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Abstract. In this paper we develop the thermodynamic formalism for equilibrium states
of strongly Holder families of functions. These equilibrium states are supported on the
limit set generated by iterating a system of infinitely many contractions. The theory of
these systems was laid out in an earlier paper of the last two authors. The first five sections
of this paper except Section 3 are devoted to developing the thermodynamic formalism for
equilibrium states of Holder families of functions. The first three sections provide us with
the tools needed to carry out the multifractal analysis for the equilibrium states mentioned
above assuming that the limit set is generated by conformal contractions. The theory of
infinite systems of conformal contractions is laid out in [MU1]. The multifractal analysis is
then given in Section 7. In Section 8 we apply this theory to some examples from continued
fraction systems and Apollonian packing.
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§1. Introduction, Preliminaries. The multifractal formalism arose from various con-
siderations in physics and mathematics (see e.g., [Man], [FP], [Gr] and [Hal). In this last
paper a formulation of the secnarios of multifractal theory was elaborated in which there
were strong hints of parallels to the theory of statistical physics. Some of the first rigor-
ous mathematical results concerning this formalism are in [CM] and [R]. Since then there
have been many papers written verifying some aspects of this formalism. Recently, Pesin
presented a general formulation of the setting for multifractal theory [Pe]. Also, many
more references concerning this topic may be found in his book. Let us recall the general
setting. Let m be a probability measure defined on the Borel subsets of a metric space X.
For each number «, let K, consist of those points & where the measure is scaling pointwise
with parameter « or has pointwise dimension «. Let f(«) be the dimension of the set
K,.. To say that m has pointwise dimension « at x can be defined in several different
ways. One of the simplest is to say that lim.,,ologm(B(z,r))/logr = a. However, one
may want to use the liminf or limsup instead of the limit(if it exists) or one may wish
to take these limits only over some natural filtration of sets based at z. Also, one may
use various notions of dimension. In this paper we will be concerned with dimyg = HD,
Hausdorff dimension. As we have mentioned, the measures for which we carry out the
multifractal analysis are equilibrium states for a natural potential function associated with
a given infinite iterated function system and an associated family of Holder continuous
weights. This part of the theory, the beginning of the thermodynamic formalism, is given
in Sections 2 and 4. In Section 3 we deal with parabolic systems and in Section 4 we
compute the Hausdorff dimension of a projected measure by extending the well-known
formula of Billingsley. Some parts of the material in the first two sections may also be
found in [HU] and in [Ur]. In Section 5 and Section 6, we provide a further development of
the thermodynamic formalism by investigating some aspects of the pressure function for
potentials and equilibrium measures associated to families of weights which involve two
complex parameters. In Section 7, we demonstrate how the multifractal formalism works.
We show that for each « there is an auxiliary measure that witnesses the Hausdorff di-
mension of the set K, and there is an auxiliary function 7" or "temperature” function such
that the ” f(«)” curve is the Legendre transform of the temperature function. In Section 7
our considerations show some similarities to those in [PW] (comp. also [Pe] and [PUJ).
Section 8 contains a detailed analysis of examples coming from the continued fractions
algorithm and Apollonian packing constructions.

In [MU1] we have provided the framework to study infinite conformal iterated function
systems. We shall recall first this notion and some of its basic properties. Let I be a
countable index set with at least two elements and let S = {¢; : X — X : i € I} be a
collection of injective contractions from X into X for which there exists 0 < s < 1 such
that p(¢;(x), di(y)) < sp(x,y) for every i € I and for every pair of points z,y € X. Thus,
the system S is uniformly contractive. Any such collection S of contractions is called an
iterated function system. We are particularly interested in the properties of the limit set
defined by such a system. We can define this set as the image of the coding space under a
coding map as follows. Let I* =, ~; I", the space of finite words, and for w € I", n > 1,
let ¢, = Py 0 Py © -0y, . lfw € I*UT™® and n > 1 does not exceed the length of w,
we denote by w|, the word wyws . ..w,. Since given w € I*°, the diameters of the compact
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sets ¢, (X), n > 1, converge to zero and since they form a descending family, the set

M el (X)

is a singleton and therefore, denoting its only element by 7(w), defines the coding map
7w : I°° — X. The main object of our interest will be the limit set

J:ﬂ-([oo): U ﬂ¢w|n(X)7

wel>* n=1

Observe that .J satisfies the natural invariance equality, J = [J;c; ¢i(J). Notice that if I
is finite, then .J is compact and this property fails for infinite systems.

An iterated function system S = {¢; : X — X : i € I} is said to satisfy the Open Set
Condition if there exists a nonempty open set U C X (in the topology of X) such that
¢i(U) C U for every i € I and ¢;(U) N ¢;(U) = 0 for every pair i,j € I, i # j.

An iterated function system S satisfying the Open Set Condition is said to be conformal
if X ¢ IR? for some d > 1 and the following conditions are satisfied.

(1a) U = Intga(X).

(1b) There exists an open connected setV with X C V' C IR? such that all maps ¢;, i € I,
extend to C! conformal diffeomorphisms of V into V.

(1c) There exist 7,1 > 0 such that for every x € 90X C IR? there exists an open cone
Con(z,,l) C Int(X) with vertex x, central angle of Lebesgue measure v, and altitude
L.

(1d) Bounded Distortion Property(BDP). There exists K > 1 such that

|60 (W)| < K4, (2)|

for every w € I'* and every pair of points z,y € V, where |¢/,(z)| means the norm of
the derivative.
We note that under these conditions we may exchange the order of the set operations:

J = ﬂ U ¢w(X)

n=1wel™

In fact throughout the whole paper we will need one more condition which (comp. [MU1])
can be considered as a strengthening of (BDP).

(le) There are two constants L > 1 and « > 0 such that

165 ()| = I¢i(@)l| < LlIgillly — =|*.
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for every i € I and every pair of points z,y € V. The topological pressure function, P(t),
for a conformal iterated function systems is defined as follows.

T ot
P(t) = Tim —log 3 4L

|lw|=n

As it was shown in [MU1] there are two disjoint classes of conformal iterated function
systems, regular and irregular. A system is regular if there exists t > 0 such that P(¢) = 0.
Otherwise the system is irregular. Moreover the following property holds.

Theorem 1.1. If S is a conformal iterated function system, then
HD(J) =sup{HD(Jp): F C I, F finite} =inf{t > 0: P(t) <0},

where Jp is the limit set associated to the index set F'. If a system is regular and P(¢) = 0
then ¢ = HD(J).

§2. Thermodynamic formalism for iterated function systems. Let I be a count-
able alphabet and let ¥ = I°® be the symbolic coding space equipped with the product
topology. Let o : XX — X be the left shift transformation (cutting out the first coordinate),
oc({zn}o2) = {zn}ly). Fix f > 0. In this section S = {¢; : X — X :i € I} is
a (hyperbolic) iterated function system and F = {f® : X — @ : i € I} is a family of
continuous functions such that if we define for each n > 1,

Va(F) = sup sup {|FE (¢ (@) = [ (o) (1) 177,
wel™ z,yeX

then the following is satisfied:

(2.1) Va(F) = ili}i{vn(F)} < 00

The collection F is called then a Hdélder family of functions (of order ). Denote by || - [|o
the supremum norm on the Banach space C(X) and by 1 the function with constant value
1 on X. If in addition to (2.1) we have

(2.2) Z llef |0 < 00 or equivalently Lp(1) € C(X),
1€l

where

() (g
Lr(g)(x)=> el "@g(pi(x)), geC(X),
i€l
is the associated Perron-Frobenius or transfer operator, then the family F' is called a

strongly Holder family of functions (of order ). In this section we assume that F is a
strongly Holder family of real-valued functions of order 3. We have made the conventions
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that the empty word () is the only word of length 0 and ¢y = Idx. Thus, Vi(F) < oo
simply means the diameters of the sets f*(X) are uniformly bounded. Notice that Lz acts
on C(X) as a continuous operator and ||Lr||o < ||[Lr(1)||o. Let L3 : C(X)* — C(X)* be
the dual operator and define the following map on the space of probability measures on X
The map

Ly ()
L) (1)
is continuous and therefore in view of the Shauder-Tichonov theorem it has a fixed point,
say mp. Thus

V=

(2.3) ,C}}(mp) == )\mF,

where A = L} (mp)(1). Following the classical thermodynamic formalism, we define the
topological pressure of F' by setting

1 n
P(F) = nlg{}lo - log Z exp Zf“’ﬂ' 0 Duin

jwl=n j=1 0

1 ~
= nl;ngoglog Z exp S;pzzlf 70 Qgiw
‘7:

|w|=n
Notice also that the limit indeed exists since the logarithm of the partition function

n

Zn(F) =Y |lexp [ D F“ 0 dous,

jwl=n j=1 0

is subadditive. Moreover,

P(F) = int {%log Zn(F)}.

Remark 2.1. With these definitions in mind we see that our development in [MU1] of
infinite conformal iterated function systems is in fact a consideration of the Holder systems
of functions tG = {log|¢;|'}ier, t > 0. Notice Z,(tG) = 3_ =, ||4,[|*. In particular the
pressure function introduced in [MU1] (see also Section 1) is the same as the pressure
P(tG). We may refer to G as the natural volume potential.

diam(S, F (X)) decreases to 0 at a uniform exponential rate.

Given n > 1 and w € I"™ denote 2?21 f@i) o ¢os, by Su(F). Let us now show that

Lemma 2.2. For each 7,w € I*,

o
diamS, P (X)) = sup [S.(F)(@) = SL(F))] < T e,



Proof. Let n = |w|. Write z = ¢, (u), y = ¢-(w), where u,w € X. By (2.1) we get
Zf(Wj)(¢ij($)) - Z f(u}j)(¢o'7w(y)) = Z f(WT)j © ¢o’7w7(u) - Z f(WT)j © ¢o’7w7(w)
j=1 j=1 j=1 j=1

<3[5O 0 i (1) — £ 0 ()
j=1

< Z V(F)e—ﬁ(m—lTl—j—l)
j=1

< V) g
—1l—e P

The proof is finished.

Set

0 s (1520).

In Section 8 we will need a continuity property of topological pressure considered as a func-
tion on the space of strongly Holder families of functions. This property is also interesting
itself. So, we introduce a suitable topology in the space of Holder families of functions
by declaring that a sequence {F,,}22, of Holder families of functions on X converges to a
Holder family of functions F' on X if j}si) converges uniformly to f(*) for every i € I. We
shall prove the following.

Proposition 2.3. The topological pressure defined on the space of all Holder families of
functions is lower semi-continuous.

Proof. Consider F, a Holder family of functions, and {F,}52,, a sequence of Holder

families of functions on X converging to F. Fix k > 1 and £ > 0. Suppose that P(F) < oo
(the proof is similar for the opposite case). There exists a finite set £ C I such that

1 1
%log Z exp(sup Sy, (F)) > Elong(F) —e>P(F) —e.

weEk
Since lim,,_,~ F;, = F and FE is finite, for every n large enough, say n > ng, we have

llong(Fn) > llog > exp(sup Su(Fy))

k k
weEk

1
> Elog e ek Z exp(sup S, (F)) | > P(F) — 2e.
weEk
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Using Lemma 2.2 we therefore obtain for every n > nyg

P(F,) = lim — log Zyx(Fy) > lim ik (10g(Q " Zu (F,)?)

p—oo pk p—oo P
—1 —1
= (])ng klOng(F ) > (])ng%-P(F)—Zs.

Letting thus & 7 oo and ¢ \, 0, we finally get lim,_ -, P(F,,) > P(F). The proof is
complete. l

The orbit sums S, F' yield a simple expression for L% by a straightforward induction. For
every n > 1,

= ) expSu(F) - (g0 ¢u).

|w|=n

We shall prove the following.

Lemma 2.4. The eigenvalue A (see 2.3) of the dual Perron-Frobenius operator is equal to
eP (),

Proof. Iterating (2.3) we get
A= Nmp(1) = £37(1) = / £ (1) dm
= [ 3 enis < 3 llexp(Su(F)]lo
|w|=n |w|=n

So,
1
log A < lim ~log  _ ||exp(Su(F))llo = P(F).

|w|=n

Fix now w € I"™ and take a point z,, where the function S, (F') takes on its maximum. In
view of Lemma 2.2, for every x € X we have

Z exp(S,(F)(z)) > Q! Z exp(S, -1 Z || exp(Sw (F))]|o-

|w|=n |w|=n |w|=n

Hence, iterating (2.3) as before,

/ > exp(Su(F))dmp > Q7 ) || exp(Su(F))llo-

|lw|=n |lw|=n

So, log A > lim,,_,o0 + log > wl=n |1 €xP(Su(F))lo = P(F). The proof is finished. W

Let £y denote the normalized Perron-Frobenius operator, i.e. £y = e P(¥)Lr. We shall
prove the following.

Proposition 2.5. mp(J) = 1.



Proof. According to (2.3)
(2.4) ES(mF) = mg

and consequently L§"(mp) = mp for all n > 0. We have

(2.5) / Chgdmp = / Z exp(Su (F) = P(F)n) - (g 0 do)dmp — / gdmp

X

for all n > 0 and all continuous functions g : X — IR. Since this equality extends to all
bounded measurable functions g, we find for all n > 0, all w € I, and all Borel sets A C X
(2.6)

mpg (¢, (A Z /exp (F)n)-]l%(A)oQSTde > / exp(Sw(F)—P(F)n)de.

TEI™ A

Now, for each n > 1, set X,, = U=y, #(X). Then lx, o ¢, = 1 for all w € I". Thus,
applying (2.5) to the function g = 1 x, and later to the function g = 1, we obtain

/ > exp(S,(F) = P(F)n) - (x, o ¢u)dmp
|lw|=n
Z exp (S — P(F)n)dmp = | ldmp = 1.
X /

Hence mp(J) = mr(),>; Xn) = 1. The proof is complete.

Theorem 2.6. For alln > 1

QTN < Ly(1) < Q.
Proof. Given n > 1 by (2.5) there exists x,, € X such that £ (1)(z,) < 1. It then follows
from Lemma 2.2 that for every x € X, £L§(11) < Q. Similarly, by (2.5) there exists y,, € X

such that £ (1) > 1. It then follows from Lemma 2.2 that for every x € X, L5 (1) > Q1.
The proof is finished. W

If we I set [w] = {7 € I*®: 7||,| = w}. We shall prove the following.

Lemma 2.7. There exists a unique Borel probability measure mg on I°° such that
mr(w]) = [exp(Su(F) — P(F)|w|)dmp for all w € I*.

Proof. In view of (2.5), 3, —, [ exp(S.(F)—P(F)n)dmp = 1 for all n > 1 and therefore
one can define a Borel probability measure m,, on C,,, the algebra generated by the cylinder
sets of the form [w], w € I™, by putting my([w]) = [ exp(S,(F) — P(F)n)dmp. Hence,
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applying (2.5) again we get for all w € I".

M1 (w) = Zmn+1([wi]) = Z/exp(Sm(F) —P(F)(n+1))dmpg

= /Zexp 19 0 ¢piwiy = P(F)n+ fO —P(F) | dmp

i€l j=1

= [ S exp(Su(F) o b1~ PUFI) exp (7~ P(F))

= /Eo (exp(Su (F) — P(F)n))dmp = /exp(Sw(F) — P(F)n)dmp = my([w])

and therefore, in view of Kolmogorov’s extension theorem, there exists a unique probability
measure mp on I°° such that mp([w]) = my,|([w]) for all w € I'*. The proof is complete.
|

As an immediate consequence of this lemma we see that if R is a collection of incomparable
words such that (J, cp[w] = I°°, then we have
(2.7)
< — < -1 < i — < 1.
1< %Hexp(sw(F) P(F)[wl)llo < Q and Q7" < %1§fexp(sw<F) P(F)wl) <1

1

Lemma 2.8. The measures mgy and mpg o w~ " are equal.

Proof. Let A C J be an arbitrary closed subset of J and for every n > 1 let A, = {w €
I" : ¢, (X)NA#0}. In view of (2.5) applied to the characteristic function 14 we have
foralln>1

mp(4) =Y /exp(Sw(F)—P(F)|w|)(]1Ao¢w)de

weln

= > [ e (SulF) - P Ma0 ) dmr

w€EA,
<> / exp(Sy(F) = P(F)|w])dmp = Y v ((w]) = e (| [w])
wEA, wEA, wEA,
Since the family of sets {{J,c 4 [w]:n > 1} is descending and (51 U, ea, [w] = 771 (A4),

we therefore get mp(A) < limy, o0 Mr(Uyea, [w]) = mpr(r7(A)). Since both measures
mp and mp o ! are regular (as J is a separable metric space), this inequality extends
to the family of all Borel subsets of J. Since both measures are probabilistic we get

mp = mp ow . The proof is finished. W

Recall that o : I°° — I°° denotes the left shift map (cutting out the first coordinate) on
the coding space I°°. Also recall that a measure preserving endomorphism is said to be
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completely ergodic if and only if all its (positive) iterates are ergodic. Now we shall prove
that the shift map o : I°° — I° has a unique invariant (completely ergodic) probability
measure equivalent with mg.

Theorem 2.9. There exists a unique o-invariant probability measure i absolutely con-
tinuous with respect to mp. Moreover, fir is equivalent with mp, Q=1 < diip/dmp < Q
and the dynamical system o : I°° — [°° is completely ergodic with respect to the measure

[ -
Proof. The proof follows the argument given in [HU]. First notice that, using (2.6) and
Lemma 2.2, for each w € I'* and each n > 0 we get

mp(o Z mp([Tw]) /|exp rw(F) — P(F)|tw|) dmp

TEI™ TEI™

> Y Q Hlexp (S (F) ~ PNl [ exp(Su(F) ~ PP)w])

TEI™

s / exp(Su(F) = P(F) ) dme 3 ||exp(S-(F) — P(F)|7))lo

TEI™

> QMg ([w])mp(I) = Q7 mp ([w])

and

— /exp(S’w(F) — P(F)|wl|)dm Y ||exp(S(F) — P(F)|r])]o
< Qmp([w])

Let now L be a Banach limit defined on the Banach space of all bounded sequences of
real numbers. For the definition and basic properties of Banach limits see for ex. the
book [Co] by conway. We define u([w]) = L((mr(c™"([w])))n>0). Hence Q@ trp([w]) <
p(w]) < Q@mp([w]) and therefore it is not difficult to check that the formula u(A) =
L((mp(0™"(A)))n>0) defines a finite non-zero finitely additive measure on Borel sets of
I satisfying Q~'mp(A) < p(A) < Qmp(A). Using now a theorem of Calderon (Theo-
rem 4.13 of [Fr]) and its proof one constructs a Borel probability (o-additive) measure fip
on I satisfying the formula

Q lip(A) < firp(A) < Qinp(A)

with, perhaps, a larger constant (). Thus, to complete the proof of our theorem we only
need to show complete ergodicity of iy or equivalently of mp. Toward this end take a
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Borel set A € I*° with mp(A) > 0. Using Lemma 2.7 and Lemma 2.2 it is straightforward
to check that for every w € I*, mp(wA) > Q7| exp(Su(F) — P(F)|w|)||lorr(A) > 0.
Hence, since the nested family of sets {[7] : 7 € I*} generates the Borel o-algebra on I,
for every n > 0 and every w € I"™ we can find a subfamily Z of I* consisting of mutually
incomparable words and such that A C J{[7]: 7 € Z} and }__, mr([wT]) < 2mr(wA),
where wA = {wp : p € A}. Then

mp (o™ (A4) N[w]) = Zmp (wr]) = Z/|exp wr(F) — P(F)|wr|) dmp

TEZ TEZ

> %Q‘llleXp(S B =Pl 3 [ exp(:(F) = D) 7)) dm
. %Q_l /exp(S’w(F) — P(F)|w|) dmp %;mp([f])

> 2@ M (i (UK 7€ 21) > 50 ()i ().

Therefore g (0~ (I°\B)N[w]) = rp([w]\o™(B)N[w]) = mr((w])—mr(c7"(B)Nw]) <
(1-(2Q)~*mp(B))rmp(lw]). Hence for every Borel set B C I* with mp(B) < 1, for every
n > 0, and for every w € I"™ we get

(2.8) mp(e™"(B)N[w]) < (1-(2Q)7' (1 —mr(B)))mr(w]).

In order to conclude the proof of the complete ergodicity of ¢ fix » > 1, and suppose that
o~ Y(B) = Bwith 0 < mp(B) < 1. Put v =1—(2Q)~ (1 —mp(B)). Note that 0 < v < 1.
In view of (2.8), for every w € (I")* we get rp(BN[w]) = mp(c~“I(B)N[w]) < ymr(w]).
Take now 1 > 1 so small that yn < 1 and choose a subfamily R of (I")* consisting of
mutually incomparable words and such that B C |J{[w] : w € R} and mp(U{w] : w €
R}) < minp(B). Then g (B) < ¥, cp (BN [w]) € Xy ep vie(w]) = yive (Uflu]
w € R}) < ynpmp(B) < mp(A). This contradiction finishes the proof. H

Remark. Using the results about the Perron-Frobenius operator proven in Section 6, one
can demonstrate similarly as in [Bo| that the dynamical system (o, fiF) is weakly-Bernoulli
and the weak-Bernoulli generator is provided by the partition into initial cylinders of length
1. This property implies all kinds of mixing. For further stochstic features of the dynamical
system (o, i) the reader may consult [Ur].

Theorem 2.10. mp is the only probability measure m satisfying L§(m) = m.

Proof. Since mp satisfies this equality we are only left to prove its uniqueness. So, let mq
be another such a measure and let my be the probability measure produced in Lemma 2.7
applied to the measure mi. Then for every w € I'* we have Q! < my ([w])/mr([w]) < Q,
whence m; and mp are equivalent and the Radon-Nikodym derivative p satisfies Q! <
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p < Q. We also have mp([o(w)]) = [ exp(Syw)(F) — P(F)|o(w)|) dmp and

i ([w]) = /exp(S’w(F) _P(F)|w]) dmp
= [0 b ()~ PE) 5 (S0 (F) @)~ P ()] ()

and hence

inf{exp(f“) (z) = P(F)) : € do)(X)}mr(lo(w)]) < rir([w])
< sup{exp(f @) (x) — P(F))

Since 1) is a continuous function on X we thus obtain that for every w € I

(2.9) im 77 ([@ln])

o @y = SRV @) —P)

and the same formula is true with mpg replaced by my. In view of Theorem 2.9 there exists
a set of points w € I*° with mp measure 1 for which the Radon-Nikodym derivatives p(w)
and p(o(w)) both are defined. Let w € I® be such a point. Then using (2.9) and its

version for m; we obtain

n— 00

p(w) = lim (M) — lim ( i ([w]n]) . ml(([a(w)|n_1]) .ThF([a(w)|n_1])
F(l

m w|n])

= exp(f ) (m(0(w))) = P(F)) p(o(w)) exp(f ) (n(o(w))) = P(F) = p(o(w))

But since, in view of Theorem 2.9, ¢ is ergodic with respect to mp, we conclude that p is
mp-almost everywhere constant. Since m; and mp are both probabilistic, m; = mp. So,

an application of Lemma 2.8 finishes the proof. l

A Borel probability measure m is said to be F-conformal provided it is supported on .J,

for every Borel set A C X

(2.10) m(po(A)) = /Aexp(Sw(F) CP(F)|w]) dm, Vw € I*
and
(2.11) m(¢w(X) N ¢ (X)) =0

for all incomparable w, T € I*. A simple inductive argument shows that instead of (2.10)

and (2.11) it is enough to require that for every Borel set A C X

(2.10') m((m(A)):/Aexp(Sw(F)—P(F))dm, viel
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and
(2.11) m(:(X) N ¢;(X)) = 0

for all 4,5 € I, 1 # j. A straightforward calculation shows that each F-conformal measure
is a fixed point of the normalized dual operator £j. We shall now provide some sufficient
conditions for the existence (and uniqueness) of F-conformal measures. In fact we shall
show that every measure satisfying one of these conditions and fulfilling slightly weaker
requirements than being a fixed point of the dual operator L£f is F-conformal. Our first
condition comes from the following definition. Namely, we say that an iterated function
system {¢; : i € I} satisfies the strong separation condition if ¢;(X) N ¢;(X) = O for all
i,J € I, 17 j. Our second condition is just conformality.

Lemma 2.11. Suppose that the iterated function system {¢; : i € I'} satisfies the strong
separation condition or it is conformal. Then Borel probability measure v on X is F-
conformal if and only if

(2.12) v(pw(A)) > / exp(Su(F) — P(F)) dv

A
for all w € I'* and for all Borel subsets A of X.

Proof. That an F-conformal measure satisfies the requirements appearing in this lemma
follows from its definition and Proposition 2.5. In order to prove the harder part, first we
shall show that condition (2.11) is satisfied, then that v(J) = 1, and finally that (2.10)
holds. If the system satisfies the strong separation condition, then (2.11) is immediate. So,
assume that it is conformal and suppose on the contrary that v(¢,(X) N ¢.(X)) > 0 for
some two incomparable words p,7 € I*. We may assume without loosing generality that
p and 7 are of the same length, say ¢ > 1. Let E = ¢,(X) N ¢,(X) and for every n > 1,
let B, = J,ecn ¢ (F). Since each element of E, admits at least two different codes of
length n + g which agree on the initial segment of length n, it follows from Lemma 2.6
of [MU1] that (N U,—y En = 0. On the other hand, by (2.12) and Theorem 2.6, we
get v(Ey) > Q72v(E), thus v(pe; Uns, En) > Q72v(E) > 0. This contradiction shows
that

(2.13) v($p(X) N 67(X)) = 0

for all incomparable words p, 7 € I*. From now on the proof runs simultaneously for
conformal systems and those satisfying the strong separation condition. In order to show
that v(J) = 1 suppose to the contrary that v(X \.J) > 0. In view of (2.13) for all w € I* we
have V(¢w(X\J)mJ) = V(UTeI\WI ¢w(X\J)m¢T(J)) S Zq—eI\WI V(¢w(X\J)m¢T(J)) = 0.
Hence setting E, = J,erm ¢w(X \ J) we get v(J N U,,51 En) = 0. On the other hand,
by (2.12) and Theorem 2.6, v(E,) > Q ?v(X \ J) and therefore v(Npe; Unes En) >
Q?v(X \ J) > 0. Moreover

NUEcNU U a)=N U dx)=.
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Combining the formulae occuring at the ends of the last three sentences we fall into a
contradiction which proves that v(J) = 1.

Now we need and we are in position to prove, that the measure mg is F-conformal.
Indeed, mp satisfies (2.12). Moreover, using (2.13), (2.4), and Lemma 2.7, given an in-
teger n > 1, we can write 1 = mp(X) = mp(Uyerm du(X)) = D pem me(du(X)) >
>wern J exp(Su(F) — P(F)|w|)dmp = 1. Therefore, mp(¢u(X)) = [exp(Su(F) —
P(F)|w|) dmp for allw € I"™. Fixing now w € E*, define two finite measures m; and my on
X in the following way: mi(A) = [, exp(S.(F)—P(F)|w|) dmp and mo(A) = mp(¢.,(A)).
Since we know that mq(X) = mo(X) and m1(A) < ma(A) for all Borel sets A, we conclude
that m; = mso. Hence, conformality of mp is proved.

Let us now return to the measure v. We shall show that mp is absolutely continu-
ous with respect v. Indeed, it follows from F'-conformality of mr and Lemma 2.2 that
Q7Y exp(Su(F) — P(F)|w|)||o < mp(¢u (X)) < || exp(Su(F) — P(F)|wl|)||o for all w € I*.
Since, by the assumptions, v(¢, (X)) > Q' exp (S, (F) — P(F)|w]|), we therefore obtain
mp(d,(X)) < Qu(o,(X)). So, using (2.13), we conclude that mp is absolutely continuous
with respect to v and p = dmp/dv < @ v-a.e. Repeating essentially the argument from
the proof of Theorem 2.10 to show that p is almost everywhere constant, we proceed as
follows. In view of Lemma 2.8 and Theorem 2.9 there exists a set of points w € I°° with
mp measure 1 for which the Radon-Nikodym derivatives pon(w) and pon(o(w)) both are
defined. Let w € I* be such a point. Then

mp(Pul, (X))>

pomw) = lim ( v (B, (X))

n—>00

. ( mr(fu, (X)) mr(fow)la (X)) V(¢a(w)|n_1(X))>
n=00 \ MF (Do (w)n_r (X))  V(Po(w)n_r (X)) V(¢u), (X))

f¢a(w)\n,1(X) eXp(f(W1)) de

< lim p(r(o(w)))-

= noroo ME (o (w))n_, (X))
. V(b (X))
-1
nl)nc}o f¢a(w)\n,1(X) eXp(f(wl)(x)) dI/(.T)

= exp(f“) (1 (0(w))p(m(0())) (exp(F) (m(0(w))) ™ = plr(o(w)))

So, by Birkhoff’s ergodic theorem, p o m(w) is mp-a.e. constant and so is the Radon-
Nikodym derivative p : J — [0,00). Keep the same symbol p for this value. Since both
measures m and v are probabilistic, p > 1. In the proof of the previous theorem we were
done at this point concluding that p = 1 since ,ug) and ug) were equivalent. Here an
additional argument is needed. And indeed, if p > 1, mp-almost everywhere, define the

set Z={x € J:p(x)=0} Then v(Z)=1—-1/p > 0. We claim that

(2.14) v((J\Z)N¢u(Z)) =0

for all w € I'*. Indeed, if v((J\ Z) N ¢,(Z)) > 0 for some w € I*, then mp(p,(Z)) >
mp(J\Z)N¢,(Z2)) =v((J\ Z)Npu(Z))/p > 0 which by F-conformality of mp implies
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that mp(Z) > 0. This contradiction finishes the proof of (2.14). But now it follows from
(2.14) that the probability measure v|z/v(Z) satisfies (2.12). Hence, from what has been
proved we conclude that mpg is absolutely continuous with respect to v|z/v(Z). This
however contradicts the definition of the set Z and finishes the proof. B

Corollary 2.12. mp is the only probability measure satisfying L£(mp) = mp and mp is
F-conformal. Also, mp-almost every point = € J has a unique representation in the form
r = m(w), w € I, that is 7~ 1(x) is a singleton. In particular in view of Theorem 2.9 and
Lemma 2.8, the measure pp = jipom ! is equivalent to mp with bounded Radon-Nikodym
derivatives.

Let us recall that in [MU1] we have in fact introduced the measures myq, png, mne and
finc, where tG as in Remark 2.1 is the family {t log|¢}|}icr and h = HD(.J) is the Hausdorff
dimension of the limit set J. We called there the measure my¢g simply h-conformal. Since
P(hG) = 0, the formula (2.10) takes on in this case the following form

(2.15) (g (A)) = /A 6, [Pdmne.

We end this section by further investigating the measures mp and fip. In order to do this
we introduce a potential function or amalgamated function, f, induced by the family of
functions F' as follows: f: I°° — IR is defined by setting

fw) = fe) (o).

Our convention will be to use lower case letters for the potential function corresponding
to a given Holder system of functions. Given n > 1 we set

n—1
Snf =) fool.
4=0

It follows from Lemma 2.7, Theorem 2.9 and Lemma 2.2 that for every w € I°° and every
n>1

1 mp([wln])
(2.16) O S Bt w) - P = ¢
and
(2.167) Q—z < ﬂ’F([w|n]) < Qz

~ exp(Spf(w) — P(F)n)

In fact (see Proposition 2.13 below) the measure fip is the only invariant measure satisfying
a condition slightly weaker than (2.16’).

Proposition 2.13. jir is the only shift-invariant measure on I satifying (2.16") with Q>
replaced by an arbitrary constant C' > Q% and P(F) replaced by an arbitrary constant P.

15



Proof. In view of (2.16’) we only need to prove that if a shift-invariant measure p satisfies
(2.16”) with a constant C' > 1, then u = ip. And indeed, we than have for every w € I*°
and every n > 1

M < Q’Cexp(P —P(F)n).

(2.17) Q70 exp(P = P(F))n)) < fir ([wln])

Suppose first that P < P(F'). We would then have

1=pI®) =Y p(r)) <Q*Cexp(P —P(F)n)

IT|=n

which gives contradiction for n > 1 large enough. So, P > P(F'). Similarly we demonstrate
that P(F) > P. Thus P = P(F). But then (2.17) implies that the measures p and fip are
equivalent. Since, by Theorem 2.9, measure jir is ergodic, we finally conclude that p = g
and the proof is complete. ll

We now need the following technical result.

Lemma 2.14. The following three conditions are equivalent:
a) [re —fdiip < 0.
(b) > er inf(=flr) exp(inf f]p)) < oo.

(c) Hap(a) < oo, where a = {[i] : 4 € I} is the partition of I°° into initial cylinders of
length 1.

Proof. (a) = (b). Suppose that [ —fdfip < co. This means that >, ; f[i] —fdpp < o0
and consequently

o> S inf(—fg / dip = 3 inf(~ 1) /[ (i )

1€l i€l

> QY inf(—flpae (i) = @S inf(— ) / exp(f 0 () — P(F))dmp(x)

1€l i€l

= QO (=1l | exp(7V @) dm(z).

1€l
Thus,

0o > Y inf(—f|g) /exp(f()( Ddmp(x) > 3 inf(~ flgg) exp(inf (/)

iel el

= me(—ﬂ[i]) exp(inf f1f;).

el
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(b) = (c). Suppose that ., inf(—f|;)exp(inf f[;) < oo. We shall show that
Hj, (@) < co. By definition,

Hpp (@) = Y —fir([i]) log fur ([i <Z Q™ ip ([i]) (log mr ([i]) — log Q).

But, Y. —Q tmr([i])(—1log Q) = Q7' log @, so it suffices to show that
5 e () g () <
However,
S e ([ Yogrinr (i) = 3= ~rne (i) og ( [ exp(s? - P(F) )

el el

<3 () (inf O — P(F)).

1=y
Since Yo, mr([i])P(F) = P(F), it suffices to show that Y, —mp([i]) infx f&) < cc.
And indeed,

> (i inf O = S sup(~) < 3 (i) (igf (~ ) + og Q).

iel i€l el

Since Y, mr([i]) log @ = log Q, it is enough to show that » ;. ; mp([i]) infx(—f®) < .
In fact,

> mp((il)inf(=f0) = inf fO — P(F)) inf(— 1)

iel el

< e "MQ Y exp(inf(fV)) inf(— ).

el

But, since Lp(11) € C(X), f® are negative everywhere for all i large enough, say i > k.
Then using Lemma 2.2 again we get

> e ([i]) inf (= D) < e PEQ Y exp(inf(f@)) inf(—f)

i>k i>k
which is finite due to our assumption. Hence, . p([i]) infx (— f(?) < oo

(¢) = (a). Suppose that H;, (o) < co. We need to show that [ —fdip < co. We
have

00 > My, (@) = ) —iivp([i]) log(mr ([i])) < D —mp (i) (inf(fli — P(f) —log Q).

el 1€l
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Hence, ) .., —mp([i]) inf(f|;)) < oo and therefore

el

| —sie =3 [ s <3 sup(=flgayne () = 3~ nt(flgayine () < o

iel el

The proof is complete. B

Let us note some further properties of the potential or amalgamation function. Since
F = {f% :ieI}isa Holder system of functions of order 3, the amalgamated function
f:I°° — IR is Holder continuous of order 5 meaning that

Va(f) = Sgl;{eﬂ"Vn(f)} < 00,

where
Vau(f) = sup{[f(w) = f(7)] : wln = 7|n}.
It is easy to see that

.1
P(F) = nll)n;o - log |z|: exp sup Zf ool (T ,
where the topological pressure P(F') has been defined at the beginning of the section.
Frequently we will also write P(f) for P(F) as well as m¢, my¢, pg and iy for mp, mp, pr
and fip respectively. It is also not difficult to check (see [HU]) that formula (2.15) gives
the same value as the definition introduced by Sarig in [Sa]. Therefore, it follows from
Theorem 3 of [Sa] that

(2.18) sup{h,(o / fdu} = P(F) = P(f),

where the supremum is taken over all o-invariant probability measures such that [ —fdp <
oo. We call a o-invariant probability measure x4 an equilibrium state of the potential f, or
equivalently of the family F, if [ —fdu < +oco and

(2.19) h, (o) + /fd,u =P(F

Given w € I*, say w € I" by o™ : I>*® — I*® we denote the map defined by the formula

o, " (1) = wr.

Notice that o™ is a continuous branch of ¢”. Given a Borel probability shift-invariant
measure f on I*° we call the function J, : I*® — [1, +00] the Jacobian of the shift map o
with respect to the measure y if for every Borel set A C I*°

W ) = [ cdn
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By L, : L*° — L* we denote the Perron-Frobenius operator of the measure p, i.e. the
operator defined by the formula

= Juliw)g(iw).

iel
We shall prove the following.

Lemma 2.15. If p is an equilibirum state for the shift map o : I°*° — I°° and potential
f such that [ —fdu < 400, then

o0

p

Ju = -exp(P(f) = f)

p almost everywhere, where p = djip/dmp is the density function introduced in Theo-
rem 2.9.

Proof. Let Hy be the space of all bounded real-valued continuous functions on I°*° and
let L : Hy — Hy be the Perron-Frobenius operator defined by formula

Lig)w)= Y exp(f(r) = P(F))f(7) =) exp(f(iw) — P(F))f(iw).

7€~ w) el

The density p = dmup/dmp existing due to Theorem 2.9 is its fixed point and according
to Theorem 5.2 of [Ur] p has a version in Hy, even Holder continuous. Therefore, using
inequality = > 1 4 logx we can write

- e [ [ ()

/p (S P( ))du>1+/10g<p-exp(f—P(F))>du

Ji " -poo Ju_l-poa

:1+/10gpdu—/logpoad,u+/(f—P(F))d,u+/logJud/z
:1+/fdu—P(F)+hu(o—):1.

Notice that we were in position to write the inequality sign and the equality sign following

it since by our assumptions [ fdy is finite and since log J,, is a non-negative function. Since
prexp(f=P(F)) _ 4
J ! poo

x =1+ logz if and only if x = 1, we conclude from this display that
L

it a.e.. The proof is complete. B

Theorem 2.16. If ) ., inf(—f]};) exp(inf f|;;;) < oo, then fiF is a unique equilibrium
state of the potential f.

19



Proof. It follows from Lemma 2.14 that [ —fdfir < co. To show that fir is an equilibrium
state of the potential f consider a = {[i] : ¢ € I}, the partition of I°° into initial cylinders
of length one. By Lemma 2.14, H;, (o) < oo. Applying the Breiman-Shanon-McMillan
theorem and the Birkhoff ergodic theorem, we find for jp-a.e. w € X

s RO
hjp(0) 2 hap (0, @) = lim —log fir([wln])

S T— log < / exp (S, (F)(z)dpp — P(F)n)>

n—,oo 1
1 n—1 .
= Jim —log | [ exp(3 £ w]ur))dur(r) ~ P(F)n)
=0
1 n—1
> lim sup - log /exp(z f(07(w)) +logQ — P(F)n)

n—

= lim _71 Z f(o?(w)) +P(F) = —/fdﬂp +P(F).

=0

Hence hy,, (¢) + [ fdjip > P(F), which in view of (2.18) implies that fip is an equilibrium
state for the potential f. We shall now prove that p is the only equilibrium state for f.
So, suppose that p is an equilibrium state. Fix w € I*, say w € I"™. It the follows from
Lemma 2.15, Lemma 2.2 and formula (2.16’) that for every v € [w] we get

pw]) = plo,"(I7)) :/JJI(W)JJI(U(W))---J,II(U"_I(wT))du(T)

p(wT) plo(wr))
——————exp(f(wr) — P(F))W exp(f(o(wr)) — P(F))...

exp(f(a”_l(wT)) —P(F)n)du(r)

”ff;"f)) exp(Snf () = PF)) < @ [ exp(Suf(wr) ~ P(F)n)
< QP exp(Suf(7) — P(F)n) < Q%jip([w])-

Hence, the invariant measure g is absolutely continuous with respect to ergodic invariant
measure jip. The proof is finished. B

We say that two amalgamated functions (of two Holder systems of functions) f,g: I — IR
are cohomologous in a class H if there exists a function : /> — IR such that

g—f=u—uoo.

We would like to end up this section with Theorem 2.17 whose proof analogous to the
proof of Theorem 1.28 in [Bo| we provide for the sake of completeness.
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Theorem 2.17. Suppose that F = {f(D},c; and G = {9 };c; are two Holder systems
of functions. Then the following conditions are equivalent:

(1) fr = fig-
(2) There exists a constant R such that

Spf(w) — Spg(w) =nR

if only o™ (w) = w.
(3) The difference f — g is cohomologous to a constant in the class of bounded Hélder
continuous functions.

(4) The difference g — f is cohomologous to a constant in the class of bounded continuous
functions.

(5) There exist constants S and T such that for every w € I*° and every n > 1
|Snf(w) — Spg(w) — Sn| < T.

If these conditions are satisfied then R = S = P(F) — P(G).
Proof. (1) = (2). It follows from (2.16’) that

exp(Sy.f(w) — P(F)k))

QS o (Sug(@) = P(g)))

for every w € I* and every k > 1. Suppose now that ¢™(w) = w. Then for every k = In,
I>1,
Q™ < exp(I(Snf(w) = Sug(w)) — (P(F) — P(G))n) < Q™.

Hence, there exists a constant 7" > 0 such that
l|Snf(w) - Sng(w) - (P(F) - P(G))n| < T

and therefore, letting I 0o, we conclude that S, f(w) —Snhg(w) = (P(F)—P(G))n. Thus,
putting R = P(F) — P(G) completes the proof of the implication (1) = (2).

(2) = (3). Define
n=f-g—R
and fix a point 7 € I°*° transitive for the shift map o : I*° — I*°. Put

T'={ok(r):k>1}

and define the function u : I' — IR by setting



Note that the function u is well-defined since all points o%(7), k > 1, are mutually distinct.
Taking the minimum of exponents we may assume that both families F' and G form Holder
systems of functions of the same order 8. Fix now k£ > 1 and consider periodic point
w = (7). Then by our assumption

o () = | (1007 () — (£ () ~ oo (w) + R
k—1
= [ () ~ £ @) - (97 () — gl )
< () — Fe @) + 3 la(e? (7)) — g(o? ()]
< z_:Vg(f)e_B(k j)+z_:V5(g)e B(k—3)
0B
(2.20) < (Vo) + Va(9) 5 < o0

Assume now o*(7)|, = o!(7)|, for some k < [ and some r > 1. Let w = 7|p(c*(7)|;_x)>
By our assumption 22;2 n(c7(w)) = 0. Hence,

[u(o (1)) = u(o® (7)) = gn(ﬂj(ﬂ) = gn(aj(T))—n(ffj(w))
=< l;(|f(0”( )) = f(o? (W) + |g(a? (7)) = g(o” (w))])
l:;(Vﬂ(f) + Vp(g))e PrH=r=D
(2.21) < e P (Va(f) + Valg Ze‘m 1)_:@( 9)g-tr

In particular it follows from (2.21) that w is uniformly continuous on I'. Since I' is a
dense subset of I°° we therefore conclude that u has a unique continuous extension on I°°.
Moreover, it follows from (2.20) and (2.21) that u is bounded and Hélder continuous. The
proof of the implication (2) = (3) is therefore complete.

Now, the implications (3) = (4) and (4) = (5) are obvious.
(5) = (1). It follows from (5) and (2.16’) that for every w € I*, say w € I"™

(2.22) @ *e Texp((S+P(G) —P(F))n) < % < Q" exp((S +P(G) — P(F))n).
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Suppose that S # P(F) — P(G). Without loosing generality we may assume that S <
P(F) — P(G). But then it would follow from (2.22) that that for every n > 1

L= p(I%) = Y fir(w]) < Q%7 exp((S + P(G) — P(F))n)

|lw|=n

which gives contradiction for n > 1 large enough. Hence S = P(F) — P(G). But then
(2.22) implies that the measures fip and fig are equivalent. Since, in view of Theorem 2.9
these measures are ergodic, they must conincide. The proof of the implication (5) = (1)
and simultaneously of the whole Theorem 2.17 is complete. l

§3. Parabolic systems. In this section we recall from [MU3] the concept of conformal
parabolic iterated function systems and employing the construction of the associated hy-
perbolic system, we demonstarate how to reduce the theory of Holder families of functions
for parabolic systems to the corresponding theory of hyperbolic systems. The significance
of this section lies on the level of geometric features of the measures mpr and pr and not on
the level of their abstract properties. In Section 7 we will develop the multifractal analysis
of conformal hyperbolic iterated function systems, and using the result this section, we will
apply the results of Section 7 to study geometry of equilibrium states (pp) of parabolic
systems in Section 8. Let us recall the setting from [MU3]. Let X be a compact connected
subset of a Euclidean space IR?. Suppose that we have countably many conformal maps
¢; : X — X, i €I, where I has at least two elements satisfying the following conditions

(1) (Open Set Condition) ¢;(Int(X)) N ¢;(Int(X)) = O for all ¢ # j.

(2) |@pi(x)| < 1 everywhere except for finitely many pairs (i,z;), ¢ € I, for which z; is
the unique fixed point of ¢; and |¢}(z;)| = 1. Such pairs and indices i will be called
parabolic and the set of parabolic indices will be denoted by €. All other indices will
be called hyperbolic.

(3) Vn > 1 Yw = (wy,...,wp) € I™ if w, is a hyperbolic index or w,—1 # wy,, then ¢,
extends conformally to an open connected set V C IR? and maps V into itself.

(4) If i is a parabolic index, then (),~, ¢i»(X) = {z;} and the diameters of the sets
¢in (X)) converge to 0. -

(5) (Bounded Distortion Property) 3K > 1Vn > 1 Vw = (wq, ...,wy) € [" VYV, y € V if w,
is a hyperbolic index or w,_; # w,, then

|60 ()]
|60, ()]

< K.

(6) 3s <1VYn>1VYw € I™ if w, is a hyperbolic index or w,_1 # wy,, then ||¢] || < s.

(7) (Cone Condition) There exist o, > 0 such that for every z € 0X C IR there exists
an open cone Con(z,a,l) C Int(X) with vertex x, central angle of Lebesgue measure
a, and altitude .
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(8) There are two constants L > 1 and a > 0 such that

i ()| = 1o (@)]| < LI |lly — =],

for every ¢ € I and every pair of points z,y € V.

We call such a system of maps S = {¢; : i € I} a subparabolic iterated function
system. If Q # (), we call this system parabolic. I has been proved in [MU3] that
limy,— 00 SUP, =, {diam (¢, (X))} = 0. So, the projection 7 : I°° — X and consequently
also the limit set w(I1°°), are well defined. Let us now recall the main construction from
[MU3]. So, consider the system S* generated by I, the set of maps of the form

Pinj,
where n > 1,4 € €2, ¢ # j, and the maps

P,

where k € T\ Q. It immediately follows from our assumptions that the following is true.
Theorem 3.1. The system S* is a hyperbolic conformal iterated function system.

We recall that J* is the limit set generated by the system S*. The proof of the following
result (see [MU3)) is straightforward.

Lemma 3.2. The limit sets .JJ and J* of the systems S and S™* respectively differ only by
a countable set. In fact, J* C J and J \ J* C {¢,i>® 1w € I*,i € Q}.

Let now F' = {f®};c; be a Holder family of functions of an order § > 0 for the iterated
function system S = {¢; };cr. We define the family F™* for the system S* by setting

=
if ¢ is a hyperbolic index of I and
o . n—1 .
P =D+ D 0 dinj = P(F)(n+1)
k=0

ifn>1,i€Qand jel\{i}. We start we with te following.

Theorem 3.3. If F' is a Holder family of functions of order 8 > 0 for the system S, then
F* is a Holder family of functions of order 8 > 0 for the system S* and Pg«(F*) = 0.

Proof. Since |w|. < |w| for every w € I, in order to check (2.1) we only need to estimate
from above the numbers

[FE D (o (@) = FD (b0 (y)]
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forallm > 1,alli € Q, all j € I'\ {i}, and all w € I}. And indeed, applying Lemma 2.2
we get

< %e—ﬁlwl < 7‘1%_(?_65 e Alwls
So, ,
16D (@) — 16D (g ) el < I
And therefore _—
v < PO

Let us now verify condition (2.2). In view of Lemma 2.7 and Lemma 2.2 we can write

> e e
1€I\Q 1EQ jAI n>1
(i) 7
= Dl o+ DD D [lexp f(“+2f()0¢w ~P(F)(n+1))
1€I\Q 1EQ jF#L n>1 0
(4)
< > e o (Sini(F) = P(F)(n+1))|,
i€I\Q i€Q i n>1
(4) - o -
< >l o+ Y Qmp (i)
i€I\Q i€Q j#in>1
(i) (4)
< Dl o+ Qmp(i) < Y el o+ Q < o0
1€EI\Q 1€I\Q

So, F* is a Holder family of functions of order  and we are only left to show that
Pg«(F*) = 0. The proof uses the argument similar as above. First notice that if w € I}
and ww is the word w written in the alphabet I, then

(3.1) Sw(F7) = Sa(f) = P(F)|wl.

Hence,

Zn(F*) =log Y |lexpSu(F*)|lo=1log D |lexp(Sz(f) - P(F)|w]).

lwl«=n |w|«=n

Therefore, using Lemma 2.2 and Lemma 2.7 we conclude that

Zn(F*) <logQ+ > mp([@]) <logQ+m(I*) < 1+logQ

|w|.=n
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and similarly Z,,(F*) > 1 —log(. Thus

1
Ps«(F*) = lim —Z,(F*) = 0.

n—oo N,

The proof is complete. B

Notice now that in Section 2 we have not really used the hyperbolicity of the iterated
function system considered, but only the fact that the intersections (), ¢u, (X) are
singletons. Therefore, given a parabolic system S and a Holder family of functions F', we,
in particular, can speak about the measures mg, i and mp. Notice however that the
measure mp is defined as the fixed point of the normalized Perron-Frobenius operator and
we do not claim that it is conformal. Since the map IJ° — I°°, w +— W, is injective, we can
consider I2° as a subset of I°°. Since I°° \ I2° = {wi® :w € I*,i € Q} is a countable set,
since the measure jip is ergodic (see Theorem 2.9), and since, by (2.16’), the topological
support of pp is equal to I°°, we conclude that g (1°°\I2°) = 0. Thus, with regard to the
measures g, mg, fip-, mp- we can identify the sets I°° and I2°. We are now in position
to prove the following.

Theorem 3.4. Suppose that F' = { f(V},c; is a Holder family of functions of the parabolic
system S and that F'* is the corresponding family of functions for te system S*. Then

(a) m F = m F*.

(b) mep = Mg=x.

(¢) The measures i and fip- are equivalent with uniformly bounded Radon-Nikodym
derivatives.

Proof. It immediately follows from Lemma 2.7, Lemma 2.2 and (3.1) that the measures
myp and mp~ are equivalent, and moreover, the Radon-Nikodym derivative p = dJZLFF* is
uniformly bounded away from zero and infinity. The item (c) of our theorem is now an
immediate consequence of Theorem 2.9. In view of ergodicity of the dynamical system
(6%, ip~) in order to prove part (a), it is sufficient to show that the Radon- Nikodym
derivative p = de is constant on almost all forward trajectories under the shift map o*

The idea is to apply (2.9) for the maps o* and ¢ and to proceed further similarly as in the
proof of Theorem 2.10. And indeed, applying first (2.9) for all w € I2° and the shift map

c*, we get for every n > 1

lim — (@) 5y = e (£ (o)) = (S (1) (011) = PF)er]).

n—oo Mg+ ([0 wl;_4
Applying in turn (2.9) wq| times to the shift map o, we get for every n > 1

L ()

n— 0o ﬁ’lp([O"(A)le) m])

_ exp(Swl (f)(0'|w1|) — P(F)|LL)1|)

where m = Y"1 | |w;l, i € I,. Hence, for every w € I2°

dThF* dm

— (W) ¢ {0, 00}

- (W
dmpg« o o* dm
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Therefore,

( ) dﬁLF* dmp* dﬁLF* oo™ dﬁLF OO'*( )

w) = e w) - w) w

p dmp dmpg« o o* dmpg o o* dmg
 ding-

ding (7 w) = plow)

Thus the proof of item (a) is complete. Part (b) is an immediate application of (a) and
Lemma 2.8.

§4. Volume Lemma. Throughout this section we assume that the system F' = {¢; : i €
I'} is conformal. Recall that if v is a finite Borel measure on X, then HD(v), the Hausdorff
dimension of v, is the minimum of Hausdorff dimensions of sets of full ¥ measure. By
a = {[i] : i € I}, we denote the partition of I* into initial cylinders of length 1. If 4 is a
Borel shift-invariant ergodic probability measure on I*°, by h,(c) we denote its entropy
with respect to the shift map ¢ and by x,(c f (du > 0 its characteristic Lyapunov
exponent, where

((w) = —log|dy, (w(o(w)))l.

In this section we shall prove the following.

Theorem 4.1.(Volume Lemma) Suppose that u is a Borel shift-invariant ergodic prob-
ability measure on I°° such that

(4.1) uow_1(¢w(X)ﬂ¢T(X)) =0
for all incomparable words w, 7 € I*. If H, (o) < oo, then

hu(”)

HD(#’ © 71'_1) = Xu(a-) )

where H,,(«) is the entropy of the partition o with respect to the measure y and we put
hy (o) =0
= .

Proof. Supposing the series ), —u([i]) log(||#;||o) converges, using (BDP), we conclude
that the function ¢ is integrable. Since H,(a) < oo and « is a generating partition,
the entropy h,(0) = h,(0,) < H,(a) is finite. Thus, in view of the Birkhoff ergodic
theorem and the Breimann-Shannon-McMillan theorem there exists a set Ip C I°° such
that /1,(10) = 1,

42 Jim Y Coolw) = xulo) and i —EELERD )

for all w € Iy. Fix now w € Iy and n > 0. For r > 0 let n = n(w,r) > 0 be the least integer
such that ¢, (X) C B(r(w),r). Then log(pom=*( w),r))) > log(pom (g, (X))) >
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log(p([w|n]) > —(hy (o) + n)n for every r small enough (which implies that n = n(w,r) is
large enough) and diam(¢,,, ,(X)) > r. The last inequality implies that

logr < log(diam(g,,,_, (X)) < log(Dlgl,, _ (x(0" " (w)))])

<logD + Z log |¢,, (m(07 (w)))] < log D — (n — 1) (xu(o) — 1)

for all r small enough. Therefore, for these r

log(p,o W_I(B(’]T(w),’l“))) < —(hy (o) +n)n
log 7 ~ log D — (n—1)(xu(o) —n)
hu(a) +n

— "logD _ :
—E2 + 2=l (xu(0) — )

Hence letting » — 0, and consequently n — oo, we obtain

lim sup log(p o7 (B(mw(w),r))) < hu(o) +n
r—50 logr = Xulo) =7

Since n was an arbitrary positive number we finally obtain

lim sup log(uow‘l(B(ﬂ(w),r))) < h, (o)
0 log r ~ xu(o)

for all w € Iy. Hence (see [Ma], [PU]), as pom(w(Ip)) =1, HD(pom 1) < h,(0)/xu(o).
Let now J; C J be an arbitrary Borel set such that po 7=1(J;) > 0. Fixn > 0. In view
of (4.2) and Jegorov’s theorem there exist ng > 1 and a Borel set Jo C 7~1(.J;) such that

u(J2) > p(r=(J1))/2 > 0,
(4.3) u(wln]) < exp((—hy (o) +n)n)

and [¢), (m(o"(w))] > exp((—xu(o) — m)n) for all n > ng and all w € Jo. Due to the
(BDP), the last inequality implies that there exists ny > ng such that

(4.4) diam(¢w|n(X)) > D le(xu(@)=mn > o= (xu(o)+2m)n

for all n > ny and all w € Jo. Given now 0 < r < exp(—(x. (o) + 2n)ny) and w € Jo
let n(w,r) be the least number n such that diam(¢,, ., (X)) < r. Using (4.4) we deduce
that n(w,r) + 1 > ny, hence n(w,r) > ny and diam(¢,, (X)) > r. In view of Lemma

2.7 of [MU] there exists a universal constant I > 1 such that for every w € Jo and
0 < r < exp(—(xu(o) + 2n)n1) there exist k < L points w®,...,w®) € J, such that
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7(J2) ﬂB(W(aj), r) C U?Zl ¢w(j)|n(w(j),r) (X). Let fi = |5, be the restriction of the measure
i to the set Jo. Using (4.1), (4.3) and (4.4) we get

k k
o m  (Blr(w), ) € 3 pon guony (X)) = 30 (8P o))
j=1 J=1
<Y exp((=hu(o) + nn(w,r))
=1
n(ij),r) _—hu(a)tn
=3 (exp(~(xu(0) + ) (), 7) 4 1)) ) 7T e T
=1
k n(@@,r)  hu(e)=n k n(@,r)  hu(e)—n
< Zdiam(%wn(wm )+1(X))n(w<a‘>,r>+1 W@ < ZT"(N)’T)H e ()27
=1 " =1
hy (o)—2n

ny o, h,(o)—n >
ni+l  xu(o)+2n =

ba(o)=21 " Hence (see [Ma], [PU]) HD(J;) > HD(n(J5)) > 2421 and since n was an

where the last inequality sign was written assuming n; so large that

Xu(o)+2n" Xu(0)+2n

arbitrary number HD(J;) > ;" ((g; Thus HD(po 7™ 1t) > :"—((‘;; and the proof is complete.
B B

|

Remark 4.2. Note that proving HD(pu o 77 1) < ;’;EZ)) we did not use the property

pw([w]) = por Y (py(X)), w € I*, which is equivalent with (4.1).

Remark 4.3. Note that the proof of Theorem 4.1 actually shows that the measure
hu(U)
. . Xp(o)
has Hausdorff dimension at least this large.

po 1 has pointwise dimension This implies that every set with positive mesure

Remark 4.4. Note that it is in fact sufficient to assume in Theorem 4.1 that H, (a?) < oo
for some ¢ > 1.
As an immediate consequence of Theorem 4.1 and Remark 4.4 we get the following.

Corollary 4.5. If F = {f(®) :j € I} is a strongly Holder family of functions and the series

Z —mp (P, (X)) log(mp (¢, (X)))

wele

converges for some g > 1, then




We would like to end this short section with the proof of the following.

Theorem 4.6. Suppose that {¢; }ics is a regular conformal system such that Xfipe < 00
Suppose also that y is a Borel ergodic probability shift-invariant measure on I°° such that
H, (o) < co. If HD(pon™t) = h:= HD(J), then fi = fi_pc.

Proof. If x, = oo, then it follows from Remark 4.2 that h = HD(p o n~') = 0 which is
a contradiction. So, x, < oo and it follows from Remark 4.2 that h, — hyx, > 0. Since,
in view of Theorem 3.15 of [MU1], P(—h() = P(h) = 0, we therefore deduce from (2.18),
Lemma 2.14 and Theorem 2.16 with f = —h(, that g = p_p¢. The proof is complete. l

Corollary 4.7. Suppose that {¢;};cr is a regular conformal system such that x;_,, < oo.
Suppose also that F' = {f() :i:i € I}, is a strongly Holder family of functions satisfying
the asumptions of Corollary 4.5 (or equivalently Hj, (o) < 00). If HD(pup) = h := HD(J),
then fir = fi_pe and the difference between the amalgamated function f : I*® — IR and
the function —h( : I°° — IR is cohomologous to a constant in the class of bounded Holder
continuous functions on [*°.

Proof. Since pup = fipom~1!, all the asuumptions of Theorem 4.6 are satisfied. It therefore
follows from this theorem that fip = ji—p¢. As an immediate application of Theorem 2.17
we now conclude that f+ h( is cohomologous to a constant in the class of bounded Holder
continuous functions. The proof is complete. ll

65. Tonescu-Tulcea and Marinescu inequality. In this section we come back to the
setting of general hyperbolic iterated function systems explored in Section 2. We first
consider the natural extension of the operator Ly to the space of bounded measurable
functions. Let

Ho = {g : g is a bounded function on J and g o 7 is continuous on I°°}.

Note that H, is a Banach space equipped with the uniform norm ||-||o and Ho D Cy(J), the
space of bounded continuous functions on J. It can happen that Ho = Cy(J). This would
be the case for example if the map 7 were an open map. However, the map 7 is generally
not open. For instance, if 7 were open, then according to a classical theorem of Sierpinski,
J would be a G set and there are examples where J is not a G set [MU1, Ex. 5.1]. Thus,
Ho is, in general, a proper enlargement of Cy(.J). Let us note a simple property of Hy. If
g € Hop and w € I'*, then go ¢, € Hy, since for each 7 € I*°, (go ¢,,)(7) = gom(wT). Also,
for every a > 0, let
Ho ={g9 € Ho: Valg) < 0},

where

Va(g) = sup lgomw) — g om(r) rw,TeElI® w#Tandw; =7y
do(w, T)
and d, (w, 7) = e~ where k is the maximal integer such that w|j, = 7|x. Since 7 : I® — J

is a surjection each H,, is a Banach space with norm ||- ||, defined by ||g||a = ||9]l0+ Va(9)-
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Theorem 5.1. Let F' = {f(®) : i ¢ I} be Holder system of functions of order 3. The
normalized operator Lg : Ho — H( preserves the space Hg. Moreover, there are constants
0 <y <1land C >0 and some gy € N such that if ¢ > qo, then for every g € Hp

1£6(9)lls < llglls + Cllgllo-

Proof. Let g € Hy and let n > 1, we have

L3(9)(@) = > exp(Su(F) — P(F))()g(du(@)).
So,
Ly(g)(m(x)) = D exp(Su(F) = P(F)n)(r(x))g(du(n(x))).

weln

Since this is a uniformly convergent series of functions in Ho, L£§(g9) € Ho. Now assume
that g € Hp. Let x = n(7),y = 7(p), 7,p € I, T|x, = pl| and Tk41 # pr41 for some
k > 1. Then for every n > 1

Ly (9)(y) — L5 (9)(x
=Y exp(Su(F) = P(F)n)(1)g(du(y)) — Y exp(Su(F) — P(F)n)(z)g(pu(x))

—P(F)n)(y) (9(¢u(y)) — 9(¢u(z)))

~—"

9(¢u(2)) (exp(Sw (F) — P(F)n)(y) — exp(Su(F) — P(F)n)())

weln

But [g(¢w(¥)) —9(du(2))] < Va(g)e#+*) and therefore employing Theorem 2.6 and using
Lemma 2.2 we obtain

S exp(Su(F) = P(F)n) (9) (9(¢u (1)) — 9(du () < Va(g)e PHHQ

welm™
(5.1) < e P"Qllgl|sds(p, )

Now notice that there exists a constant M > 1 such that |1 —e”| < M|z| for all x with
|z| < e #log Q. Since by Lemma 2.2, |S,,(F)(z) — S, (F)(y)| < e #*logQ < e PlogQ, we
can make the following estimates:

| exp(Su(F) — P(F)n)(y) — exp(Su(F) — P(F)n)(z)|
= exp(S,(F) — P(F)n)(y)11 — exp(Su (F)(x) — Su(F)(y))]
< M exp(Su (F) = P(F)n)(y)|Sw(F) () — Su(F)(y)|
)

) =
< M exp(S,(F) = P(F)n)(y) log Qe 7"
= M log Q exp(S.,(F) — P(F)n)(y)ds(p, 7)
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Thus, using Theorem 2.6,
Y 9(du(@)) (exp(Su(F) = P(F)n)(y) — exp(Su(F) = P(F)n)(x))

welm™

< M|lgllolog Qdg(p,7) Y exp(Su(F) — P(F)n)(y)

< MQlog Qllgllods(p, T)

Combining this inequality and (5.1) we finally get

L5 (9) (W) = £5(9) ()] < e QI fl|pds(p, 7) + MQlog Q]| f|lods (p, T)-

Taking now n so large that v = e7#™(Q < 1 finishes the proof. B

If the unit ball in Hg were compact as a subset of the Banach space Hy with the supremum
norm || - ||o, we could use now the famous Ionescu-Tulcea and Marinescu Theorem (see
[ITM]) to establish some useful spectral properties of the Perron-Frobenius operator L.
But this ball is compact only in the topology of uniform convegence on compact subsets of
E*° and we need to proceed in a different way. This has been done in Section 4 of [MU5]
(see especially Theorem 4.4) and as a result we get the following.

Theorem 5.2. Let F = {f(® : i € I'} be Hélder system of functions of order 8 and let £

be the associated normalized operator, then

(a) A =1 1is the only eigenvalue of modulus 1 for Ly : Ho — Ho and its eigenspace E has
dimension 1. In fact, ¢ = % (which is well defined mp a.e.) has a version in
Hp and E = Q).

(b) Lo =P + S, where P : Hy — E is a projector from Hy to £, PoS =S50 P =0 and
sup,,>1 [|S™|o < oo.

(c) S acts on Hp and there exist constants M > 0 and 0 < 1 < 1 such that
15™[ls < My

for every n > 1.

§6. Analytical properties of topological pressure and Perron-Frobenius oper-
ator. In this section S = {¢; : X — X : i € I} is a regular conformal iterated function
system and ¥ = {¢() : X — IR :i € I} is a Holder family of functions of order 8 > 0. We
begin with the following.

Lemma 6.1. Suppose that ¥ = {¢)() : X — IR: i € I} is a Holder family of functions of
order . Then for each R > 0, there exists a constant M = M (¥, R) > 0 such that

2 (D) 2 ( 20 (z % %
|e*¥ () _ 29" )| < Mle*¥ ( )||¢()(y)_¢()($)|
for all z € B(0,R) C @, alli € I and all z,y € X.
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Proof. Considering the Taylor series expansion of the function e we see that there exists
a constant M;(R) such that |e” — 1] < M;(R)|w| for every w € B(0, RV3(¥). Since
|29p®) (y) — 29p® (z)| < RVj(¥), we therefore get

e W) ez @)| = o9V (@)| o=V =20V (@) _ 1] < o2 @) | My (R)R|yY @ (y) — D ()]

Thus the proof is complete by setting M = M1 (R)R. B

Lemma 6.2. If ¥ is a Holder family of functions and ZieI esup(ty”) < ooforallt >ty >

0, then
S Bl o < oo
iel
for all t > tg.
Proof. Fix typ < t; < t and z € X. By our assumption, lim;_,. sup(y®) = —oo.

Since sup;¢;(sup(y¥®) — inf(yp®)) < V3(¥) < oo, except for finitely many i € I, we have
@2 = (inf D)2 < etr=Dinf 9 < o(t=t)Vo (V) g(ti=t) sup¥ ™ Hence, for these i

@ || @ < ||et1 sup ¢ (*)

IO o = 1) ]jet 0¥

and the proof is complete. ll

Consider now two Holder families of functions F = {f® : X — @};cr and U = {y® :
X — IR}ics both of order 8. Of course, for all t € @, the family {f® + t4)()};¢s is also
Holder with order 3. Let

O(¥, F) = max { inf{t € R : Ze““pw(i> < oo},
iel

inf{t € R : Zexp(sup(Ref(i)) +sup(tp™)) < oo}.
i€l

Then for all ¢ € € with Re(t) > 0(¥), we may consider the operator L; : Ho — Ho defined
by the formula

Li(g)(@) =Y exp(fD(x) + 14D (x)) g(¢i()).
iel
By Theorem 5.1, £; preserves the space Hg. Denote by L(Hg) the Banach space of
bounded linear opertors on Hg. We shall prove the following.

Lemma 6.3. Suppose that {i : sup(¢);) > 0} is finite. Then for all ¢, with Re(ty) >
6(¥, F'), the function

t— Et € L(Hﬂ)
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is well-defined and differentiable in a neighbourhood of t, € €. Moreover, the derivative
dﬁt (to) is given by the formula

ddﬁtt = exp(f9(x) + toy (2)) @ (2)g(hi(x)).
i€l

Proof. Fix t € ¢ with Re(t) > 0(¥, F)) > 0. Assume additionally that |t —¢o| < 61, where
0 < d; <1 is so small that Re(tp) — d1 > 0(¥). For each = € X, we have

e (2 toy D (z ' ttop e
etV (@) _ gtoy " (2) _w(z)( Je toy ) (z) _ otV (2) (e( RA— —w(i)($)>

t—to t—to

= oto¥ (@) (i —Qp(zzajr)(:;l) (t— to)”)

n=1

= e @ (g — 1)

n=0

$ ) () +2)

(n+2)! (t —to)"™

. 00 (i) ()2 (i) ()™
(6.1) = etV (1) Y (ﬁ 1>(<n))+ 5 (et

n=0
Therefore,

ot (@) _ gtow® (2)
t—to

A @) (g u (@) A - w(z) 0 n
0 ()etod @) < (Rt D)1y _ g1 )ng”ni'”o“_td
n=0 )
(6.2) = |t — to|esUP(R(t0¥ ™)) |14 (D) 2ellv PV llolt—to]

By our assumptions there exists a finite set F' C I such that sup(y()) < 0 for alli € I'\ F.
Then for every i € I \ F' we get

< Re(to)Va(\I')|W}(i)||geRe(t0)inf(¢<i>)e—inf(¢<i>)51
= eRe(t0)Va(¥) 11,12 exp ((Re(ty) — 1) inf(yM)).
P 0 €XPp 0 1 P

Since Re(tg) > O(¥, F), the set {i € I : sup(Ref®) + sup(typ(M) > 0} is finite. Since
moreover, Re(tg) — d1 > 0(V), it therefore follows from Lemma 6.2 that the number

Z:Ze

i€l

is finite. Define now the operator 0 by the formula

Zexp f(’) +t07,b(z)( ))w(’)(x)g(aﬁz(w))

1€l
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By Lemma 6.2, 0 acts on the space Hy. As the first step towards proving Lemma 6.3 we
shall show that 0 is the partial derivative of the function (g,t) — Ly € L(Ho) with respect
to the variable ¢ at the point ty. To show this, first fix £ > 0 and then set

0y = min{él, %}

Using (6.1) and the definition of Z, for any function g € Hy, every x € X and every t € €'
with |t —to] < d2, we get

Et(g)(qu : ‘tCOto (g)(x) _ 3(9)(37)
B exp (f (z) + t9p@(2)) — exp(FD (2) + top™ ()
N ; ( t—1o

~exp(FD (@) + tow“‘)<m>>w<i><m>>)g<¢i<m>>\
Y el @ (e“ﬁ(“(”ﬁ) — etor (@)

—y® (:U)etow)(w)) g(¢z’($))‘

icl t=to

3 ol etr ) O VDo gy )| g
< o(sup Re x — D (1)e x
el t—to o

€
< |t —tolZ]|gllo < b2]lg]lo < §||g||0.

Hence,

(6.3)

We shall now deal with the technically more complicated task concerning the Holder norm.
As a byproduct we shall prove that d acts on the space Hg. So, fix g € Hg and z =
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m(w),y = 7w(r) € J. We then have

Li(9)(y) — Lty (9)(v) — Le(g)(x) + Liy(9)(z) — (O(g)(y) — I(g)(x))(t — to)
= (exp(fO(y) + v (y)) — exp(fD(y) + top D (1)) ) 9(hi(y))

icl
— (exp(F () + 19 (@) + exp(fD (@) + topp (2))) g (4i())
+ (=99 () exp(fD () + 1o ™ ())) 9(:(y))
+ 9@ (@) exp(fD (@) + to™ (2))) g (i(2))) (¢ — t0))
(i) (i) (i) ; (i)
— Zef (y)g(qsi(y))(et”’ W) _ gto¥™ (W) _ () (g)elo?™ (W) (4 — to))
i€l
() (g () (g () (g i () (g
_ Zef ( )g(@(:c))(e“/’ (@) _ gto¥™ (@) _ @) () et " (@) (4 — to))
icl
(i) (i) (i) ; (i)
= 30 (g(gily)) — g(gi(a)) (oD — VD) O et D (g )
i€l
(i) (i) (i) i (i)
+ Zg(@'(ﬂ?))(e’c W) (V™ (W) _ o (W) _ 4 (0) (4))eto¥ " W) (¢ — ¢))
i€l
(6.4) — o @ (ot V(@) _ gtop V(@) _ () (5)eto V(@) (1 to)))
Let |t — to| < d2. Applying (6.2) along with the definition of Z, we can estimate from
above the absolute value of the first sum of the last formula of (6.4) as follows.

S1= 1300 (g(gi(y)) — g(Bu(@)) (W) — VO — g O(y)elV O g — 1)
i€l
(6.5) < ZVs(9)dg(w, )|t — to|*.

Write now the second sum Yo of the last formula of (6.4) as follows

(1) () (g (1) (1) i (1)
Yy = Zg((ﬁi(x))(ef () _ of( )) (etw ¥) _ gto¥™7(y) _ g )(y)etow (y)(t _ to))

il
+ Zg((bi (z))el" @) (etw(”(y) — eto¥ W) _ @ (y)eto? W) (1 — )
iel
(6.6) _ (etow“’(w) — @ (g)eto? @ (¢ — t)))-

Now, using (6.2) and Lemma 6.1, the absolute value of the first sum in 35 can be estimated
from above as follows

(i) (&) (g (i) (i) i (i)
Y3 = |Zg(¢¢($))(ef (¥) _ o ))(etw W) _ gto¥™ (W) _ () (1))eto?™ W) (1 — 14))]
el
su e(f 7 i (9) () i ()
< ||g||oZMe p(Re(f ))|f( )y — f( ):U||et"[’ ¥) _ gto¥™7(y) _ 4 )(y)etow (y)(t —to)|
il

(6.7) < MZ]|gllo|Va(F)dg(w, )|t — to|*
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where M = M (F, 1) is the number produced in Lemma 6.1. Now, in view of (6.1), we can
make the following estimate of the second sum in (6.6)

N, = Zg((ﬁi(x))ef(i)(m) (etw(”(y) — et W) ) (y)eto? @) (1 — 1)
il
— Zg(@(aj))ef(”(m) ((t )2 ot () Z lb(’) (@b(z)(y))" (t — to)"

!
= (n+1)( ) n!

_ ( _ 2 tow( >($) Z ,ll}( ) ) (w(z ('T)) (t - to)n>

(n+1)(n+2) n!

— t—ta)? (o ef(l)(m) etolﬁ(l)(y) _ etolﬁ(i)(m)
(t —to) g(di())

. > (2) n
. (w(z) (y))z Z (n - 1)1(n oy (¢ n(!y)) (t — to)"
(z) n 2 (@) 7)) +2
(6.8) tow( ) (z) Z (v +n - é;p' (2)) * (t— t())n>.

We next estimate the two sums in (6.8). Using Lemma 6.1, (6.1) and the definition of Z,
we get with P = M (0, |to])

25 =

>t~ to)2g(ilw))el @ (eto? W) — gtor e
el

. (2) n
. (w(z) (y))z Z 1 (@b (y)) (t _ to)n

= (n+1)(n+2) n!

<

<= tolllalle 3 >R (Re(71 (2)) pesup(Re(tor ) |y (3) () — y(8) (][] P2 i |¢(i)7§?!4))|” £ to"
<lt- td%(xv;z (w@.)lglloP Y R0 Bl
i€l
< It = 1ol Va(W)ds (. 7)llglloP e
el
< ZMP||g|[oV5 ()ds(w. 7)t — to

) 112 sup(Re(tow ) 119D ||o]t—to|
)| |Zesup(Re( De
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Finally, we estimate the second sum in (6.8):

(i) @y e (@ ()2 — (h(@) (1)) +2
;(t—t0)2g(¢i(x))ef (w)etm/; (m)z_:o(w (y)) :n+§;b' ( )) + (t—to)n

< [t = tol*llgllo ) exp (sup(Re(f ™))+

i€l
DY) N | (i i (n+2)[|p@|g* n
+sup(Re(toy)) 3 W) — 90|~ tol

< It~ toPlgllo 3 exp (sup(Be(ag?) + sup(Re(tos ) Vi (1) V5 (1) 5o Y- 178 1
1€l n=0 ’

< |t = to Vs (W)da(w. 7)llgllo Y exp(sup(Re(gd”) + sup(Re(to @) 9@ el o1 =o!
el
< Z'|lglloV5 (W) (w, 7)It — tol*,

where Z’ has the same meaning as Z with |[¢)(?)||2 replaced by [|9®||o. Combining now
the above estimates we get

(£0)8) = £ _ ) - (£ll)= ulole) a(gxx))‘ <

(2Vs(g) + M Zl|glloVa(F) + PZV5(P)l|gllo + Vs Z'llgllo) da(w, 7)|t — to|
(Z+ MZVp(F) + ZPV(¥) + Va(¥) Z')|lgllpdp(w, 7)[t — tol

<
<

Hence,

v, (ﬁt(gz - tﬁoto (9) 3(g)>

(6.9) < (Z+ MZV3(F) + ZPVs(V) + Vg(V)Z") |t — to]]|g]|-

Taking now

by = min {0z, (Z + MZV5(F) + ZPVp(¥) + Va()2') ' £ |

and combining (6.9) and (6.3) we conclude that for every t € € with |t —to| < d3 and every
g€ Hp

—a<g>H < ellglls-

Therefore, for these t,
Ly—L
i o _9l| <e

The proof is complete. B
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Combining Lemma 6.3, Theorem 5.2 (which tells us that 1 is an isolated simple eigenvalue)
and the perturbation theory of analytic dependence of an isolated simple eigenvalue (see
[Ka]), we get the following.

Theorem 6.4. If ¥ and F' are two real-valued Holder families of functions such that
the sets {i € I : sup(¢y@®) > 0} and {i € I : sup(f®) > 0} are finite, then the function
(q,t) — P(q,t) = P(gF + tV), q € (0(F), ), t € (0(V,qF),o0) is real-analytic with
respect to both variables ¢ and t.

. This is done in the following.

Our next aim is to calculate the partial derivative %g’t)

Proposition 6.5. If ¢y € (A(F),00), F and ¥ are two Holder families of functions such
that goF + W is strongly Holder and [(|f] + |¢])di < oo, where fi = fig, pyw, then

Tta) = [t

Proof. By Theorem 6.4 we know that the derivative %(qo) exists. Since the function
q — P(q) is convex, in order to complete the proof is therefore enough to demonstrate that

P(q) > Plqo) + / fdiilg — q0)

on an open neighbourhood of g5. An indeed, in view of our assumptions and Theorem 2.16,
for every q € IR we have

P@ > b+ [(af +9)di=bs+ [(of +0)di+ [ dita - )
= P(qo) + /fdﬂ(q —qo)-
The proof is complete. H

Fix now F, U € Hg, g € (0(F), ), t € (0(V,¢F),00) and suppose that [(|f|+[¢])dfg: <
oo, where mug ¢ = figritw,
Using the notation, [ gdpq:= piq,:(g), set

oo

o2, (f. Zuq, poo®) — fige(f Z ¥ foo®) = figs(fug(¥))

If f = 4 we simply write o2 ,(f) for 62 ,(f, f). The last result in this section is the
following.
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Proposition 6.6. If ¢y € (A(F),00), to € (8(¥),00) and [(|f] + |[¢])dfigy.t, < 00, then

0P 1
@kqo,to) = lim _/Sn(f_/fdﬁ(Zo,to)Sn(d}_/d}dﬂ%,to) :Ug,t(faw)'

n—oo M,

Sketch of a proof. We introduce the Perron-Frobenius operator acting on the shift space
I*° and using Theorem 5.2 we proceed similarly as in the case of a subshift of finite type
over a finite alphabet (see [Ru], [PU]). B

§7. Multifractal Analysis. In this section S = {¢; : X — X : i € I} is a regular
conformal iterated function system such that

(7.1) $i(X) N ¢;(X) is at most countable

foralli#jelTand F={f®:X = IR:ic I} is a strongly Holder family of functions.
Subtracting from each of the functions f(*) the topological pressure of F' we may assume
that P(F) = 0. We consider a two-parameter family of Ho6lder continuous families of
functions

Gor = {98} = af D + tlog |4}
Let

Fin(F)={¢ e R: Lyr(1) < 00} ={q € IR: P(¢F) < oo} and §(F) = inf Fin(F).

By the definition of strongly Holder families of functions, 1 € Fin(F') and, in particular
{i : sup f( > 0} is finite. Before dealing with smoothness properties, we shall prove the
following result which will be needed in the next section.

Lemma 7.1. The function (g,t) — P(q,t) := P(G4) is decreasing with respect to both
variables ¢ > 0 and £ > 0.

Proof. Consider now two pairs (q1,¢1) and (ga,t2) such that ¢; < ¢ and t; < t5. If
P(q1,t1) = oo, there is nothing to be proved. So, suppose that P(qi,t1) < oo. Then
G g 4, is a strongly Holder family of functions. Since the set {i : sup f() > 0} is finite and
since all the functions log |¢;| are negative, this implies that Gy, s, also forms a strongly
Holder family of functions. It then follows from (2.18) that for every e > 0 there exists a
Borel probability measure g on I°° such that [ —(gaf — t2¢)dp < oo (which implies that

[ —(a1f — t1¢)du < o0) and
P(q2,t2) <h, + /(q2f — tC)dp + €
Zhu+/(qlf—t14)du+ (g2 _Q1)/fdﬂ+ (t1 —tz)/Cdu—H:
byt [(@f - 0Odu+e < Planty) +2,
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where the last inequality we wrote due to (2.18). Letting ¢ N\, 0 we thus get P(qa,t2) <
P(q1,t1). The proof is complete. l

Given ¢ > 0 let
Fin(q) = {t: Lg,,(11) < oo} = {t : P(Gy+) < oo} and let 0(q) = inf Fin(q).

So, 6(q) < 6(S). Notice that if ¢ € Fin(F), then 0 € Fin(q). We assume that for every
q € Fin(F) there exists u € Fin(q) such that

(7.2) 0 < P(Ggu) < 00.
We shall prove the following.

Lemma 7.2. If ¢ € Fin(F), then there exists a unique ¢ = T'(¢) such that P(G4 r(q)) = 0.
In addition T'(q) € (6(q), o).

Proof. Fix ¢ > 0(F). Since for every n > 1 the function ¢ — 7, _, || exp(z:?:1 b’ ©
¢ij)||0, t € Fin(q), is logarithmic convex, the function ¢t — P(G, ;) is convex and hence
continuous in (6(g), 00). Since 0 < P(G, ) < oo for some u € Fin(g), in order to conclude
the proof it therefore suffices to show that the function ¢ — P(Gy) is strictly decreasing
ont € (0(q),o0) and limy_, o, P(Gy+) = —oco. But for every t > u

. 1
P(Goe) = Jim o [ 37 1161 exp(Sulam))ll
|w|=n

1
< 1 - /I [|1t—u ! u
< lim - log E 1115 1L 1" exp(Su(aF))]l

1
<liminf —log [ Y s"*=")||¢L,|" exp(S.(aF))|lo | = (t —u)log s+ P(Ggu)
n—o0o 1N w=n

Hence t € Fin(g) and moreover, as s < 1, lim;_, o P(G4+) = —00. To prove that P(G )
is strictly decreasing consider ¢ > 6(q) and 6 > 0. We then have

. 1
P(Gois) = lim - log Z 116, " exp(S. (g9))lo

|lw|=n

1
< Jim —log { Y [|6LI[5/114LI" exp(Su(aF))llo
|lw|=n

o1 n
< lim —log (s *[1164,1" exp(Sw(@F))llo)
=dlogs +P(Gyt) < P(Gyp)-
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The proof is complete. B
Given ¢ € Fin(F') and ¢ € Fin(q), let

Mqvt = lqu,t’ /’I'qat = IU/Gq,t7 mqvt = qu,t’ mqvt = qu,t

and
Iq = Iq,T(q)s Hq = fq,T(q)s Mq = Mq,T(q)> Mq = Mq,T(q)
and let ~
a(q) = ffid“?
- f Cdfig

if [|fldfig < oo. By (7.1), m: I*® — J is 1-to-1, so given z = m(w) we can speak about z,,
and x|, respectively as w, and w|,. Given p, a Borel probability measure on J and x € J

we define
e 108(8(0a), (X))
D, (v) = 1n_)oof log(diam(¢, (X)))’
e log (p(a, (X)))
D ( )_1n_)oop log (diam(¢g, (X)))’
and

1 B
® r—0 log r
. log (p(B(w, 1))
d = li
A =T g
If D,(x) = D,(z) we denote the common value by D, (x) and if d,(z) = d, (), the
common value is denoted by d,,(z). Given o > 0 we define

K, (a)={x€J:D,(x) =a}

and
fu(a) = HD(K (),

the Hausdorff dimension of the set K, («). Let k be a strictly convex map on an interval
I, hence k" > 0 wherever this second derivative exists. The Legendre transform of & is the
function [ of a new variable p defined by

l(p) = max{pz — k(z)}

everywhere where the maximum exists. it can be proved that the domain of [ is either
a point, an interval or a half-line. It is also easy to show that [ is strictly convex and
that the Legendre transform is involutive. We then say that the functions k£ and [ form
a Legendre transform pair. The following theorem (see [Ro] for example) gives a useful
characterization of a Legendre transform pair.

42



Theorem 7.3. Two strictly convex differentiable functions k£ and [ form a Legendre
transform pair if and only if I(—&'(q)) = k(q) — qk’(q).

Our main result in this section is the following.

Theorem 7.4. Suppose that condition (7.1) is satisfied for all ¢ € Fin(F'). Suppose also
that there exists an interval A; C Fin(F) such that 1 € A; and for every ¢ € A; and all ¢
in some neighbourhood of T'(q) (contained in (6(q), c0)),

/ (747 + ¢+ djig < 0o and / (1] + 1D diige < oo

for some v > 0. Suppose finally that h, (0)/x,,(c) > 0(S) for all ¢ € Ay C A for some
interval Ay C Aq. Then

(a) The number D,,, (z) exists for pp-a.e. z € J and

_ di
Dy 0) = 22,

(b) The function T : A; — IR is real-analytic, T(0) = HD(J), and T'(¢q) < 0, T"(¢q) > 0
for all ¢ € A;.

(c) For every q € Az, fu..(=T"(q)) =T(q) — qT"(q).

(d) If fiF # fi_up(J)c, then the function o — f,,. (), a € (a1, az) is real-analytic, where
the interval (a1, as2), 0 < a1 < ay < oo is the range of the function —7"(q) defined on
the interval Ao. Otherwise T"(q) = HD(J) for every q € (0(F), o).

(e) If ir # fi—up(Js)c, then the functions f,.(a) and T(q) form a Legendre transform
pair.

(f) For every q € Ay the number T'(q) is uniquely determined by the property that there
exists a constant C' > 1 such that for every n > 1

C7t < Y ip(whdiam™ @ (g, (X)) < C.

|lw|=n

Proof. Since 1 € Ay and [ |f|dir < oo, part (a) is a combined consequence of Birkhoff’s
ergodic theorem (along with (BDP)), the Breimann-McMillan-Shanon theorem and the
assumption that P(F) = 0. We shall now prove part (b). And indeed, since by Propo-
sition 6.5, %—I;|q,t = — [(djigt < 0 for every ¢ € Ay and all ¢ in a neighbourhood of ¢,
and since T'(¢) is uniquely determined by the condition P(q,7T(¢)) = 0, it follows from
Theorem 6.4 and the Implicit Function Theorem that the map g — T'(q) is real-analytic
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on Aj. Since the system F' is regular, P(—HD(.J)() = 0 which means that 7(0) = HD(J).
It follows from Proposition 6.5 that for every ¢ € Aq

dP OP oP i ]
0= d_q(Q7T(Q)) = 3_q|(q,T(q)) + Ek%T(q))T/(Q) — /QSd/Lq _ /gdun/(q)

and therefore

(7.3) T'(q) = %;lgz = —a(q)-

Since P(f) = 0 and [ fdfi, < oo, we deduce from Theorem 2.16 that [ fdfi, +h; (o) <0
and therefore it follows from (7.3) that T"(¢) < —hg, (0)/ [ {dfig < 0. Thus to prove that
T'(q) < 0 it suffices to demonstrate that h; (o) > 0. And indeed, in order to see it one can
proceed similarly as in [Bo] to show that the dynamical system (o, fi4) is weakly-Bernoulli
and consequently has a positive entropy. Using the results concerning the Perron-Frobenius
operator proved in Section 6 one can also similarly as in Lemma 1.14 of [Bo] derive in our
context its last display and then proceed inductively with fixed n — s large enough to show
that fiy([w|n]) converges to zero uniformly exponentially fast which in view of Shanonn-
Breimann-McMillan theorem implies that h; (o) > 0. Hence, to complete the proof of
Theorem 7.4(b) it is left to show that T"(q) > 0 for all ¢ € A;. This is done in the
following.

Lemma 7.5. The function ¢ — T'(q), ¢ € Ay is convex. It is not strictly convex if and
only if jiy is equal to fi_pp(s)¢-

Proof. Differentiating the formula

OP (g, 1) 0P (g, t)
ot @r@) T @+ =5 =larw)

0=

and using Proposition 6.5 we obtain

T (q)Za P(q,t) + 2T,(Q)8 P(q,t) + 9’ P(q t)

7" o ot2 o0qot 8q?
() = - P (a0
ot
8%P(q,t 8%P(q,t aP Jt
- T(q)z at(g )—|—2T’( ) aq(aqt ) + (q )
Xiig ’

where, let us recall, x;z, = [ (djiq is the Lyapunov charatceristic exponent of the measure
fiq- Invoking Proposition 6.6 we see that

P, %P

0
o =m0 o = om G D G = o (£):
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Hence, we can write

2p 2p 2P
i N )

T'(q) 2 /(Q)3q3t+8—q2:
=T'(0)* Y _(itg(¢ - ¢ o) +T'(g) Y (ig(~C - fo ")
k=0 0
+ Xiaghta(f) +T'(a) Y (g (f(=C 0 ™)) + X, g f Z (f - foo®) = fig()?)
= i (~T"(@)¢(=T"(g)¢ 0 0" + f o 0™))
+ 3 i (F(-T'(@) (=T ()¢ 0 0F + foo®)) = Y~ (~T"(@)xa, + iia(f))’
= ﬁq((—T’(Q)C + T ()¢ + [ oo” = (=T (@) xa, + iq(f))?
=0, (— "(@)¢+ f).
It follows then from (7.3) that [(=T"(q)( + f)dfiy, = 0. In view of Proposition 6.6

or (=T"(¢)C + f) > 0 and it follows from Lemma 6.7 in [Ur] that o7 (~=T"(¢)C + f) =0
if and only if the function —T"(¢)¢ + f is cohomologous to 0 in the class of bounded
Hoélder continuous functions. Therefore T"(¢)¢ is cohomologous to f and, as P(f) = 0,
also P(T"(q)¢) = 0. Thus, by Theorem 1.1, T7'(¢) = —HD(.J) and consequently f is coho-
mologous to the function —HD(.J)¢. This implies that fiy = fi_gp(s)¢, the latter being the
equilibrium (invariant Gibbs) state of the potential —HD(.J)(. The proof is complete. H

So, item (b) of Theorem 7.4 is now an immediate consequence of Lemma 7.5. We shall
now focus on a contribution toward the proof of part (c)-(e). Given o > 0 we define

f((a):{a:GJ lim Z?_Ofogj(m) :a}.
w3y —Cooi(a)

We shall prove the following.

Lemma 7.6. For every a > 0, K(a) = K, ().

Proof. In order to prove this lemma it suffices to show that for all x € J

lim 10g(ﬂf(¢m| ( ))) —1and lim log(diam(¢m| ( ))) —1

nmoo 35 fooi(x) noeo ISy —Cooi(x)

And in order to prove the first equality it suffices to demonstrate that
log(mp (o,
i log( F(¢ LX)
n—00 Z 0 f ogJ (g;)
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and this follows immediately from Corllary 2.12, (2.8), Lemma 2.2 and the fact that P(F') =
0. The second inequality to be proved is an immediate consequence of (BDP). The proof
is complete. l

Lemma 7.7. If z € K(a) and

then for every q € IR

lim inf
n— oo

log |}, (0" (x))] qf (0" ')
<log|¢;|n1(0”‘1($))| " 10g|¢;|n1(0”‘1(x))|> =0

Proof. If ¢ < 0, then our inequality follows immediately from (2.2), our assumption and
the formula limy,_, log ||¢}, [l = —oc. So, we may assume that ¢ > 0. Let {ny}32; be
an increasing infinite sequence such that

log |6, (o™ ()]

(7.4) im =0

N e )]
In order to conclude the proof it suffices to sow that

nk—l

lim /f(a x)_l <0.

esoe logldl, (o1 (a))]
So, suppose on the contrary, that

nE—1
lim sup f(o 7) >2b>0

o) Tog 9, (o 1(a))]

for some positive b. Passing to a subsequence of the sequence {n}72 ; we may assume that
F{CALIN))

(" ()]
"k

+00). This, (7.4) and the fact that z € K («) imply the existence of an integer Iy > 1 such
that for every [ > [

Sieo—f@2) b flete) e (el)
Y5=0¢(097) 3 SjmeCledn) T EiLy (o7

where 4 is so small that (a— 2)(1—6) > a— 2. But then, taking k so large that nj, —2 > Iy,
we get

exists and is greater than or equal to 2b (perhaps

the limit limg_, o og &
x|

ZOZ— 21_57

Vit —flola) _ YR —I0%n) Y07 | —f(o™a)
St C(oin) Y (o) Y (o) Y (o)
> (a—g)(1—5)+62a—g+b:a+g.
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This however implies that

T-L_ — O'JZE'
limianJ;0 f( ) Za+é>a
n—00 ijo C(o‘]g;) 2

which is a contradiction since € K (c). The proof is finished. W
Lemma 7.8. With the same assumptions as in Theorem 7.4
(a) pq(Ku,(a(g)) =1 for all g € Ay.

(b) d,, (z) <T(q) + qa(q) for all ¢ € Ay and for every x € K, (a(g)) but a set of Haus-
dorff dimension < 6(S).

(©) fur(a(q)) = T(q) + qa(q) for every g € A,.

Proof. Fix ¢ € A;. Since the functions |f| and |(| are integrable with respect to the
measure fi,, the part (a) follows immediately from Lemma 7.6 and Birkhoff’s ergodic
theorem. In order to prove part (b) fix z € K, (a(q)) and r > 0. Let n = n(z,r) be the
least integer such that ¢y, (X) C B(x,r). Then py(B(z,7)) > pg(¢s, (X) and ¢g, ,(X)
is not contained in B(z,r). The latter implies that diam(¢w|n_1(X)) > r. Hence, due to
Lemma 2.2

log(p1q(B(,7))) < log (1g(ba), (X))
log r ~ log(diam(¢,, ,(X)))

_ T@) 555y log |5, (o7 (9))| + 45557 f 0 0% (w) + M
B YT log ¢, (09 (x))| + My

for some constants M; and Ms. Since the range of the function r — n(z,r), r € (0,1],
is of the form IN N [A, o0), it follows from the last inequality, Lemma 7.7 and Lemma 7.6

that if /
o logldl, (0" @)
S Togle, (071 (@))]

then d, (z) < T(q) + ga(q). So, consider the set

=0,

1 / n
Bad = o € J : liminf — 2 % (TN _ g1
i e, (@)

We shall show that HD(Bad) < 0(S). So, given v > 0 define

log |¢l. (o™(x
Bad(y) = {$ cJ: qul‘v’nquo 810, (0" (2))] | > ’y}

glo, (0" (@)
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and given n > 1 put

o loslgl, (0h@)) )
Bad"”)‘{ < Toglel, @iy =TS }

Fix n > 6(S). By the definition of §(S) there exists k > 1 so large that for all [ > k

, 1
(75) > el <

{iel:||¢}llo<Ks7'}

Fix n > 1. For every [ > p = max{n — 1,k} let Q; = {w € I' : ¢, (X) N Bad,(y) # 0}. We
shall prove by induction that for every [ > p

l—p
(7.6 Sz (5) S i

wey weEQp
where as n > 6(S),
(7.7) DG < D I8 < oo
we, welr

Indeed, for [ = p we have even equality. So, suppose that (7.6) holds for some [ > p. Fix
w € Y41. Then w; € Q and there exists © € ¢, (X)NBad, (7). Since z = ¢y, (' (2)),
it follows from (7.1) that w = z|;41. Since I > n — 1 and z € Bad, (), we therefore get

160, 1o < K¢y, (0 (@) = Ko, (0" (2))] < Klgg), (0! ()] < K57

Thus, using (7.5) and (7.6) for [ we can write

PRI > 166116114116

WED 41 we {iel:||¢]|lo<Ks7'}

= llgLllg > [EATH

wey {ieL:]|¢}llo<Ks7'}

1 I+1—p
<yli=(3) X e

wE weR,

The inductive proof of (7.6) is finished. By (BDP.2) of [MU1] we therefore get for all [ > k

1\
p(3) X e

wed,

Z diam” (¢, (X))

wEQ[

| /\

and using (7.7) we conclude that #"(Bad,(v)) = 0. Thus HD(Bad,,(v)) < n which implies
that HD(Bad,(y)) < 6(S). Since Bad(y) = U > Bad,(v), HD(Ba ( )) < 6(S) and
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since Bad = (J,,~; Bad(1/m), HD(Bad) < 6(S5). The proof of (b) is complete. Since
pg(K,n(a(g))) = 1, it follows from Corollary 4.5 that f,,.(a(q)) = HD(K,,(a(q)) >
HD(pq) = hy,, (o) /X3, (o). Since P(G 4 1(q) = 0, using Theorem 2.16, we continue writing

h;, (o) _ — [ 947@)dlg _ [(=T(q)¢ + qf)djiq

qu (a(q)) Z Xﬁq (0-) Xﬂq (0’) _Xﬂq (U)
_ —T(9)xa,(0) + ¢ fdfig
~Xiig (o)

(7.8)

=T(q) + qa(q)

This proves one half of (c). If now ¢ € Ay, then our assumptions give h, (o)/xu, (o) >
0(S). Applying this along with (a) and (b), it follows from a well-known theorem in the
dimension theory (see [Mal], [PU]) that f,, (a(q)) = HD(K pur(a(q))) < T'(q)+qa(g). This
proves the other part of (¢). The proof of Lemma 7.8 is thus complete. B

So, part (c¢) of Theorem 7.4 is an immediate consequence of Lemma 7.8(c) and formula
(7.5). Part (d) is a combined consequence of Lemma 7.5 and item (c) of Theorem 7.4. Part
(e) of Theorem 7.4 follows from Lemma 7.5, part (c¢) of Theorem 7.4 and Theorem 7.3.
We end up the proof of Theorem 7.4 by demonstrating its item (f). And indeed, since the
diameters of the images ¢, (X) tend to zero uniformly (exponentially) fast with respect to
the length of w, we conclude that there exists at most one value ¢t € IR such that for some
C >1andeveryn>1

O < Y () diamt (9u(X)) < C.

|lw|=n

So, we only need to show that the display appearing in item (f) of Theorem 7.4 is true.
And indeed, if w € I*, say |w| = n and p € [w], then it follows from the definition of
measures [i; and fiF that

n—1 n—1
fig([w]) < exp [ ¢ fool(p)—T(q) Y _ (oal(p)
=0 =0
1 q 1 T(q)
= lexpY fodl(p)]| [exp|—D_ Codl(p)
Jj=0 j=0

= [ip ([pla))diam™ @ (1), (X)) = i ([w])diam™ @ (¢, (X)).

Since ), =, Hq([w]) = 1, summing up the above display over all w € I™ we obtain the
desired inequalities. The proof of Theorem 7.4 is complete. B

Let us recall that in [MU2] we have introduced the class of absolutely regular conformal
iterated function systems S by the requirement that 6(S) = 0. For these systems we can
rewrite Theorem 7.4 relaxing the assumption h; (0)/xz, > 0(S5) since we already know
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(see the paragraph proceeding Lemma 7.5) that the entropy hj (o) is always positive. It
then reads as follows.

Theorem 7.9. Suppose that condition (7.1) is satisfied for all ¢ € Fin(F'). Suppose also

that there exists an interval A; C Fin(F) such that 1 € A; and for every ¢ € A; and all ¢
in some neighbourhood of T'(q) (contained in (6(q), 0)),

/ (£ + CP*)dig < oo and / (171 + 1C)diige < oo.

Suppose finally that the system S is absolutely regular. Then

(a) The number D,,, (z) exists for pp-a.e. z € J and

_ — [ fdiir
[ ¢diir

(b) The function T : A; — IR is real-analytic, T(0) = HD(J), and T'(¢) < 0, T"(¢q) > 0
for all ¢ € A;.

DMF ('T)

(c) For every g € Ay, f,.(—=T"(q)) =T(q) — qT"'(q).

(d) If ir # fi—up(s)c, then the function o +— f,. (@), a € (a1, @) is real-analytic, where
the interval (a1, as2), 0 < a1 < ay < oo is the range of the function —7"(q) defined on
the interval Ay. Otherwise T"(q) = HD(J) for every q € (0(F'), 00).

(e) If fir # fi—up(Js)c, then the functions f,.(a) and T'(q) form a Legendre transform
pair.

(f) For every ¢ € A; the number T'(q) is uniquely determined by the property that there
exists a constant C' > 1 such that for every n > 1

C' < ) pdh([w)diam™ @ (¢, (X)) < C.

|lw|=n

§8. Examples. This section is devoted to explore some concrete examples. We apply
the results obtained in Sections 7 and 3 to the infinite systems generated by continued
fractions and Apollonian packing. But first we will need the following general result being
a straightforward consequence of Theorem 2.4 and formula (7.6).

Lemma 8.1. If the function T" determined by the condition P(q,T(q)) = 0 is well-defined
on a right-hand side deleted neighbourhood of zero, then

(}i\r%T(Q) = HD(J).
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Proof. Let h = HD(J). It easily follows from Lemma 7.1 and Lemma 7.2 that the function
T(q) is decreasing and T'(¢) < h for every ¢ > 0. Hence, the limit L = limg\ 0 T(¢) exists
and L < h. Clearly limg\ 0 Gq r(q) = Go,r (in the sense describing at the beginning of
Section 2. Therefore, applying Proposition 2.3 we get P(Go 1) < limy,0P(¢,7(q)) = 0,
whence L > h. Consequently L = h and the proof is complete. l

Although it will turn out that the examples generated by Apollonian packings are easier
to deal with and require less delicate analysis than continued fractions, we start with these
latter ones. So, we consider the maps {¢; : [0,1] — [0, 1]};>1 given by the formulae

1

bilw) = T+1i

Their limit set coincides with the set of all irrational numbers contained in the interval
[0,1]. We consider a probability vector P = {p;}32, such that p; > 0 for all « > 1 and
then the measure pp which is the projection of the Bernoulli measure fip from the coding
space I to the interval [0, 1]. Let F' be the family of functions @ =logp;. Of course F
is a strongly Holder family of functions of any order. Our first aim is notice the following.

Lemma 8.2. We have
o0
pp = pp =mp, fip=jip=rmp and P(¢F) =log ) _pf.
i=1

Proof. We shall first prove the last part of this lemma which is a straightforward calcu-
lation. Indeed,

.1 o1
P(qF) = nlggo - log Z exp (sup S’w(qF)) = nli)rgo - log Z Dey Py - - - Py,
|w|=n |lw|=n

1 ) n )
— im = al _ q
= nli)rr;o - log (Zpl> = logZpi.
i=1 i=1

Since P(F) = 0, it follows from Proposition 2.13 that jip = fir. Hence up = ip o w1 =
fip o™ Y = pp. Since pur = pp is obviously atomless, condition (2.11) is satisfied by up.
Since 7 : (I*°, ip) — ([0, 1], up) is a metric isomorphism, it is straightforward to verify
condition (2.10”) for the measure pup. The last equality left, ip = mp follows now from
Lemma 2.8 and the fact that 7 is a metric isomorphism. The proof is complete. H

Since the measure pp is certainly not equal to the Gauss measure, as an immediate con-
sequence of Theorem 4.6, we get the following.

Theorem 8.3. If the entropy H(P) = — > ;2| p; logp; is finite, then HD(pup) < 1.
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Our aim now is to provide a sufficient conditions for doing the multifractal analysis of
the measure pp on some interval A. We say that the probability vector P satisfies the
condition (8.1) if for every g > 0 there exists u € IR such that

(8.1) 1< pl(i+1)7" < cc.
=1

We say that the probability vector P satisfies the condition (8.2) if
—log(pips

(8.2) M = sup {M}<oo

ij>1 (log(ij +1)
and it satisfies condition (8.3) if

. — logp;

8.3 L =inf § —————— 0.
(8:3) zﬂzll{log(i%-l)} ”

Theorem 8.4. If the probability vector P = {p;}$2, satisfies the conditions (8.1)-(8.3)
and O(F) < (M — L)™', then there exists a non-degenerate interval A C (0, 00) such that
the function f,, : A — [0, 1] is convex and real-analytic.

Proof. W shall verify the assumptions of Theorem 7.4 and construct an appropriate
interval Ay. As A, according to Theorem 7.4(d) we will then take the image —T"(A3). So,
we need to check first the assumptions of Lemma 7.2 for every ¢ > 0. Towards this end
take u as assured in (8.1). It follows that

oo 00
S exp(qlogp; + ulog ||gill) = S pti=>" < 223 pl(i 4+ 1)~ < oo,
121 i=1 i=1

This implies that u € Fin(g). We also have for all n > 1

Zn(Gau) > Y PLPL, - pL (w1 + 1) (wa + 1) 72" (wy + 1)

|lw|=n
= (Zpi’(i + 1)_2“>

Hence, due to (8.1),

1 00
P(Ggu) = lim —log Zn(Ggu) 2 log (ZP?(H 1)_2u) >0

n—oo n —
1=

So, (7.1) satisfied for all ¢ > 0. We shall now check that for all ¢ € Fin(F'), all ¢ > 6(q)
and allp >0

/|f|"dﬂq7t < oo and /|C|’7dﬂq,t < 00.
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Since fig+ and mgy 4 are equivalent with Radon-Nikodym derivatives bounded away from
zero and infinity, we may replace fi,; with mg,. So, fix ¢ € Fin(F'), t > 0(q), and take
0(q) < s < t. Then for all 4,5 > 1 for which ij is large enough, say ij > A, we have
(i)~2¢=%) log"(ij + 1) < 1. Obviously [|¢|"dfig+ < oo if and only if

> log"(ij + 1)ring 4([i]) < oo

i,jiig > A
But
Y log"(ij + g ([ig]) < Y log"(ij + 1)p{p] (i) ~*re*PF)
i,jiig > A i,j:ig > A
:e—2P(qF) Z 10g”(ij+1)(ij) 2(t— S)pfpg(lj) 2s
iyjrij>A

o—2P(aF) Z Z pzp] i7) 23<oo.

1,jiij>A 4,51 > A

The fact that [ |f|?dfis+ < oo follws now by applying (8.2). So, Al = (6(F),00) and
the function T : (A(F'),00) — IR is real-analytic. We are now only left to show that there
exists a non-degenerate interval Ay C Fin(F') such that for ¢ € Ay, hy /xz, > 0(S) = 1/2.
At the beginning of this proof we have shown that the function T'(¢) (determined by the
condition P(Gy 7(4)) = 0) is well defined for every ¢ > 0. In order to construct the interval
Ao we will need the following.

Lemma 8.5. If condition (8.2) is satisfied, then T : (0,00) — IR is Lipschitz continuous
with a Lipschitz constant bounded from above by M/2.

Proof. Fix gg > 0. Consider first the case ¢ > go. Then, by Lemma 7.1 T(q) < T'(qo). Fix
now u = 3 M(q — qo), where M is taken from condition (8.2). Then, using the bounded
distortion property (1d) and (8.2), we can estimate for all n > 1 as follows.

Zon(Gor(a)—u) = Y exp(Su(aF))|lg, |7~

|lw|=2n
= D exp(Su(qoF) |67 exp (S (g — q0)F))|14L,] 7
|lw|=2n
> > exp(SulgoF)) ¢l || @pd w0pd o pd ot K=" inf{|4],|}
|w|=2n
> K" Y exp(Su(@oF) 100" T (s Puny )T~ (w2j—1w2; + 1)
|w|=2n

> K_UZ2TL(GQO,T(QO))'

T(q0) —u=T(qo0) — M (q — qo)- Thus 0 < T(qo) — T(q) < 3M(q — qo), and we are done
in this case.

Hence, P(Gy r(g)—u) > P(Ggy1(g)) = 0, and therefore, due to Lemma 7.1, T(q) >
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Consider now the case ¢ < qp. Then T'(q) > T(qp). Similarly as in the previous case we
get for every n > 1

ZZn(Gq,T(qu—u) = Z eXp(Sw(QOF))HQSL;HT(qO) eXp(Sw((q - (IO)F))deHu

|lw|=2n

< Z eXp(S (QOF))HQS ||T(q0)Hj l(pw2J 1pw2J)q_q0(w2j—1w2j+1)_2

|w|=2n
< Zom (G(IOaT(QO))'

Hence P(Gy 1 (go)+u) < P(Ggo,7(g0)) = 0, and therefore T'(q) < T(qo)+u = T(qo)+35M (q¢—
q0). Thus 0 < T(q) — T(q0) < 3M(q — qo), and we are done. W

Lemma 8.6. If ¢ > qo > 0, then T'(q) — T'(q0) < —3L(q — qo)-
Proof. Put u = $L(q — go). Then for every n > 1 and using (8.3),

Zn(Gq,T(qo)—u) = Z eXp(Sw(qu))||¢Zu||T(q0) eXp(Sw((q - QO)F))||¢¢/U||_U

< Z exp (S (g0 F))| 6L, |7 T p2 - (w; + 1)

< Zn(GmeT(QO))'
Hence, P(Gy r(g)—u) < P(Ggy1(g)) = 0, and therefore, due to Lemma 7.1, T(q) <

T(q0) —u=T(qo0) — 2L(q — qo). The proof is complete. W

Concluding the proof of Theorem 8.4 take an arbitrary ¢ € (6(F),(M — L)~'). Then it
follows from Lemma 8.6 (see also Theorem 7.4(b)) that T'(q) < —L/2. Combining this
fact and (7.6) along with Lemma 8.5, we get for all ¢ € (0(F), (M — L)™1)

1 1 1

>1—%(M—L)(M—L)_1:1—

The proof of Theorem 8.4 is complete. l

We shall now provide a class of probability vectors P for which all the assumptions of
Theorem 8.4 are satisfied.

Example 8.7. For every s > 1 consider the probability vector Py = {N;'n"%},>1, where
Ny =377 n~% < co. We shall verify that all the assumptions of Theorem 8.4 are satisfied
for all s large enough.

And indeed, in order to check condition (8.1), consider the series o0 | N7 9i=%9(7+1) (2w,
Since one can take u € IR such that gs + 2u > 1 but the difference gs + 2u — 1 > 0 is as
small as one wishes, condition (8.1) can be fulfilled. Since for all i,5 > 1

—log(N; ™ *N;1j7°)  2log N, + slog(ij) _ 2log N,
log(ij +1) N log(ij + 1) ~ log2

+ 8 < 00,

54



condition (8.2) is also satisfied. In order to verify condition (8.3) and inequality O(F) <
(M — L)1, we need to establish first some analytical properties of the functions

As + slogx
s = T 1N 17 > 17
fs(x) og(@ 1 1) s> 1,z
where Ay > 0 and lim,_,, As = 0. Obviously
(8.4) lim fs(z)=s.

Tr—00

Now,

dfs 7 log(z +1) — m—}rl(Astslog:U) _ s(x+1)log(r+1) — Agw — swlogw

dx log?(z 4 1) z(z + 1) log?(z + 1)
(85) = st(log(z +1) —logz) + slog(z + 1) — Agz sz~ '+ slog(z + 1) — A,
' z(z + 1) log?(z + 1) z(z + 1) log?(z + 1)

for some T € [z, z + 1]. Hence for every x large enough (depending on s)

df,

(8.6) -

(x) < 0.

Also %(1) = %. Hence, for every s large enough
s

(8.7) -

(1) > 0.
Let us now look at the function

gs(x) = s(x + 1)log(z + 1) — Asx — sxlogx
and its derivative g.(z) = slog (x7+1) — A,. The derivative g, has at most two pieces of
monotonicity, and consequently it may have at most two zeros. In view of (8.6) and (8.7)
the function fs has at least one local extremum and the first one must be a local maximum.
Suppose that fs has a second local extremum. It must be a local minimum and g, can

have no more local extrema. But this contradicts (8.6). Summarizing: For every s > 1
there exists z, > 1 such that

(8a) The function fs is increasing on the interval [1, z].
(8b) At the point x4 the function f, takes on its global maximum and f(z,) > s.
(8¢) The function f, is decreasing on the interval [x4,00) and fs(x) > s for every z > xs.

Since in addition fs(1) = 15‘;2 < s for all s large enough (since limg_, ., As = 0), we

conclude that for every s large enough

(8.5) £} = 1.0 = 55
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Coming back to our probability vector Pk, it follows from (8.8) that for all s large enough
L= 1—‘1)0% > 0 which in particular implies that condition (8.3) is satisfied. So, we are left
to show that 0(Fs) < (M — L)~!, and since 0(F,) = 1/s, it suffices to show that for all s

large enough

log Ny
log 2

(8.9) M < + s.

Fix towards this end 0 < v < 1. In view of (8.2) it is enough to demonstrate that for all s
large enough and all 7 > 1

2log Ns + slogy < log N
log(j + 1) =7 log 2

+ s

or equivalently

2log2log Ng + slog2logj < vylog Nglog(j + 1) + slog2log(j + 1)
which in turn equivalently means that
(8.10) slog2(log(j + 1) — logj) + log Ns(ylog(j + 1) — 2log2) > 0.

Now, the first summand in this inequality is always positive. The second summand is > 0
as long as j > 4/7—1. And since lim,_,, log N, = 0 and lim,_, ., min{s(log(j+1) —log j) :
1 < j <4Y7 —1} = oo, we conclude that (8.10) is satisfied for all s large enough. We are
done.

Example 8.8. (Apollonian packing) Consider on the complex plane the three points z; =
e?mii/3 j = 0,1,2 and the following additional three points ag = v/3—2, a; = (2—/3)e" /3
and as = (2 — V/3)e™/3. Let ¢g, ¢1, and ¢ be the Mobius transformations determined
by the following requirements: ¢o(z0) = 20, ¢o(21) = a2, ¢o(z2) = a1, ¢1(20) = a2,
P1(z1) = 21, d1(22) = ao, d2(20) = a1, d2(21) = ao, and ¢2(22) = 22. Set X = B(0,1),
the closed ball centered at the origin of radius 1. It is straightforward that the images
0(X), ¢1(X) and ¢2(X) are mutually tangent (at the points ag, a1 and asg, respectively)
disks whose boundaries pass through the triples (zg,a1,a2), (21,a0,a2) and (22, ap,a1)
respectively. Of course all the three disks ¢o(X), ¢1(X) and ¢3(X) are contained in X
and are tangent to X at the points zg, z; and zy respectively. Let S = {¢o, ¢1, P2}
be the iterated function system on X generated by ¢g, ¢1 and ¢5. Notice that all the
maps ¢g, ¢1 and ¢o are parabolic with parabolic fixed points zp, z1 and z respectively.
It is not difficult to check that all the requirements of a parabolic system are satisfied.
Observe that the limit set .J of the parabolic system S coincides with the residual set of
the Apollonian packing generated by the curvilinear triangle with vertices zg, z1, 22. In
[MU4], using a slightly different iterated function system, we have dealt with geometrical
properties of J proving that 1 < h = HD(J) < 2, 0 < H"(J) < oo and P*(J) = 0.
In [MU4] we studied its dynamical properties, especially the invariant measure equivalent
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with conformal measure. Here we present its multifractal analysis. So, let us first notice
that the system S* is regular. Indeed, we proved in [MU4] that

(V3—n)z+n
—nz+n+\/§

Py (2) =
and

3
(—nz+n+3)2

By the symmetry of the situation this implies the existence of a constant C' > 1 such that
foralli# 7 and alln > 1

(#5)"(2) =

1 1
(8.11) CT 3 < (9} 0 ¢)'(2)| < O

In particular 6(S*) = 1/2. Consider now P = (pg, p1,p2) a probability vector such that
p1ip2p3 > 0 and then consider the measure pp which is the projection of the Bernoulli
measure fip generated by the vector P from the symbolic space {0, 1,2} to the limit set
S. In [MU4| we have proved the following.

Theorem 8.9. HD(up) < HD(J).

This theorem also follows from Theorem 4.6 and the results obtained in the proof of
Theorem 8.11. Let F be the family of functions f®) = logp;, i = 1,2,3. Of course F is
strongly Holder family of functions of any positive order. Our first aim is to to prove the
following

Lemma 8.10. ﬂp = ﬂp = mp, Hp = U = Mp and P(F) =0.
Proof. We repeat word by word (putting ¢ = 1) the proof of Lemma 8.2. until the con-

clusion that condition (2.10’) is satisfied for the measure pp. Then, in view of Lemma 2.11

and Lemma.11, up = mp. The rest of the proof is the same as in the proof of Lemma 8.2.
|

Theorem 8.11. If P = (po,p1,p2) is a probability vector such that pipaps > 0, then
there exists a non-degenerate interval A C (0, 00) such that the function f,, : A — (0, 00)
(defined with respect to the system S*) is convex and real-analytic.

Proof. Let, according to Section 3, the family F'* consist of the functions

Since pup = fip o ! and pp- = fip- o w1, it follows from Lemma 8.10 and Theorem 3.4
that f,, = fu.. and therefore it suffices to prove Theorem 8.11 for the measure jpp-.

Notice that the corresponding Holder families G((;;:j ) are defined as follows.

fo,t’) = qlogp; + qnlogp; + tlog |(¢in ;).
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As in the proof of Theorem 8.4 we shall verify the assumptions of theorem 7.4 and construct
an appropriate interval Ay. As A, according to Theorem 7.4(d) we will then take the image
—T'(As3). So, we need to check first the assumptions of Lemma 7.2 for all ¢ € Fin(F™*).

Since
TS = 3 Y <

1=0 i#j n>1 1=0 i#j n>1

for all ¢ > 0, and is equal to +oo for ¢ = 0, we conclude that Fin(F*) = (0,00). Now, for
every ¢ > 0 and every t € IR, using (8.11), we get

ZZ > oipll(gins)' Il

1=0 i#j n>1

2
(8.12) <O YN pIpI"n T < o,

i=0 i#j n>1
so that P(G, ;) < co. Also
2
_ _ 2 _
Z1(Ga) = C7 N0 pip!'n T > Oy 'plpytah.
i=0 i£j n>1

Hence lim,_, o Z1(G4:) = +oo, and therefore also lim,_, ., P(G,:) = +o0o. Thus the
condition (7.1) is satisfied for all ¢ € Fin(F™*). We shall now check that

[P+ 16 diig <

for all n > 0, all ¢ € Fin(F™) and all ¢t > 0(g). In (8.12) we have shown that 6(q) = —oo for
all ¢ > 0. So, fix ¢ € Fin(F*) = (0,00) and t € IR . Take s < t so small that 2(t — s) > .
Using this, the fact s > 6(q) and (8.11) again, we get

Jasmiemai, = [ (5 + ¢min,

= ZZ Z((—qlogpj —qnlogp;)" + (2t logn)")mq,t([i”j])

i=0 i#£j n>1

2
= ZZ Z((_qlogpj —qnlogp;)" + (2tlogn)" )P?pf” —2t

i=0 i#£j n>1

2
=<3 > ((~qlogp; — gnlogp;)" + (2t log n)")n=2=*) plpd"n =2
i=0 i#j n>1
< 0.

o8



Thus one can take (0,00) as A;. We are now only left to demonstrate that there exists a
non-degenerate interval Ay C Fin(F*) = (0,00) such that h; /xz, > 0(S*) = 1/2 for all
q € Ag. And indeed, since HD(J) > 1 (this is obvious; for the much stronger fact that
HD(J) > 1 see [MU4] and the references therein), it follows from Lemma 8.1 that there
exists an open interval Ay (having zero as its left-hand endpoint) such that T'(q) > 1/2
for all ¢ € Ay. Combining this fact, formula (7.6) and Theorem 7.4(b), we conclude that
hi /xa, = T(q) > 1/2=0(S*) for every q € Ay. The proof is complete. B
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