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FRACTAL MEASURES FOR PARABOLIC IFS

R. DANIEL MAULDIN AND MARIUSZ URBANSKI

ABSTRACT. Let h be the Hausdorff dimension of the limit set of a conformal parabolic iter-
ated function system in dimension d > 2. In case the system of maps is finite, we provide
necessary and sufficient conditions for the h-dimensional Hausdorff measure to be positive
and finite and also, assuming the strong open set condition holds, characterize when the
h-dimensional packing measure of the limit set is positive and finite. We also prove that
the upper ball (box)-counting dimension and the Hausdorff dimension of this limit set coin-
cide. As a byproduct we include a compact analysis of the behaviour of parabolic conformal
diffeomorphisms in dimension 2 and separately in any dimension greater than or equal to 3.

1. Introduction and preliminaries

Our setting is the following. Let X be a compact subset of a Euclidean space IR? with
nonempty interior such that the boundary of X has no isolated points. We consider a count-
able family of conformal maps ¢; : X — X, ¢ € I, where I has at least two elements satisfying
the following conditions.

(1): (Open Set Condition) ¢;(Int(X)) N ¢;(Int(X)) = 0 for all i # ;.

(2): |¢i(z)| < 1 everywhere except for finitely many pairs (i, x;), i € I, for which z; is the
unique fixed point of ¢; and |@}(x;)| = 1. Such pairs and indices ¢ will be called parabolic
and the set of parabolic indices will be denoted by €. All other indices will be called
hyperbolic.

(3): (extension) There exist an open connected neighbourhood V' of X and s < 1 such
that Vn > 1 Vw = (wy, ...,wy) € I™ if w, is a hyperbolic index or w,_1 # w,, then ¢,
extends conformally to V, maps V into itself and ||¢/,|| < s.

(4): If ¢ is a parabolic index, then N,>q ¢i=(X) = {x;} (Thus, the diameters of the sets
¢in (X)) converge to 0.) -

(5): (Cone Condition) There exist a, [ > 0 such that for every x € X C IR?, there exists
an open cone Con(z, u,,a,l) C Int(X) with vertex z and a central angle of Lebesgue
measure «, where Con(z,u,, a,l) = {y : 0 < (y — x,u,;) < cosally — z|| < [} and
]| = 1.

(6): 3s < 1Vn >1VYw e I"if w, is a hyperbolic index or w,,_1 # wy, then ||¢] || < s.

(7): (Bounded Distortion Property) 3K > 1VYn > 1 Vw = (wi,...,w,) € " Vo,y € V if
wy, is a hyperbolic index or w,_; # w,, then

16,(v)]]
EAG
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(8): There are constants L > 1 and a > 0 such that
115l = llos@)I| < LUy — =l

for every ¢ € I and every pair of points z,y € V.

We call such a system of maps S = {¢; : i € I} a conformal iterated function system
abbreviated as conformal IFS. If Q = (), we call the system S hyperbolic; if Q # 0, we call it
parabolic. Throughout this entire paper we assume that the system S is parabolic.

We would like to emphasize that if d > 2, then the conditions (7) and (8) are a consequence
of condition (3) alone. Indeed, in case d = 2, these follow from Koebe’s distortion theorem (in
its version stated in [Pr]) and the observation that complex conjugation in ('is an isometry.
In case d > 3, both conditions have been essentially proved in [U2]. Because of the extreme
importance of these properties and for the sake of completeness, we give careful proofs in
Section 2. Finally, the appropriate results in case d = 1 have been proven in [U3]| (by
methods which are specific to that dimension), we assume throughout the entire paper that
d> 2.

By I'* we denote the set of all finite words with alphabet I and by 7°° all infinite sequences
with terms in /. It follows from (3) that for every hyperbolic word w, ¢,(V) C V. For each
w € I* UI>®, we define the length of w by the uniquely determined relation w € I“. If
w € I"UI*® and n < |w|, then by w|, we denote the word wyws . ..w,. In [MU4], we proved
that lim,, ;. supy, -, {diam(¢, (X))} = 0. So, the map 7 : I*® — X, m(w) = Ny>0 Pu, (X), is
uniformly continuous. Its range

J=Jg=n(I"),
the main object of our interest in this paper, is called the limit set of the system S. For every
integer ¢ > 1, we denote
ST ={p,:w e I}.

Of course, Js¢ = Jg and sometimes in the sequel it will be more convenient to consider an
appropriate family of iterates S? of S rather than S itself. The two basic tools we use to study
limit sets of parabolic IF'S are conformal measures and a hyperbolic system S* associated with
S. The system S* is given by

S*={pmj:n>1,1€Q, i#j}U{dp: kel\Q}
Thus, I,, the countable set of indices or letters for the system S* is
L={"j:n>1,i€Q, i#j}U{k: kel\Q}.
This system was described and analyzed in [MU4]. It immediately follows from our as-
sumptions (comp. Theorem 5.2 in [MU4]) that the following is true.
Theorem 1.1. The system S* is a hyperbolic conformal iterated function system.

The limit set generated by the system S* is denoted by J*. The following result (see
Lemma 5.3 in [MU4]) allows us to reduce our geometric considerations to the limit set S* and
we are able to apply the theory developed for infinite hyperbolic IFS.
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Lemma 1.2. The limit sets J and J* of the systems S and S* respectively differ only by a
countable set: J* C J and J\ J* is countable.

Let
S* ()= (1 U ¢alX),

FEFin acl\F

where Fin denotes the family all finite subsets of I,. In [MU1], S*(co) is denoted by X (00).
The following proposition is an immediate consequence of the condition (4).

Proposition 1.3. If the alphabet I is finite, then
S*(00) = {x; : i € Q}, the set of parabolic fived points.

Following [MU1], given ¢ > 0, a Borel probability measure m is ¢-conformal for the system
S* provided m(Js«) = 1 and for every Borel set A C X and all i, 5 € I, with i # j,

m(@:(4)) = [ |¢if'dm (1)
and

m(i(X) N ¢;(X)) = 0. (1.2)

For the system S*, we define the functions

Y(t) = llgall’ and on(t) = 3 [l@,1l",

a€l. a€l}
and P*, the topological pressure function for the system S*,
log v, (¢
P(t) = lim 28D,
n—0o0 n

Finally, the finiteness parameter for the system S* is given by
6(S™) = inf{t : (t) < oo} = inf{t: P*(t) < oo}.
The system S* is said to be hereditarily reqular provided 1 (0(S*)) = oo and regular provided
there is some ¢ such that P*(t) = 0. Of course, hreditarily regular systems are regular. Let
h = hg = dimg(Js) = dimg(Js-)

be the Hausdorff dimension of the limit set Jg. It has been proven in [MU1] that h = inf{¢ :
P*(t) < 0} and if a hyperbolic IFS is regular, then an h-conformal measure exists and is
unique. In Section 4 we shall prove the following

Theorem 1.4. If S is a finite parabolic IF'S, then the system S* is hereditarily reqular and,
consequently, an h-conformal measure for S* exists.

From now on, unless otherwise stated, we will assume that the alphabet [ is finite and m
will denote the h-conformal measure produced in Theorem 1.4.

Let H! denote the t-dimensional Hausdorff measure and P?, the ¢-dimensional packing
measure. We recall that the system S satisfies the strong open set condition if Js NIntX # ().
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Noting that in terminology of [MU1] each hereditarily regular IFS is regular, and combining
Theorem 1.4, Corollary 4.7 in [MU4] and Corollary 5.10 in [MU4], we get the following,.

Theorem 1.5. If a finite parabolic IFS S satisfies the strong open set condition, then H'(J) <
oo and Ph(J) > 0.

Next we state the main theorem of our paper. It contains a complete description of the
h-dimensional Hausdorff and packing measures of the limit set of a finite parabolic IF'S.

Theorem 1.6. Let S be a finite parabolic IF'S satisfying the strong open set condition. Then
(a): If h < 1, then 0 < P"(J) < oo and H"(J) = 0.
(b): If h =1, then 0 < H"(J) < P"(J) < o0.
(c): If h > 1, then 0 < H"(J) < oo and P"(J) = oco.

This sort of theorem has appeared in several contexts, for Kleinian groups in [Su], in the
context of parabolic rational functions in [DU], for rational functions with no recurrent critical
points in the Julia set (abbreviated as NCP maps), in [U1] and for parabolic Cantor sets (which
arise in 1-dimensional parabolic IFS) in [U3]. The idea behind the proofs here is different from
those cited. It relies on developing, extending, simplifying and clarifying the approach which
originated in [MU3|, where we studied a particular parabolic system whose limit set is the
residual set in Apollonian packing and in employing the necessary and sufficient conditions for
the Hausdorff and packing measures to be positive and finite, provided in [MU1] and [MU2].
To indicate the generality of our approach, we note that the results given here apply to not
only to parabolic IFS, but also to other iterations. For example, as shown in [UZ], given a
parabolic polynomial map, one can construct an associated parabolic IF'S which allows one to
obtain the analysis of the Julia set corresponding to that stated in Theorem 1.6. This is by no
means straightforward. In fact, these constructions carry over to the case of parabolic rational
functions whose Julia set is a Cantor set and perhaps to general parabolic rational maps. We
speculate that perhaps even in the case of NCP maps, one can demonstrate appropriate
versions of our main theorem as a corollary of Theorem 1.6.
We shall also prove in the Section 4 the following.

Theorem 1.7. If S is a finite parabolic IFS, then

where dimg(J) denotes the upper ball-counting dimension, also called the boz-counting dimen-
ston, Minkowski dimension or capacity.

One more note for the reader. The dynamical properties of the parabolic IFS proven in
Sections 2 and 3 and needed for the proofs of Theorem 1.6 and Theorem 1.7 are provided
in the beginning of Section 4 in a unified fashion. Therefore, the reader only interested in
Theorem 1.6 and Theorem 1.7 may actually read Section 4 independently of Section 2 and
Section 3.

Section 2 mainly concerns the dynamical properties of a single parabolic conformal dif-
feomorphism in IR?, d > 3 and can be viewed as an introduction to the technically more
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complicated Section 3 which deals with dynamical properties of a single simple parabolic
holomorphic map in IR%. Both sections provide a compact systematic description of the
quantitative behaviour of parabolic maps needed for the proofs in Section 4. The qualitative
behaviour of a single parabolic holomorphic map considerd in Section 3 is known as Fatou’s
flower theorem (see [Al] for additional historical information). Some quantitative results can
be also found in these papers. At the end of Sections 2 and 3 some facts about parabolic
iterated function systems are proven.
We end this section with two terminologies. Given two sets A, B C IR, we denote

dist(A, B) = inf{||a — b|| : (a,b) € A x B} and Dist(A, B) = sup{||la —b|| : (a,b) € A x B}.
2. The case d > 3

As we mentioned in the introduction, it is known (see [BP] and [Ha]) that in every dimension
d > 3 each C' conformal homeomorphism A defined on an open connected subset of IR?
extends to the entire space IR? and takes on the form

A=nDoi,, +b, (2.1)
where 0 < 7 € R is a positive scalar, D is a linear isometry of IR?, i,, is either the inversion
with respect to some sphere centered at a point @ and with radius r, or the identity map, and

b € R 1f i,, is an inversion, then for every z € IR?
2

|A4(2)]| = —5

|z —all*

Definition 2.1. We say a conformal map A : IR* — IR? is parabolic provided it has a fized
point w € IRY such that ||A'(w)|| = 1 and there is a point £ € IR\ {w} and lim,,_,4 A" = w.

If A is a conformal map and fixes w, then setting
A=ijloAociy; =i, 0A0i,,
we have A is conformal and A(c0) = co. Therefore,
A=\D +¢,

where A > 0, D is an orthonormal matrix, and ¢ € IRY. From now on, without loss of
generality, we will assume that w = 0, ¢.e., w is the origin and we will write ¢ for 4 ;.

Lemma 2.2. Jf A: R — IRY is a parabolic conformal map and if \ is the scalar involved in
the formula for A, then A = 1.

Proof. If A < 1, then A : R* — R% is a strict contraction and due to Banach’s contraction
principle, it has a fixed point b € IR? such that limy, e A"(z) = b for every z € IR?. However,
this is a contradiction, since lim,,_, o, A™(i(£)) = oco. Thus, A > 1. Assume A > 1. Then for
every z € IR?\ {0},

1A' (2)[] = ' (AGi(2) A" (i(2))d' ()] = MAGED 22072 = M 2IAD 72 (2) + el |72
= M2l D(2) + el lz[DI72 = A D/ 121D + 2]/ A)ell] .
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Since lim, o ||z|| = 0 and since ||D(2)|| = ||z||, we deduce that ||A'(0)|| = lim,_ ||A"(2)]|| =
A1 < 1. This contradiction shows that < 1, and consequently A = 1. The proof is complete.
|

Next, we want to estimate the rate at which A"(z) goes to +oo.

Lemma 2.3. If A : R* — IR? is a parabolic conformal map, then there exists a non-zero
vector b € IR? and a positive constant k such that for every z € IR and every positive integer
n

|A"2 — nb|| < ||2|| + &-

Proof. By a straightforward induction, we get
n—1
A"z =D"2+ Y D'(c).
j=0
Write ¢ = b+ a, where b is a fixed point (a priori perhaps 0) of D and a belongs to W, the
orthogonal complement of the vector space of the fixed points of D. Since lim,, o, A"(i(£)) =
oo, W is not the trivial subspace of IR?. In addition, D(W) =W and D —Id : W — W is

invertible. Since
n—1
(D —1d) (Z Dj(a)) =D"a—a
=0
and since ||D™a — al| < 2||a||, we therefore conclude that for every n > 1

5 0@ < 2l |10 - )
2

Hence,

|M%—mw=‘ < [lzll + 2 (D = 1d) | - llall.

n—1
D"z + > D'(a)
§=0

Again, since lim,,_,o, A"(i(£)) = oo, we finally conclude that b # 0 and the proof is complete.
|

As an immediate consequence of this lemma we get the following.

Corollary 2.4. Let A : R? — IR be a parabolic conformal map. For every compactum
F C IR?, there ewists a constant Bp > 1 and integer Mp € IN such that for every n > Mp
and every z € F

Bi'n < ||A"z|| < Bpn.

Lemma 2.5. Let A : IR — IR? be a parabolic conformal map. For every compactum L C
R4\ {0}, there exist a constant Cp; > 1 and integer Ni, € IN such that for every n > Ny,
and every z € L

02711714 < |(A™)(2)|| < Cpan? and diam(A™(L)) < Cpan ?
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Proof. By the Chain Rule, we find for every z € IR\ {0}
1A ()] = [ (A" G- 1A G- 1 ()] = 1A )77

For every »z € L, Dist™?(0,L) < [|z]|7 < dist™(0, L), and in view of Corollary 2.4, if
n > Mjz), then B( n < ||A"z]| < Bjyn. Consequently, if z € L and n > M;,), we have

(B,.(L)Dist(o,L)) ‘n? < 1(A™)'(2)|| < Bjpdist (0, L)n "
and the proof is complete. B

Lemma 2.6. Let A : IR — IR? be a parabolic conformal map. For every compactum L C
R4\ {0}, there exists a constant Cpo > 1 such that for all integers k,n with n >k > 1,

Dist(A*(L), A*(L)) < Cpp k™! = (n+1)7"|
and
Dist(A™(L),0) < Cpon

Proof. Let us start with the second 1nequal1ty If n > My and z € L, then, by Corol-
lary 2.4, we get ||A"z|| = [|A"(i(2))|| ' < Bigyn ! and the second inequality follows provided
(' is sufficiently large.

Towards obtaining the first inequality, for every set M C IR, let conv(M) denote the
convex hull of M. Obviously, conv(M) C B(M,diam(M)) and diam(conv(M)) = diam(M).
By using Lemma 2.3, we have for every u € L and n € IV,

A" (i(u)) — A" (i(w))]| < [JA"H(i(u) = (0 + 1)b — (A" (i(u)) — nb) + b]]
< 2(|[i(u)ll + &) + |[bl] < 2(Dist(0,i(L)) + &) + |[bl] := M
Next, choose a positive integer Ny such that Dist(0, conv(Ussn, A*(i(L)))) = H > 0 and

Nol||b|| > Dist(0,i(L)) + k + ||b]| :== M. We claim there is a positive constant C' such that if
u,v € L,k > Ny and 7 > 0, then

AR+ () - AF¥ ()] < O

(k+j+1)7
In order to see this, note that
A+ (0) — A (u)]] <
< (AR () = d(AMTH ()] + [[i(ATH ) — (A ()]
< sup{[[i'(w)]| : w € [AMTH(i(v), AT (i (w) A () — AFIH((w))]
+sup{||i'(w)]] : w € [A™ (i(u)), AR (i) HIATTHi((u) — A i( ()]
< diam(i(L)) sup{||w]| 7> : w € [AHH(i(v)), AT (i(u))]}
+ Msup{||w||~* : w € [A (i(u)), A (i(w))]}

Now, if w € [AF+7+1(i(v)), AF+i+1(j(u))], then by Lemma 2.3, ||w—(k+j+1)b|| < Dist(0,i(L))+
x and ||w]| > (k+7+1)[||b]| — (Dist(0,i(L))+ k) /No]. Also, since ||A* (i(u))— (k+5+1)b|| <
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[li(u) |l + 5+ |[b], if w € [A¥(i(u)), A9 (i(u))], then ||w — (k + j +1)b|| < Dist(0,i(L)) +
k+[[b]| and [|w]] = (k47 + D)|[b]| — (Dist(0, (L)) + &+ [[b][)/No] = (k +j + 1)[[[b]| = M/No].
Combining these inequalities establishes our claim.
Therefore, if Ny < k < n we have

Dist(A*(L), A"(L)) < n_zkfl Dist (A*HF1(L), A (L))
< TSC(k +5) 2 < Cralkt —(n+1)"h

for some constant Cro > 1. Clearly, increasing Cp o appropriately, we see that the last
inequality is also true for all 1 < k£ < n. The proof of the first part of our lemma is thus
complete. ®

Lemma 2.7. For every compactum L C IR%\ {0} there exist a constant Cr3 > 1 and an
integer ¢ > 0 such that for allk > 1 and alln >k +q

dist(A¥(L), A™(L)) > Crs(k~ = n7")
and
dlSt(An(L), 0) 2 CL’3TL_1.
Proof. First, notice that it follows from Lemma 2.3 that if w,z € i(L) and k,n € N, then

(n = k)|[b]] = 2(Dist (0, i(L)) + &) < ||A"(w) — A*(2)]].

Therefore, there is a positive integer ¢y such that if n — k > ¢o, then ||A™(w) — A¥(2)|| >
(1/2)]|b]|(n — k). Let Ny be as in the proof of Lemma 2.6 and M;) be as in Corollary 2.4.
Let k,n > Ny = max{Ny, M;}. Consider two arbitrary points z,w € i(L) and parametrize
the line segment 7 joining A*(z) and A™(w) as

v(t) = AF(2) + t(A™(w) — A¥(2)), t € [0, 1].
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The curve i(7) is a subarc of either a cirlce or a line and let [(i(7y)) be its length. We have

D= [ lGow @l = [ I GOIIN Ol = 14" w) - B [ 1] 2

= [|A" (w) — A’“(Z)H/O 145 (2) + (A" (w) — A*(2)]|dt

> ||At(w) ~ A [ (1A + 1A w) - A1) ar
— ") - A4 ) - A [T o)

AM(z
= (|45 )17 = (1A + |[A" (w) = A*(=)]1)
. )~ QI
[[AR)]- (|[A%(2)]] + [[Am(w) — A*(2)]))
We have ||AF(2)|| + ||A™(w) — A¥(2)|| < Bynyk + Ciyi(1/k — 1/(n + 1)). So, there is a

constant U such that ||A*(2)|| + ||A"(w) — A*(2)|| < Un. In view of Corollary 2.4, there is a
constant (g such that

Thus, there is a constant () such that if £ > N; and n > k + ¢, then
1(i(y) > Q(k~ —n7h). (2.3)

If i(7) is a line segment, then
147 (i(w)) = A*G())| = 1(i(v) = QK™ = n7H). (2:4)
If, however, i(7y) is an arc of a circle, then consider the ray
g(t) = A%(2) + (A" (w) — A%(2)), t € (—00,0].

Proceeding exactly as in the formula (2.2) and using the estimate [|g(¢)|| < | A%(2)|| —
t] A" (w) — A (2)]], we get

(2 > [T u”2du = || A% ()|

W)= | i 1A% (2)]]
And applying Corollary 2.4 we get I(i(g)) > B 0k~ > By (k™! —n~"). Therefore, invok-
ing (2.3), we deduce that both arcs joining the pomts A¥(i(2)) and A"(i(w)) on the circle
i({A%(z) + t(A"(w) — A¥(2)) : t € RU {oo}}) have the length > min{ By, Q}(k~' —n™1t).
Thus, taking also in account (2.4), we see there is a constant P, such that if k,n > N; and
n —k > qq, then

dist(A*(L), A"(L)) > Py(k™" —n™").
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Since 0 is not an element of UN:; A7(L), and since it follows from Lemma 2.3 that A¥(L) — 0
as k — oo, there is a constant C} 3 such that the first part of the conclusion of the lemma
holds. Applying the proven part of the lemma, we conclude that

dist(A"(L),0) = lim dist(A" (L), AR(L)) > Jim Cra(n™t—k 1) =Cpan .

The proof is complete. B

We end this section we by proving the following two results concerning general parabolic IFS
in dimension d > 3. The first is a straightforward consequence of Lemma 2.3.

First, let us note that Lemma 2.6 shows that a conformal parabolic map in IR%,d > 3 has
a unique fixed point.

Proposition 2.8. If {¢; : X — X}icr is an at least 3-dimensional parabolic conformal IFS
(I is allowed to be infinite), then x;, the only fized point of a parabolic map ¢;, belongs to 0X.

_ Proof. In view of Lemma 2.3, for every R > 0 large enough and every n > 1, the set
oi({z : ||z]| > R}) is not contained in {z : ||z|| > R}. Consequently, for every neighbourhood
U of z;, the set ¢?(U) does not converge to ;. Since however lim,_,, ¢! (X) = z;, the point
x; cannot belong to Int.X. The proof is complete. B

In [U2] we have demonstrated that in the case d > 3 the Bounded Distortion Property
(1d) and the property (le) are satisfied automatically. Because of the importance of these
properties for our geometric considerations in Section 4 and for the sake of completeness, we
present below their proof taken from [U2].

Theorem 2.9. If {¢;}icr is a collection of maps satisfying condition (3), then conditions (7)
and (8) are also satisfied, perhaps with a smaller set V' and a sufficiently high iterate S? of
S. Property (8) takes on the following stronger form

l6,(9) — L @] < K1l Ny — 2 (2.5)
for all hyperbolic words w € I*, all z,y € V and some sufficiently large K.

Proof. Let U be an open neighbourhood of X such that dist(U, V) > 0 . Fix a hyperbolic
word w € I*. In view of (2.1) there exist A\, > 0, a linear isometry A,, an inversion (or the
identity map) i, = i,, ., and a vector b, € IR? such that ¢, = A\, A, 0 iy, + b,. In case when
i, is the identity map the statement of our theorem is obvious. So, we may assume that i, is
an inversion. Then for every z € IR?

A2
(| = 75
|z — aul]?
Hence, for all z,y € IR?
eI _ Iz — aul®

oL@~ Iy — aul[?” (2.6)
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Since ¢, (V) C V, a, ¢ V. Therefore, for all z,y € U

|z —aull _ [lz—yll + ||y — au|l |z =yl diam(U)
< R Lt AT R/ (2.7)
Iy = au| Iy = au| |y = aul| dist(U, V')
Thus,
, . 2
oLl _ (1+ diam (1) ) |
[l (2)]] — dist(U, V')

and condition (7) holds. In order to prove the second part we may assume without loss of
generality that ||¢] (x)|| < ||¢L(y)||. Using (2.6) and (2.7), we then get

el = ool < el (TR - 1) = oy (=2l - 1)

[0, ()]] 1y
= ><H§_Z:‘:H )
<100 (> + gctias) o
< Il ( ddfﬂﬁ v ) mm{||y—||2w_||y||||x— a1}
<2+ diﬁf;g&)) T ey =l

Now cover X by finitely many balls with a positive distance to OV. Using property (3), we
may join them by smooth compact arcs contained in V' to obtain a connected set M whose
closure is contained in V. Form the new set U, an open connected neighbourhood of X with a
positive distance to the boundary of V', by adding to M sufficiently small open neighbourhoods
of these compact arcs. We may require these neighbourhoods to be topological closed balls
(in IR?) with smooth boundaries. Finally, the boundary of U itself can be taken to be smooth
and combining (3) and (4) along with proven distortion property we can easily deduce that
¢, (U) C U if only |w]| is large enough. The proof is complete. B

3. The plane case, d =2

We call a holomorphic map ¢, defined around a point w € €, simple parabolic if ¢(w) = w,
¢'(w) = 1 and ¢ is not the identity map. Then on a sufficiently small neighbourhood of w,
the map ¢ has the following Taylor series expansion:

(2) =z +alz —w)P™ +b(z —w)P 4+ ...

with some integer p > 1 and a € €'\ {0}. Being in the circle of ideas related to Fatou’s flower
theorem (see [Al] for extended historical information), we now want to analyze qualitatively
and especially quantitatively the behaviour of ¢ in a sufficiently small neighbourhood of the
parabolic point w. Let us recall that the rays coming out from w and forming the set

{z:(a(z —w)? < 0}
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are called attracting directions and the rays forming the set
{z: (a(z —w)? > 0}

are called repelling directions. Fix an attractive direction, say A = w + {/—a~'(0, 00), where
¢/- is a holomorphic branch of the pth radical defined on €'\ a~'(0,00). In order to simplify
our analysis let us change the system of coordinates with the help of the affine map p(z) =

¥/=a T+ w. We then get
¢0(Z):p—1o¢)op(z):Z_Zp—l—l_'_bmzp_m_'_“.

and p~1(A) = (0,00) is an attractive direction for ¢p. We want to analyze the behaviour
of ¢g on an appropriate neighbourhoods of (0,¢), for ¢ > 0 sufficiently small. In order to
do it, similarly as in the previous section, we conjugate ¢y on €'\ (—o00,0] to a map defined
“near” infinity. Precisely, we consider /-, the holomorphic branch of the pth radical defined
on €'\ (—o0,0] and leaving the point 1 fixed. Then we define the map

and consider the conjugate map
d=H "'og¢yoH.

Straighforward calculations show that

b(2) = 2+ 1+ O(|2| 7) (3.1)
and

F(z)=1+0(2 ). (3.2)
Given now a point = € (0,00) and « € (0, 7), let

S(x,a) ={z: —a<arg(z —z) < a}.

The formula (3.1) shows that for every o € (0,7) there exists z(a) € (0,00) such that for
every = > x(«)

3S@a) C S (x + % a) , (3.3)
|z| > B” (3.4)

and
Re(4(2)) > Re(2) + % (3.5)

for all z € (S(x, «), where B is the constant responsible for O(|z|*%) in (3.1). The following
lemma immediately follows from (3.4), (3.1) and (3.5) by a straightforward induction.
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Lemma 3.1. For every compactum F C S(z(«), «) there exists a constant Cp > 1 such that
for every z € F and everyn > 1

Cr'n < |¢"(2)| < Cpn.
Using a straightforward induction, one gets from (3.1) and Lemma 3.1 that
P"(2) =z+n+ O(max{nk%, log n}) (3.6)
and
0"(2) = *(2) + (n = k) + O(In' " — k7)), (3.7)

where the constant involved in "O" depends only on F and ¢y. Using Lemma 3.1 and (3.2)
we shall prove the following.

Lemma 3.2. For every compactum F C S(xz(«), ) there ezists a constant Dy > 1 such that
for every z € F and everyn > 1

D' < |(¢")(2)| < Dp.

Proof. For every z € S(z(a), a) let g(z) = ¢/(2) — 1. By the Chain Rule, we have for every
z € S(z(a),a) and every n > 1

@) (2) = H H(F () = () f{l(l +9((2):

Using (3.2) and and the right-hand side of of Lemma 3.1, we get for every z € F' and every
7 > 1 that

o9& =0(F ) 5) < 67 o).
Since the series 3272, jJTTI converges, the proof is complete. B
For every = € (0,00) and « € (0,7) let
So(z, ) = H(S(z,@))
and
Sp(x,a) = po H(S(z,a)) = p(So(x, a)).
The regions So(x, ) and SZ(x, ) look like flower petals containning symmetrically a part

of the ray (0,00) and the ray A = w + ¢ —a~'(0,00) respectively and form with these rays

two “angles” of measures /7 at the point 0 and w respectively. We recall from the previous
section that conv(M) denotes the convex hull of the set M. Combining Lemma 3.1 and
Lemma 3.2 we deduce the following.

Lemma 3.3. For every a € (0,7/2) and for every compactum F C S(z(a),«) there ezists a
constant C'r > 1 such that for everyn > 1

Cr'n < dist(0, conv(¢™(F))) < Dist(0, conv(¢™(F))) < Cpn.
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Let us now use the properties of the map gz; and establish useful facts about the map ¢.

Lemma 3.4. For every compactum L C Sqf(x,a) there exists a constant C, > 1 such that
for every z € L and every n > 1

p+1 _p+1

Crin v < (6" (2)], diam(én(L)) < Crn 7.

Proof. Tt of course suffices to prove this lemma for ¢ replaced by ¢y. Since H™'(L) is a

compact subset of S(z(«), ) and since H'(z) = —%zf%, using the Chain Rule along with

Lemma 3.1, Lemma 3.2, and (3.4), we deduce that for every z € L and every n > 1

(1Y (2)| = |(H o ¢" o H VY (2)] = [H'(@"(H ()| - |(6") (H ()| - |(H Y (2)]
6" (H ()| (8" (H(2)) |p|2|®*V

p+1 +1

< DflTl(L)CH—l(L) (diSt(O, Hil(L)))i(erl)n_pT

and

—ptl ptl

(¢5)(2)] < DHfi(L)C;IL(L)Dist(O,H‘I(L))—(pﬂ)n—T_

The proof is complete. B

Lemma 3.5. For every compactum L C Sdf‘(x, «) there exists a constant Cp,; > 1 such that
for all k,n > 1

Dist(¢*(L), ¢"(L)) < Cr |min(k, n)™» — (max(k,n) +1)"»

and
Dist(¢"(L),w) < Cpan%.

Proof. It suffices again to prove this lemma for ¢ replaced by ¢o. Let us prove the
first inequality. Without loss of generality we may assume that n > k. Since H (L) and
conv(H (L)) are compact subsets of S(z(a), ), using (3.1), Lemma 3.3, Lemma 3.1, and
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Lemma 3.2, we can estimate for every 7 > 0 and all z,£ € L as follows
667 (E) — 80 ()] < 1y THHE) — o (2)] + 1o T (2) — 0 (2)] <
< sup{|H'(w)| : w € conv(¢"*!(H(L))) }diam (conv (651 (H(L))) ) +
+ (14 BIOMI(H1(2)) 7 ) sup{|H'(w)] : w € [§*(H(2)), (8T (H 1 (2)]}

<%wmm—7'wemm@ﬂﬂmr%m»mmm&ﬂwﬂ4wn+

2 ,p_+1 ki Tr— Tk+j -
+Bsup{|w| w € [pM(HT(2)), (0" (HT (2)]}

1 1
< Dy Cumpydiam(H D)k +5+1)75 +

D it Thtg (T -~
+ 2—)(|¢’“““(H H2)| = o™ (H 1(Z))I)

1 1
gED_l¢h4m&mmH4@»w+j+n"%+

2 . e 1 —5
(a4 +1) = B ()] + 1))

1 1
< Dig (1) Cl-saycliam (- NIk +j+1)"% +

2 . 1
+—<CH—1(L)(]€+]+1) (Cp (k+]) p+1)>

p

1 . et 4 25 el
< p 1)Cr-1pydiam(H (L)) (k +j +1)7 7 + - C Py (k47 +1)7

1 e : —ptl
= 5( CH dlam(H ( )) + 4CHP_1(L))(k + J + ]') P

where the last inequality has been written assuming that & > 1 is large enough, say k£ > ¢
and B is the constant coming from (3.1). Denote the constant appearing in the last row of
the above formula by C. Using also Lemma 3.4 we then get

n—k—1

Dist (45 (L) ) < Z Dist(¢ ™ (L), op H (L Zdlam ML)
n—k p+1 1 1
<M Cpk+j) 7 =Cpi(k» —(n+1)"7)
=0

for some constant C; > 1. Clearly, increasing the constant C; appropriately, we see that
the last inequality is also true for all 1 < k£ < ¢. The proof of the first part of Lemma 3.6 is
thus complete. The second part is a straightforward consequence of the first one. Indeed, it
follows from (3.3) that ¢*(L) converges to w if k — oco. Hence, applying the first part of the
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lemma, we get
Dist(¢"(L),w) = lim Dist(¢" (L), ¢*(L)) < lim Cpa(n™v — (k+1)77) = Cpin>.
—00 —00

The proof is complete. B

Lemma 3.6. For every compactum L C S’f(x,a) there ewist a constant Cro < 1 and an
integer q > 0 such that for all k > 1 and n > k + q,

dist(6* (L), ¢"(L)) > Craln™7 — k77|
and
dist(¢"(L),w) > Cpon” 7.
Proof. It suffices of course to prove this lemma with ¢ replaced by ¢q. Consider two

arbitrary points z,& € H '(L) and the line segment ~ joining ¢*(z) and ¢"(¢). Parametrize
it as

(1) = ¢"(2) + (4" (&) — ¢"(2)), t € [0,1].

Let I(H (7)) be the length of the curve (a subarc of either a circle or a line) H (7). We have

1
= [ 1 0y (t))at = /|H' DI (8)]d

= 10€) = @ [ 1O = 1150~ 3 [ bl ar

— 15O — ) [ (34 + 6 - 3e) 7 ar
%|¢3( I/ [0°(2)] + tl67(€) — (z)|)*%dt
= L[ = (18 - (86 + 166 - ) G
(9 <z>| 150 = ) 19
(184 + 18(0) - 2)])”
> Oy (3Ci-1) (1841 + 167(9) —1¢’:(z)|)f% - |¢k(z)|%,
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where the last inequality has been written due to Lemma 3.1. By the Mean Value Theorem
there exists n € [|¢%(2)], |¢*(2)| + |¢"(€) — ¢*(2)|] such that

(185()1 + 187(&) = 8+ (2)])” — B ()1
=216 - FF 2 156 - FI(FE + 156 - F) T

o ) (3.9)
(3CH*1(L))T|¢TL(§) - ¢k(z)|

>

"

Now, in view of (3.6), ¢"(&) — ¢*(2) =€ — 2z + O(max{nk%, logn}). Hence
6(€) — 64(2)] = diam(H (L)) + (n — k) — O(mas{n' 5. logn}) > (n — k)

if only n — k is large enough, say n — k > ¢. Using this, (3.8) and (3.9), if n > k + ¢, then

1 1=p (N — k)nl_z_lr
(H(7) 2 7=BCr-1)) » —11— (3.10)
2p konr

1

Since t < tv fort € 0,1], we get 1 —t > 1 — v for these t, and consequently 1 —% >1- (%)p
1 _
or 1=k >1 — (%)p Multiplying this last inequality by n%, we get (n — k)anp > nv — k.
Combining this and (3.10) yields
1
I(H > —
(HO) = o
If H(y) is a segment of the line, then

(3CH-11) 7 (k77 —n 7). (3.11)

1
2p
If however H () is an arc of a circle, then consider the curve

g(t) = ¢"(2) + (6" (€) = ¢ (2)), t € (~00,0].

Proceeding exactly as in the formula (3.8) with the estimate |g(t)| < |¢*(2)|—t|(¢™(&) — d*(2)],
we get

1

6E(H () — 85 (H(©) = I(H(7)) = 5= (3Cu-11)) 7 (k77 —n77). (3.12)

1 foe ptl ~ 1
HE) 2 [ w =13

Applying now Lemma 3.1 this gives
1,1 i1 1
I(H(v)) > (OH—l(L)) rkTr > (CH—I(L)) P(k P —n P).
Therefore, invoking (3.11), we deduce that both arcs joining the points ¢f (H(z)) and ¢p(H(z))
~ ~ ~ 1 1
on the circle H({¢*(z2) +t(¢"(€) — ¢*(2)) : t € IRU {oo}) have the length > C((k*E — n*E),
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. 1-p _1 _1
where C' = mln{ﬁ(SC'H—l(L)) 7 Creiny) } Hence |gh(H (2)) — o3(H(©)] > C(k™5 —
n*%) This and (3.12) imply that

Aist (Sh(H (=), 63 (H())) > = (k75 —n3)

and the proof of the first part of our lemma is complete. Since it follows from (3.3) that ¢*(L)
converges to w if £ — oo, applying the proven part of the lemma, we conclude that
dist(¢"(L),w) = lim dist(¢" (L), 6*(L)) > lim Cra(n™s —k77) = Cpon™r.
k—o0 k—o0
The proof is complete. B

Remark 3.7. We would like to remark that all statements proven in this section about the
map ¢ continue to be true if we replace the assumption L C S:;‘(x(a),a) by the assumption
¢ (L) C S§(z(a), a) for some j > 0.

Lemma 3.8. If L C €'\ w is a compactum and lim,_,, ¢"(L) = w, then there exists an
attracting direction A such that for every o € (0,7), ¢"(L) C Sg(x(), ) for every n > 0
large enough.

Proof. First notice that due to (3.3), if ¢*(L) C Sg'(x(),a), then ¢"(L) C SiH(z(a), a)
for all n > k. Suppose now that the statement converse than that claimed in our lemma is
true. Since the set of attracting directions is finite, there thus exist € (0,7) and such that
for every n > k

o"(L)Nn U S, ((8),8) =0, (3.13)
i=1
where {Af, A7,... ,Af} is the set of all attracting directions for ¢ at w. Taking now y €

(m — B, ) we see that the union
U S @(8),8)0 U Sy @(1),)

(A7 being attracting directions for ¢ ') forms a deleted neighbourhood of w. Along with
(3.13) this implies that ¢"(L) C S;il(x(fy),fy) for some i € {1,2,...p} and all n > k. But

since, by (3.3), lim,,_, qﬁ‘"(Sﬁil(a:(v), 7)) = w, we conclude that L = lim,,_,,, ¢ "(¢'L)) = w.
This contradiction finishes the proof. ®

We end this section with a result concerning parabolic IF'S in dimension d = 2

Proposition 3.9. If S = {¢; : X = X }icr is a parabolic IFS and d = 2, then the fized point
of each parabolic element ¢; belongs to the boundary of X. In addition, the derivative of each
parabolic element evaulated at the corresponding parabolic fixed point is a root of unity.
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Proof. Suppose that ¢ € I is a parabolic index and that the corresponding fixed point x;
is in IntX. Let C; be the component of Int(X) containing x;. So, C; is an open connected
subset of ' missing at least three points, since X is a compact subset of €. Therefore, due to
the uniformization theorem, there exists a holomorphic covering map R : D — C; sending 0
to x;, where D = {z € €': |z] < 1} is the open unit disk in €. Since ¢;(z;) = z;, ¢;(C;) C C;.
Considering, if necessary, the second iterate of ¢; we may assume that ¢; is holomorphic.
Hence, all its lifts to D (i.e., satisfying the equality ¢; o R = R o 1)) are holomorphic. Take
Y : D — D, the lift fixing the point 0. Then ¢'(0) = ¢}(x;), whence |¢'(0)| = 1. Therefore,
in view of Schwarz’s lemma, ¢ : D — D is a rotation with the center at 0. In particular

¢i(C;) = ¢; o R(D) = Ro (D) = R(D) = C;.

This contradicts condition (4) from Section 1. Finally, suppose i is a parabolic index. If
@i(x;) were not a root of unity, then the images of finitely many iterates of ¢; of an open
cone witnessing the cone condition at z; would cover a punctured neighborhood of X. This
contradicts the fact the the boundary of X has no isolated points. B

4. Proofs of the main theorems

In order to be apply the results of sections 2 and 3 we need the following. Recall for each
parabolic index 7, z; is the unique fixed point of the map ¢;.

Proposition 4.1. If {¢; : X — X}icr is a parabolic IFS (I is allowed to be infinite), then
for every parabolic index i € I and every j € I\ {i}, we have z; ¢ ¢;(X).

Proof. Suppose on the contrary that x; € ¢;(X) for some parabolic index ¢ € I and some
j € I'\ {i}. Then by the Cone Condition and conformality of ¢;, the set ¢;(X) contains a
central cone with positive measure and vertex z;. On the other hand, since ¢; is conformal,
X'\ ¢;(X) contains no central cone with positive measure and vertex z;. This is a contradiction
since, by the Open Set Condition, Int(¢;(X)) N Int(¢;(X)) = . The proof is complete. W

Consider a parabolic IFS, S = {¢; : X — X},cr. If S is 2-dimensional, then dealing with
the family of second iterates S? = {¢;; : i,j € I}, instead of S, we may assume that all the
parabolic maps are holomorphic. Also, from Proposition 3.9 the derivative of each parabolic
element evaluated at the corresponding parabolic fixed point, is a root of unity. Therefore, for
some appropriate positive integer ¢, the derivative of each parabolic element of S¢ evaluated
at the corresponding parabolic fixed point is equal to 1. Thus, without loss of generality, we
may assume that in case d = 2, all the parabolic elements of S are simple parabolic mappings
in the sense of Section 3. Grouping now together the results of sections 2 and 3, we deduce
that for any given d > 2, there exists a constant ) > 1 and an integer ¢ > 0 such that for
every parabolic index ¢ € I there exists an integer p; > 1 such that for every j € I\ {i} and
all n,k > 1 we have

M 7pi+1

Q7'n h < inf{] |65 (@)1} [ @55 |, diam(¢im (X)) < @n w7, (4.1)
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Q 'n 7 < dist(wi, din; (X)) < Dist(i, din; (X)) < Qn 7, (4.2)

Dist(¢in;(X), ¢; (X)) < Q |min{k, n} 7 — (max{k,n} +1)77 (4.3)
and, furthermore, if |n — k| > ¢, then
dist (65 (X), 6113 (X)) 2 Qln ™7 — k7). (44)
We also need the following.
Theorem 4.2. If {¢;: X — X}ier is a parabolic IFS (I is allowed to be infinite), then

d Jg) > : bol
imp(Js) > max {pi 7 ¢ ¢ 1s parabolic } ,
where p; is the integer indicated in (4.4).

Proof. Using (4.1), if we take ¢ slightly larger than b, then ¥ (t) can be made as large as
It

we like. Since P*(t) > —tlog K + log(t), P*(t) > 0. Therefore, h = dimy(Jg-) >
therefore immediately follows from Lemma 1.2 that

Pi
pi+1°

dimg(Jg) = dimg(Jg-) > max {pﬂ_ 1 ¢ is parabolic } .

The proof is complete. B

If, in addition S is finite, then we conclude from (4.1) that

Og- = max{ : 1 is parabolic }

pi+1
and 1(fs-) = co. This means that the system S* is hereditarily regular and we have proved
Theorem 1.4.

Lemma 4.3. For every parabolic index i € I, there exists an open cone C; C X with vertex
x; and such that z; € J N C;.

Proof. In case d > 3 this is an immediate consequence of Lemma 2.3. In case d > 3 this is

an immediate consequence of (3.6) and Lemma 3.8. B

In view of Theorem 1.5 in order to prove Theorem 1.6 it suffices to demonstrate the following
four lemmas assuming the finite parabolic system S satisfies the strong open set condition.

Lemma 4.4. If h <1, then H"(J) = 0.
Lemma 4.5. If h < 1, then P"(J) < oo.
Lemma 4.6. If h > 1, then P"(J) = oco.
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Lemma 4.7. If h > 1, then H"(J) > 0.

Proof of Lemma 4.4. Let i € I be a parabolic index. Fix j € I\ {i}. Since ¢;n;(X) C

B(x;,r) if and only if Dist(xz;, ¢i»;(X)) < r, it follows from (4.2) that if Qnipli < r, then
¢inj(X) C B(x;,r). Hence using (4.1) and the conformality of m, we get

_pitly
r~"m(B(z, 7)) > r" Z m(¢in;(X)) > r_h Z Q7 "n w
n:Qn_I’Li<r >(@r=hri
—h —h(ypi—pi\ 1 Zth —h,.—pi+(pi+1)h
> Q" (const) r " (QPir~Pi)" mi " > (const) r~ "ty PP

= (const) ppilh=1),

Since h < 1, this implies that lim, o r~"m(B(z;,7)) = co. By Proposition 1.3, z; € S*(0),
it therefore follows immediately from Lemma 4.9 in [MU1] that H"(Js) = H"(Js-) = 0. The
proof is finished. m

Proof of Lemma 4.5. Fix a parabolic index i € I, j € I\ {i}, n > 1 and fix r,

2diam(¢n;(X)) < r < 1. Take an arbitrary point = € ¢ ;(X). It follows from (4.3) and
— 1 1

the inequality r > 2diam(¢;»;(X)) that if & < n and Q(k_l’_i - n_p_i) < r, where we take an

appropriate constant @ > @, then B(z,r) D ¢u;(X). Hence, using (4.1),Theorem 4.2 and
letting F(z) denote the greatest integer in x, we get

n n . pitl,

m(B(a, 1)) > Y mlen(0)> > Q'
kE((a_lrJrani) pl>+1 kE((a_lrJrani) pl>+1

> (const) ((Q r4+n pz> pz(l _}#h) — nl%h> (4.5)

(pi+1)h—p;
) 0

> (COIISt) ((Q r4+n v —p%,((pﬁl)h—pi)) .

1

1 — _1
It follows from the Mean Value Theorem that there exists some n withn 7 <n < @ Yrgn
such that

(pi+1)h—p; IR L — _
) -n pi((pl-lrl)h Pi) ((pz + 1)h _pz)(Q ) (pi+1)h—p;—1

(Q r + 77/ p;
= ((pi + V)b — p)@ "ry@+G=D)

_ (i+1)(h=1) (4.6)
> (i Dh=p)Q ' (Q v %) .
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But, by our constraints on r and by (4.1), n ” < sz“dlampﬁl (oin; (X)) < (1/2)@1%“7"1%+1
Thus, combining this, (4.6) and (4.5), we get,

(pi+1)(h—1)
m(B(z,r)) > (const) r (Q r+n Pz)

1 )(IDi—I—l)(h—l)

> (const) r (rpi“ = (const) "

Therefore, the proof follows by applying Theorem 2.5(2) in [MU2] with ¢ =1, vy =1 and F
consisting of hyperbolic indices. B

Proof of Lemma 4.6. Fix a parabolic index ¢ € I. Since the system is finite, by applying
Proposition 4.1, there is some R > 0 such that if 0 < r < R, then B(z;,r) does not intersect
¢;(X), for any j # i. Fix such a radius . Using (4.2) and (4.1), we derive

rtm(Blrg, ) <7y 3 mlge (X)) <D0 30 QI

J#i J#in>(Qr)~Pi

n:Q-n~ p1<r

Pi+1h

<QWTY. Y 7w

JFin>(Qr)Pi

< (const)#1Q" (’”’—“h - 1) s )

)

= (const) r~PHPADR=PI — (const) ¢PihD),

Since h > 1, this implies that lim, o r "m(B(x;,r)) = 0. Applying Lemma 4.13 in [MU1]
along with Lemma 4.3 and Proposition 1.3, we conclude that P"(J) = co. ®

Proof of Lemma 4.7. Fix a parabolic index i € I, j € I\ {i}, n > max{2¢,q + 1} and
z € ¢inj(X). Given 1 > r > diam(¢;n;(X)) and using (4.1) twice we obtain

n+q n+q

Sii=n > mdna(X) <D0 D [kl
aZi k=n—q aZi k=n—q
p;+1
fax h +1, b _pitly W mo\ P _witly,
<Y Y QR < H#IQM2q(n—q) " = 2#14Q — nT 4
a#i k=n—q

pitl
< 2qQM#12 v thiamh(¢inj(X)) < QQO+12 o #[ h



FRACTAL MEASURES FOR PARABOLIC IFS 23

1 —Pi 1
Putl=F ((nl’_ - Qr) ) +1if Qr <n » and [ = oo otherwise. Using (4.1) we get

l

=YY men)<Y Y Q%

P kel Pk P |<Qr " p ((Qrmf’_li)_pi)

! pl+lh

< #IQ > ke
k=E <(Qr+np% ) _pi>

Suppose first that Qr < n Pl. Then
; + 1 1\ —Ppit(pitl)h 1 —pi+(pi+1)h
Sy < #I1Q" (ﬁh%) ((Qr+n ) — (w7 - o) >
p.

)

It follows now from the Mean Value Theorem that there exists n € [n o - Qr,n e Qr]
such that

1\ —Pit(pitl)h 1 —pit(pit1l)h
<Qr * n_> B (”_ - Qr) = ((pi + 1)h — p)2Qry @A),
Since by (4.1),
1 1 1
n v < Qridiam(gp; (X)) 7 < Qrirei,
we therefore find
¥y < (const) rp® A=Y < (const) r (Qr +n P

>(Pi+1)(h1) L) (pi+1)(h—1) (4.8)

< (const) r <Q1’Lir1’%' +Qr < (const) r (rpi

= (const) "

Suppose in turn that Qr > n Pz. Then

3 _pi i 1 1\ pil 1= plpjlh
22§Qh#l > i <Qh#[<p+ h—1> <Q7”+n Pi) ( )
1N\ —P; Di
<(Q7“+np_ )
7 1 (pl+1)h Pi
= Qh#[ (p a h — 1> (QT + n Pz < (Const) r(Pi‘Fl)h*pi (49)
= (const) rrPih=Y < (const) r

Since, by (4.4), m(B(z,r)) < ¥ + 39, it follows from (4.7)-(4.9) that m(B(z,r) < (const) r"
Finally, applying Theorem 2.4(3) in [MU2| completes the proof. B
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Proof of Theorem 1.7. It is a straightforward consequence of formulae (4.2), (4.3) and (4.4)
that for every parabolic index i € I, every j € I\ {i} and every x € X, BD ({¢jn; (%) }n>1) =

Llﬂ = B, Hence, it follows from Theorem 4.1 and Theorem 2.11 in [MU2] along with
g ¢

Theorem 3.1 in [MU1] that BD(J) = dimg(J). ®
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