given
n > 1 suppose that w, T € A for some A € aj~!. In particular w|, = 7|,. Hence |¢(w) —
()| < Vg(p)e P which means that (1) — Vz(1)e ™" < ¢(w) < (1) + Vg (p)e P
Integrating these inequalities against the measure iy and keeping w fixed, we obtain

/A Wdfig — Va()e P ip(A) < p(w)is(4) < /A Wity + Va()e"" iy (A).

Dividing these inequalities by fis(A) we deduce that

1

‘lb(w) T A

/A wdﬂf‘ < Vp()e o,

Thus [ |[¢(w) — Ea, (¥|()™) ||} diy < Va(¥)?e™™ and we are done. B

§7. A comparison with Sarig’s approach. In [Sa] O. Sarig has proposed a different
definition of pressure for the class of locally Holder continuous functions closely generalizing
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Gurevich’s definition (se [Gu]) of topological entropy of subshifts with an infinite alphabet.
Sarig’s approach is the following. Fix ¢+ € I and define

Zn(fi) = > exp(Sn f (w))-

{weE>: 0" (w)=w,w; =%}

It can be proven that that the limit lim,,_ o %log Zn(f,1) exists and is independent of
i. This number is just the topological pressure of f introduced by Sarig in [Sa]. We
will denote it by P,(f). As we already mentiond working always with locally Holder
continuous functions Sarig has proved in [Sa] Theorems 1.3 and 1.5 with P(f) replaced
by P,(f). He has also proved Theorem 1.2 and Theorem 1.4 without any assumptions
on the incidence matrix but with the pressure P(f) replaced by P,(f). Consequently, we
always have P,(f) < P(f) and Py(f) = P(f) if the icidence matrix is finitely irreducible
(in general this equality fails). We would like to add that O. Sarig has provided a simple
short argument for equality P,(f) = P(f) in the case when E*° = I*°, i.e. when E* is
the full shift. This argument can be found for example in [HU]. We would like to add the
remark that although Sarig’s pressure P,(f) behaves better as a theoretical notion (the
varaitional pronciple is satisfied if both pressures differ), the more traditional definition
of pressure like P(f) fits better to our future geometrical applications. Our last comment
is that the existence of Gibbs states constructed in Section 6 does not follow from the
sufficient conditions provided in [Sa)].
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