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ABSTRACT. For A, a discrete infinite set of nonnegative real numbers, and a nonnegative
measurable function f : R — R*, consider C' = C(f,A) = {z : Y} o5 f(z + X) < +o0}.
The sets A naturally break into two types. Type 1 consists of A such that either C = R
almost everywhere or else C = ) a.e., for every f. Type 2 consists of all the other A. We
introduce a notion of asymptotic density for A and the complementary notion of asymptotic
lacunarity. We demonstrate that A is of type 2 if it is asymptotically lacunary or else is
asymptotically dense and exhibits asymptotically large Q-independent sets. We also give
some examples of sets of both types.
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INTRODUCTION

Recently, it was shown that there is a nonnegative measurable function f : Rt — RT
such that both of the sets {z : Y .., f(nz) < +oo} and {z : Y., f(nz) = +oc} have
positive measure [1]. This answered some questions which have seem to have arisen from
two different sources. The first goes back to a problem of K. L. Chung treated by Hyde and
Fine [5]. This direction culminated in Weizsédcker’s question [10] concerning whether it is
possible for both of the sets just described to have positive measure. The second direction
came from a question of W. Schmidt. He asked whether there is a subset S of the positive
reals with infinite measure such that x/y is never an integer whenever z,y € S,z # y.
Haight in [3] was led to this question by studying sets E C R* which are of infinite
measure and for each z > 0, nz € E for only a finite number of integers n. The existence
of such sets, £ was shown first by Lekkerkerker [8]. If f = 1 (the indicator function of
E) then >~ | f(nz) < oo but [, f = oc.

Schmidt’s question was answered independently by Haight [3] and by Szemerédi [9].
Haight in turn asked a more refined question in [4] which is answered in [1] by showing that
the function f above can be taken to be the characteristic function of a set S. Erdds has
discussed this number theoretic direction in [2]. Naturally, the question arises whether these
results remain true when the positive integers are replaced by another infinite set. This
paper focuses on this problem. For technical reasons we consider the equivalent additive
problem.

PRELIMINARIES

The general purpose of this paper is to study the sets of convergence and divergence
of some series of translates of nonnegative functions. Given A an infinite discrete set of
nonnegative numbers, and f : R — R, a nonnegative function, we consider the sum

s(x) =) flz+N),

AEA

and the complementary subsets of R:
C=C(f,A) ={z:s(z) < o0}, D =D(f,A) ={x: s(x) = o0}.

In many cases the sets C and D are examined up to a set of zero Lebesgue measure (a null
set). We shall use the notation A = B a.e. instead of 14 = 1p a.e., A and B being subsets
of R, 14 and 1p their indicator functions. We shall always assume that f is Lebesgue
measurable, hence also C' and D are Lebesgue measurable.

Let us first make some observations concerning the dependence of C and D on
modifications of f for a given A.

Clearly, C(f,A) = C(f A1,A). So, from now on we suppose that f is bounded.
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Writing
w(@)= Y, fla+d),

AEA LSA<L+

it follows that there is an increasing sequence of positive integers ni, ng, ... such that if we
define A, =0, p<nq, and A, =t, ny <p < ng41, then

U ﬂ{x Z ug(x) > A} = nli_)rgo{:c: Z ug(z) > A} =D ae.

j=1i=j 1<0<i 1<4<n

Now, let a(x) to be a positive decreasing function such that for a positive integer p, a(p) =
(t+1)"Y2, ny < p < ngp1. Then limg,_,o a(z) = 0 and for each k € N, lim,_,o a(n +
k)A,, = +oo. This implies

D(af,A) = D(f,A) a.e.

Thus, from now on we can additionally suppose that f(x) tends to 0 at infinity provided
we are interested in C and D up to a nullset.
Next, let us see the effect of modifying f on a set E which is small in the sense that

meas (E N (z,00)) < e(x),

where €(z) is a positive decreasing function and tends to 0 at infinity. If we restrict ourselves
to a bounded interval, x € (—b, b), us(z) is modified on a set whose measure does not exceed
e(l—b) - #(AN[L,£+1)). Since A is given, ¢(x) can be chosen in such a way that

Vb>0, ) e(—b)-#(AN[LL+1)) < 0.
leN

By the Borel-Cantelli lemma modifying f on E results in the same sets C' and D up to
sets of measure zero. In particular, we can change f into a continuous function tending to
0 at infinity without modifying C' and D except on a null set. Let us state the conclusion
of this discussion.

Proposition 1. Given f > 0 and Lebesgue measurable, there exists g > 0, contin-
uous and tending to 0 at infinity (g € Cy (R)) such that

C(f,A)=C(g,A) a.e., D(f,A) = D(g,A) a.e.

Now let us see how C' and D depend on A.

We always suppose that A is infinite. Given A we have two extreme cases

C(0,A) =R, D(0,A) =10,
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C(1,A)=0, D(1,A)=R

If these are the only cases that can occur up to a nullset, we say that A has type 1, and
otherwise has type 2.

Definition 1. A has type 1 if, for every f, either C(f,A) = R a.e. or C(f,A) =0
a.e. (or equivalently D(f,A) =0 a.e. or D(f,A) =R a.e.). Otherwise, A has type 2.

We shall discuss two examples in particular.

Example 1. A = UgenAg, Ay = 27¥N N [k, k+1). In Theorem 1 we shall prove
that A has type 1.

Example 2. Let A = {logn,n = 1,2,....}. It was proved in [1] that A has type 2.
This result will also be proven here from a different perspective which, in addition, allows
us to see that this is the case for very many sets A.

It will be helpful to introduce a few other definitions concerning the density of A at
+00.

Definition 2. A is asymptotically dense provided when it is ordered in the increas-
ing order, the distance between two consecutive points tends to zero, or equivalently:

Va > 0, li_)m #(AN[z,z+ a]) = co.

Otherwise, A is asymptotically lacunary, or equivalently, A has lacunae of the form (z;, z;+
l), >0, T; — +00.

In both of the preceding examples A is asymptotically dense. We note that our
notion of asymptotically lacunary is not the same as the usual one of a “lacunary sequence.”

We shall prove that all asymptotically lacunary sets are of type 2 (Theorem 4). In
order to discuss the behaviour of the asymptotically dense sets more refined notions are
necessary.

Definition 3. Let us say that ¢t > 0 is a translator of A if (A +1¢) \ A is finite, that
is, A+t € A for all but a finite number of A € A. The set of translators of A is a countable
additive semigroup that we denote by T(A). When T'(A) is dense in R*, that is, when A
has arbitrarily small translators, we say that condition(x) is satisfied.

Examples. In Example 1, T(A) consists of all dyadic positive rationals;
condition(x) is satisfied. In Example 2, T(A) = A = {logn}. Of course, T(N) = N. In The-
orem 3 we construct type 2 sets A which are subsets of dyadic rationals and T'(A) consists
of all dyadic positive rationals. Assume that the numbers {g, }>2 ; are independent over the
rationals and they converge to oc. If we let A = Upen{qn +2-N}UUpen{gn +3+2-N} then
T(A) = N\ {1}. This T(A) is asymptotically lacunary but not generated by one element
though it is a subset of N. It is not difficult to see that if T'(A) is asymptotically lacunary

then it is contained in an arithmetic progression.
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Whenever A itself is an additive semigroup T'(A) = A. If A consists of independent
points over the rationals (e.g., A = {logp : p prime}), then T(A) = 0.

Our interest in T'(A) is that C' = C(f, A) is invariant under the translations belonging
to T(A) and D = D(f,A) under the opposite translations:

xeC, teT(A)=x+teC, xe€D, teT(A)=x—-teD.

This has an interesting consequence provided T'(A) is non empty: knowing C or D on an
interval gives information about C to the right of this interval, or on D to the left.

Proposition 2. Given an interval I suppose that C (resp. D) enjoys one of the
following properties:
a) CNI (resp. DN1I) is dense on I,
b) CNI (resp. DN I) has positive Lebesque measure,
¢) CNI (resp. DN 1) has full measure on I,
d) C (resp. D) contains I.
Then the same property holds when I is replaced by I+T(A) (resp. I—=T(A)). In particular,

if T(A) is not contained in an arithmetic progression the property holds on some right (resp.
left) half line.

This proposition can be applied when A = {logn} (Example 2).

Proposition 3. Suppose that condition(x) is satisfied (A has arbitrarily small trans-
lators). Then the topological closure of C' (resp. D) is either (), or R, or else a closed right
half line (resp. left half line). The same holds for the support of 1¢ (resp. 1p) meaning
the smallest closed set carrying C (resp. D) except for a null set. The interior of C (resp.
D) is either ) or R or else an open right (resp. left) half line.

This applies in particular to Example 1.
THE MAIN RESULTS

Let us state and then prove the main results.

Theorem 1. Let (ng) be an increasing sequence of positive integers and let A =
UrenAr where Ay = 27*N N [ng, ngr1). Then A is of type 1.

Theorem 2. The set A = {logn : n = 1,2,...} has type 2. Moreover, for some
f € Cf (R), C has full measure on the half-line (0,00) and D contains the half line (—o0, 0).
If for each c, f:oo eYg(y)dy < +oo, then C(g,A) =R a.e. If g € Cy (R) and C(g,A) is not
of the first category (meager), then C = R a.e. Finally, there is some g € Cy (R) such that
C(g,A) =R a.e. and f0+°° eYg(y)dy = +oo.

Theorem 3. Let (ng) be a given increasing sequence of positive integers. There
is an increasing sequence of integers (m(k)) such that the set A = UgenAg with A =
2= RN N [ng, ngr1) is of type 2.
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Theorem 4. If A asymptotically lacunary, then A has type 2. Moreover, for some
fe CO+ (R), there exist intervals I and J, I to the left of J, such that C(f,A) contains I
and D(f,A) contains J.

Theorem 5. Suppose that there exist three intervals I, J, K such that J = K+1—1
(algebraic sum), I is to the left of J, and dist(1,J) > |I|, and two sequences (y;) and (N;)
tending to infinity (y; € RY, N; € N) such that, for each j, y; — I contains a set of N,
points of A independent from AN (y; — J) in the sense that the additive groups generated
by these sets have only 0 in common. Then A has type 2. Moreover, for some f € Car (R),
D(f,A) contains I and C(f,A) has full measure on K.

Remarks. If A is asymptotically dense and consists of elements independent over
@ then using Theorem 5 it is easy to show that A is of type 2. The next example illustrates
that in the statement of Theorem 5 a weaker independence assumption is not sufficient.

Example 3. Assume Agy denotes the set of Example 1. It is of type 1. For a real
number 7 set A, = A — 7. It is obvious that Y, ., f(z + A) converges almost everywhere
if and only if >,y f(z + A) does so. Set A = Ag U (A 5N US2,(85,85 + 1)). Then
choosing I = [-1,0], K = [2,3], J = [1,4], y; = 8j it is clear that y; — I contains N;
points of A which are independent from A N (y; — J), with N; — oo. This assumption
is a little weaker than the assumption of Theorem 5. Next we show that A is of type 1.
Hence this example illustrates that in Theorem 5 we need independence of the generated
groups, independence of individual elements is not sufficient. Indeed, take a nonnegative
measurable function f. If there is a set of positive measure where ) 3, _, f(z+ ) converges
then on this set )\, f(z + A) also converges. Since Ag is of type 1, > \cp f(z + A)
converges almost everywhere. Then )\, f(z + A), and hence ) ., f(z + A) both
converge almost everywhere. Therefore A is of type 1.

i From the sufficient condition of Theorem 5 one might think that for sets satisfying
condition(x) some sort of independence determines whether the set is type 2. However,
Theorem 3 shows that this is not the case, there are sets A any two elements of which are
dependent, A satisfies condition(x) and yet A has type 2.

The sets of type 2 form a dense open set in the topology of “small perturbations” of
discrete sets or box topology. Specifically, let us introduce a topology 7 on the space D of
infinite discrete subsets of RT as follows. Let A € D and let 7, € RT for n = 1,2,.... We
say that A’ belongs to the N'((¢1,71), (¢2,72),...) neighborhood of A provided we can order
the elements of A into a sequence {/1,/¢s,...} and we can order the elements of A’ into a
sequence (£,) such that ¢/, € (£, — ry, £y + 7). The topology T will be generated by these
neighborhoods. We recall

Proposition 4. The space (D, T) is a Baire space.

Proof. Assume that G C D is a non-empty open set and, proceeding towards a
contradiction, G = Uy H,,, where the H,,’s are nowhere dense sets.
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Arguing as in the proof of Baire’s category theorem one can choose a nested sequence
of neighborhoods N,, = N ((¢1,n,71,n), #2,n:T2,n)s --.) C G such that M, N H,, = 0, and we
can also assume that for all n,

El,n < K2,n < .., [Zi,n —Tin, Ei,n + Tz',n] N [Ej,n —Tjn, Ej,n + rj,n] = @ if 4 7é j;
furthermore, for all ¢
Win+1 — Tin+1,lint1 + Tin+1] C (lin — Tin, bin +7in) and 7, — 0 as n — oo.

Then A; = limy, o0 £; n exists and A = {A1, Ag, ...} € G\ U2 H,, a contradiction proving
Proposition 4. |

Theorem 6. The sets of type 2 form a dense open subset in T, while sets of type
1 form a closed nowhere dense set. Therefore type 2 is typical in the Baire category sense.

Proof of Theorem 6. If A is asymptotically lacunary, then it is of type 2 by
Theorem 4. If A is asymptotically dense and (r,) is given, then one can choose £, €
Ly, — Ty £y +1y) such that A = {£),4,...} is asymptotically dense and consists of elements
which are independent over QQ, the rationals. Then by the remark after Theorem 5 A’ is of
type 2. Therefore, the type 2 sets are dense in 7.

Assume now that A = {£1,45,...} is of type 2. By Proposition 1 we can choose f €
Cy (R) such that C(f,A) # R and C(f,A) # 0 a.e. There are compact sets Fo C C(f,A)
and Fp C D(f,A) both of positive measure. By using the continuity of f for a given n, one
can choose r,, > 0 such that |f(z+¢')— f(z+£,)| < 1/n? holds for all z € FoUFp and for
all £/ € (£, — rp, £y, + 75,). This easily implies that if A’ belongs to the (r,) neighborhood
of A then Fo C C(f,A") and Fp C D(f,A’). [ |

We shall prove Theorems 4, 5, 2, 3, and 1 successively.

Proof of Theorem 4. Since A is asymptotically lacunary, there is a sequence z;
tending to infinity such that

(1) (2, M) N (@B =0 (=12.)

for some open interval («, ). The same remains true if we move each z; to the left, if
necessary, until

(2) Bear,—A (j=1,2,.),

and from this point on, we suppose this is so. With these adjustments note that we still
have z; — +00. Let 0 < § < (8 — «)/2,

o 0
I:(a_l_éaﬂ_&)a J:(B_iaﬂ_}_i)
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Let A be the triangular function based on [—§, d], that is A(z) = (1 — |z/d]) V 0, and

flz)= ijA(m — ),

with m; | 0 and > m; = co. Then f € Cf (R). If z € J, then s(z) = Y \cp flz+ ) >
Y fletz—B) 23 mul(z+z;—B—x) >3, miA(z—B) > (1/2) 3, m; = +oo.
If z € I, then for all j and A€ A,z + A —z; ¢ (—6,0) and s(z) =0 on 1. [

Proof of Theorem 5. Using translation and dilatation if necessary, we can suppose
I =(—1,0); therefore J = (a—1,b+1) and K = (a,b) with a > 2. We intend to construct
f € Cf (R) such that s(x) = co on I and s(z) < o a.e. on K. Firstly, we shall construct
a continuous f; a trivial change gives f € Cy (R).

The principle is to select a subsequence of j, still denoted by j, such that Nj is
a very rapidly increasing sequence, then choose the functions f; carried by the intervals
ly; —1,y; + 1], which we may assume disjoint, such that s;(z) =Y ,c fj(z+A) > 0.99 on
I and sj(z) = 0 on K except on a set of measure p; with ) p; < co. To do this we need
the following Lemma.

Lemma 1. Suppose that E, a finite subset of R, has the following property:
(%) all non-trivial linear combinations ),y naA with ny € Z, |nx| < g € N are differ-
ent.
Then, given any linear combination of the e, (A € E),

P(t) =Y _ re?t=) (ry >0, pr €R)
AEE

we have

1
sup Re P(t) = lim sup Re P(t) > (1 — —> Z Tx.
teR t—+o0 q

Proof of Lemma 1. This fact is well known in the theory of Sidon sets [7]. For
the convenience of the reader we provide a proof. Let

K(t) = Z < - M) e the Fejér kernel

—q<n<gq q

and
R(t) = [] K(A(t — ¢x)) (kind of Riesz product),
AEE

then R(t) > 0 and

1T
MR_Th—I)%oﬁ/_TR(t)dt_l'
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Recalling, that Me®#t =1 if 4 =0, and 0 if 4 # 0, due to the assumption on F,

MPR = (1 — é) >

AEE

The result follows from MPR < sup,cg Re(P(t)) - MR. [

Remark. Let F' be an arbitrary finite set of real numbers. One can use Lemma 1
to show limsup; o, D ycp cO8(At) = #F. Of course, this fact is well known. The func-
tion p(t) = > \cpcos At is almost periodic and [p(t)| < p(0) = #F. On the other
hand, by almost periodicity [7], there exists ¢, — oo such that p(t,) — p(0). Hence,

limsup;_, o, D ycp COS(AL) = #F.

Proof of Theorem 5 (continuation). Now, for any fixed ¢, given any set £ of
N nonzero real numbers we inductively select points A € £ in such a way that condition &
is satisfied. At step n we have already selected n — 1 numbers A and these numbers forbid
less than (4¢ + 1)™ numbers for the next choice. Thus, we can proceed to step v > 1, if
S _o(4g +1)™ < N. We define

n=2

v(qg, N) = max{v € N: Z(4q+1)n < N};

n=2

hence from £ we can always select a subset E of cardinality at least v(q, N) for which
Lemma 1 applies. Also observe that limy_, . v(q, N) = oc.

Fix 0 < € < 107* with € irrational. Set ¢; = j°([1/€] + 1). By taking a suitable
subsequence, still denoted by N, we can assume that v(g;, N;) > (eq;)*/®. Then there
exists £ C AN (y; —I) of cardinality IN;, consisting of points which are not rational linear
combinations of points in AN (y; — J). In &; choose a set E; of cardinality v; = [(eq;)*/°]
satisfying condition &. Observe that »_ % < 00. Let us write ¢ = ¢;, F = Ej, v =v;, and
F = A N (yj - J)

Since the Q-linear spaces generated by E and F' have only 0 in common, whatever
may be the complex numbers a()), (A € F) and b(A), (A € F'), we can choose t such that

Re Z a(N)e?™* and Re Z b(\)e2miAt
\eE AEF

are arbitrarily close to

lim sup Re Z a(N)e?™ and limsup Re Z b(\)e2™AL,

t—o00 \eE t—00 AeF

Let £(-) be a one-to-one mapping of E onto {1,2,...,v}. We choose a(\) =
exp(QWi&:‘)), (A € E) and b(A) = 1, (A € F). By using Lemma 1, the fact that
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(1- é)y > v — -7, and the remark after Lemma 1, we choose ¢ so that

E cos (27r ()\t—l— @>) >v— %, and
v v
A\EE

E cos 2mAt > #F — %.
v
AeF

These inequalities imply
L)

At >~ ————= mod 1 when X\ € E|
v

(more precisely we know At + @ €L+ (_,)z/g, \,,/f)), and

At ~0mod 1 when A € I

(more precisely we know A\t € Z + ( V\z/g, L/f))
Now we define

= ZA(ty — k)l[_1,1](y —Yj);

kEZ

where A is the triangular function based on [—§,6] with 6 = 1/v and A(0) = 1. When
zel=(-1,0),

=) file+ N = ) Altz+tA-k)1ly @+ A —y))
AEA kEZ , NEA

> > A(tw+th—k) = ZZA(ta:erA—@erx—k),

kELAEE AEE kEL
where my € Z and |wy| < V—‘c Notice that for each A € E, there is at most one value of
k = kx € Z such that [tz — ®2) — k| < 4. Thus,

> Atz —-I—w)\ — k).

AEE

Since A has Lipshitz constant v, we have

5i(@) > S (Adte - @ k) —viun) > 3 At é k) — Ve=1— > 0.99.
AeE

=1



Buczolich, Kahane and Mauldin Page 10
On the other hand, when z € K = (a,b), we have

Sj(.r) = Z A(t:ﬂ—l—t)\—k)l[_Ll](:C-i-)\—yj)
kEZ NEF

because |z + A — y;| > 1 when z € K and A € y; — J. Thus, if z € K,

si(@) < YD Atz +tA— k).
AEF keZ

Now, for each A € F, Y, ., Atz + tA — k) is carried on a subset of Ugez(k/t — 1/tv —
Ve/v2 k[t +1/tv + \/e/v?). These intervals are uniformly spaced and have length 2/tv +
24/€/tv?. Taking into account the maximum number of these intervals which can hit K, we
have s;j(z) = 0, for z € K except on a set of measure 2(|K| + (1/t))(1/v; + /€/v}) = p;
and ) p; < oo as wanted.

These considerations provide a continuous and bounded f. In order to have f
tending to 0 at infinity, it suffices to multiply f; by a scalar a; | 0 such that > a; = oo,

and to define f =" o, f;. [ |

Proof of Theorem 2. For : = 0,1,..., set a; = (%)Z Define the sequence c;
by setting ¢; = 1 and for j > 1,¢j41 = (3/2)¢; + 1. For each 4 > 0, set up; = 0 and
uji = cja;,j > 1. For each fixed i, the intervals I;; = [—ujt1,4, —u;il, Kji = [2a;,4]

and J;; = [uj; — wjy14 + 2ai,uj14 — uj; + 4] satisfy the first part of the hypothesis of
Theorem 5. For each i, let y,; tend to +o0o and let N;; = #G,;, where G;; = {logp :
pis a prime andlogp € y;;—1I;;}. It now follows from the Prime Number Theorem that all
the conditions of Theorem 5 are satisfied. Thus, there is some function f;; € Cg (R) such
that I;; C D(f;,:,A) and C(f;,;) has full measure on [2a;,4]. If necessary, by truncation,
we may assume f;;(z) < 1, for all z. Now choose 0 < ;; < 277 such that

o
1 1
meas {z € [2a;,4] : §ﬂj,ifj7i(x+ logn) > 2—]} <5
Let g; = Z_(;OIO /Bj,ifj,i- Then D(gz,A) D UD(fjﬂ',A) D) UIjﬂ' = (—OO, 0) AlSO, by
the Borel-Cantelli Lemma, C(g;, A) has full measure on [2a;,4]. Again, we can truncate
each g; so that for all z, g;(x) < 1. Now, choose 0 < 3; < 2% such that

- 1 1
meas {z € [2a;,4] : Z,Bigi(m +logn) > E} < %5

n=1

Set by = 0, b; = Y_i_ga; = 4 — 4a; and

f(:L') = Zﬁzgz(iff' —a; — bi) = Zﬂzgz(x —4 + 3ai).
1=0 =0
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Observe that f € Cy (R). Furthermore, sy, (z) = > oo, Bigi(z — 4 + 3a; + logn) diverges
on (—oo,4 — 3a;), converges a.e. on (4 — a;,8 — 3a;) and

1 1 1
meas {z € [4,5] : sg,(z) > E} <meas {z € [4—a; : 8 —3a;], sq,(x) > 5} < 5
By the Borel-Cantelli lemma, Y .-, s4, () converges a.e. on [4, 5]. Also, if Yoo, f(z+logn)
converges, »_ -, f(z+log2+logn) converges. Hence, Y ., f(z+logn) converges a.e. on
(4,00) and diverges on (—oo,4). Translating f by 4, one can obtain the desired function.
This completes the proof of the first two statements of the theorem.

Fix —oco < e < d < o0o. Then
o0 d+logn oo
/ g(y)dy = / W()9(y)dy,

/cd s(z)dz = /cdig(x—i-logn)daz = Z

n=1 +logn

where ¥(y) = #{n: c+logn <y <d+logn } = #{n:e¥/e? < n < e¥/e® }. So, there
exists Koy € R and a constant 7 > 1 such that 771e¥ < 9(y) < 7eY, if y > Kj. From this
it follows that if fc+oo eYg(y)dy < oo, for each ¢, then C(g,A) =R a.e.

To prove the fourth statement, assume g € Cj (R) and C = C(g, A) is not of the
first category. Since the function s is lower semi-continuous, the sets Ay = {z : s(z) <
M} are closed and C' = UprenAnr, there is some M and an interval (cg,dp) C C. Then

fc‘? s(z)dx < M(dg — cp). Therefore, as we have just seen, fcc;o eYg(y)dy < +oo. But, then
this last integral is finite for all ¢ and therefore C' =R a.e.

To see the final part of Theorem 2, we note that Haight [4] gave an example of a
function f such that C(f,A) = R a.e., but fooo eV f(y)dy = +o00. The function f is the
characteristic function of a sequence of disjoint intervals, (¢, d,) converging to 4+o0o. It
is straightforward to see that this function may be modified as indicated in the proof of
Proposition 1 to yield a function g € Cy (R) with the same properties and fooo eYg(y)dy =
~+00. |

Remarks. Haight’s example actually concerns nonnegative functions defined on the
positive reals and sums of the form Y f(nz). However, as we mentioned at the beginning
a simple transformation converts this to our setup. The third part of Theorem 2 has been
known for quite some time and the fourth part is noted by Fine and Hyde [5].

Proof of Theorem 3. For convenience we assume that the n;’s are multiples of 8
(the general case follows by a scaling of 1/8). Set I = (—1,0), J = (1,4).

Set m(0) = 0 and Ag = (). Assume that at step j > 1, we have already defined the
numbers m(k), and hence the sets Ay for k =1,...,5 — 1.

We will use a modification of the argument of Theorem 5. Set y; = m;. Using
the definitions of €, ¢; and v(g, N) given in the proof of Theorem 5, choose N; such that
v(gj, Nj) > vj = [(eg;)'/®]. We also choose a set A C (nj,n; + 1) = y; — I consisting
of N; numbers none of which is a dyadic rational. Using the definition of v;, choose an
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E = E} = {{1,...,4,,} C A} satisfying condition & and set F' = Ui;llAk N(n; —4,n; — 1),
(when j = 1 one can use F' = )). Next, by choosing a suitable ¢ define f;(y) as in the proof
of Theorem 5. By continuity we can choose m(j) > m(j — 1) and {A1,..., A} = E; C
2-mUINN (nj,n; + 1) such that

(3) Yo Al +tN —k) - > A(tz+tA—k)| <0.0L
kELNEE] kE€EZ,\EE;

Set A; = 2~™UNN[n;,n;41), and AjS = Ug<jAg. Then (3) and an argument similar
to the one used in the proof of Theorem 5 shows that for x € I = (—1,0)

sj(x) = Z Atz +tA = k)11 (. + A —y;) > 0.98
kez,,\eAjS

holds.

For z € K = (2,3) we will still have the property that s;(z) = 0 except on a set of
small measure p;, satisfying ) p; < oo.

Using the above steps we can define m(j) and A; for j =1,2,....

Finally, observe that for z € I U K and for 5/ > j we have

sj(z) = Z A(tz+tA—k)1_q g(z+A—y;) = Z A(tz+tA—k)1 1 1y (z+A—y;)-
keZ,AeAf, kEZ,AEA

This will imply that one can obtain a suitable f as in Theorem 5. |
To prove Theorem 1 we need a lemma.

In the sequel functions defined on the circle, T and functions on R, periodic by 1
will be identified.

Lemma 2. Let ¢, : T — R be positive measurable functions. If Y - | ¢n(2"t) < 00
a.e., it then follows that > ", ¢n (2"t + 3) < 0.

Proof of Lemma 2. First, it is easy to see that due to the periodicity property
there is a 0—1 law, that is, if > ¢ (2"t43) < co does not hold a.e. then Y~ ¢, (2"t+3) = oo
a.e. and this implies that Y [, ¢n (2"t + 3)dt = co holds when [A| > 0.

Choose H C T closed such that |[H| > 0.99 and Y ¢, (2"t) — ¢(t) uniformly on H
and |p| < M, where M € R.

Set Hy = H, H, = Ul_g' (H + £&), and for n = 0,1, ... define G, = Hy 41 \ H,. We
observe that H,, C Hy1, therefore > 0 |G,| < |T| — |[H| = 0.01.
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Set H' = H \ U32((Gr — za5r). Then |H'| > [H| — " |G,| > 0.9. Observe that
t € H' implies t € H and t + 5+ & G- Since t € H implies t € Hpy1, t + 525 € Hpy1,
and Hy 1 \ G, = Hy,, we see that t € H' implies ¢t + Qn% € H,, holds for each n. Thus

/H’ QDn(Znt + %)dt = / , (pn(Q"(t +1))dt < /H @n(2nt)dt.

Therefore if we can show that > [, ¢n(2"t)dt < oo then we showed that
> [y en(2™t + 3)dt < co and this implies that Y- ¢, (2"t + §) < oo holds a.e.
Recalling that an = fH—l—fGO +.oo fGn—l’ we have

Z/ ©n(2"t)dt /Zson 2”t)dt+2/ Z ©n(27)dt <

mn m-+1
M(H[+ ) |Gm|) < M.

This completes the proof. |

Proof of Theorem 1. Given m choose k(m) such that [ngm), Pgm)+1) D [m, m+
1).Set A/ =AN[m,m+1)=2"*"INN[m,m+1).
Let us introduce fy,(z) = f(z +m), gm = fmlps

= Z f(:l?-i—)\): Z fm( 2k(m))

AEAL, 0<j<2k(m)

U () = Z gm(z + 2k(m)) v () = Z gm(x + 2k(i+1)).
0<j<2k(m) 0<j<2k(m+1)
Then s = s = Y 5ep f(@+ A), up and vy, are carried by [0, 3].

Set I' = {m € N: m # ngm)4+1 — 1}

Observe that if m € I' then k(m-+1) = k(m) and hence v,, () = Uy, (x);if m & T then
k(m+1) = k(m)+1 and vy (@) = Um () +tm (2 + 5577y)- For all z, s (2 4+1) < spmpa ().
So, for all z, Uy, () < $p(x), Up(x 4+ 1) < Spt1(x), and Uy, (2 4+ 2) < sy42(x). Moreover,
for z € [0,1], v (z + 1) = spmr1(x). We define

=Y um(z+n), @)=Y vmle+n), (R

nez nez
Then u), (z) is periodic by 2_k(m), indeed,
. j+1 _
U (T + 2k:(m) Z Z gm (€ + oe(m) T n) =

neEZ 0<j<2k(m)



Buczolich, Kahane and Mauldin Page 14

Z Z gm(a:-l-%:n)—l-n):ufn(x).

neZ 0<j'§2k(m)

Denote by C* the set of those points where ) u¥, converges. If Y s, (2) < 0o on a
set of positive measure in [0, 1] the same holds for Y u¥ () < 3> s, (z); hence C* N[0, 1]
is of positive measure. Since k(m) is monotone increasing and tends to oo one can easily
see that C* is periodic by 27% for all k. Therefore Y u*,(z) < oo a.e.

Observe that >, pup(¥) = >, cpvm (). Set Yi(z) = uy, . _1(x). Then 1y is
periodic by 27%. Clearly, 3" 9% (z) < oo a.e. and Lemma 2 applied for the functions oy (z) =
Y (27F2) yields Y- @ (2F2+ 3) = Y- 9k (2 + 555) < 0o a.e. This implies Yo memr Vm (%) <
oo a.e.. Hence )  smyi(z) < Y. vh(x) < oo ae. on [0,1]. In other words, either
> sm(x) =00 a.e. on [0,1], or Y s, () < 00 a.e. on [0,1].

If f is arbitrary and for an xo € R, C(f,A) N [z, zo + 1) is of positive measure.
Then for f, (z) = f(x + xo) we have C(fz,,A) N [0,1) is of positive measure and hence
C(fz,,A) contains almost every point of [0, 1), that is, C'(f, A) contains almost every point
of [zg,z + 1). Using this argument for zy + (k/2) for k = 1,2, ..., by induction on |k|, we
obtain that C(f, A) contains almost every point of R.

Thus either s(z) < oo or s(z) = oo a.e. on R. [

COMMENTS AND QUESTIONS

In Theorems 2,3,4 and 5 it is shown that there is some f € Cg (R) such that both
C(f,A) and D(f,A) have positive Lebesgue measure. It is easy to construct a measurable
function f with these same properties which has values in {0, 1}. This leads to

QUESTION 1. Is it true that A is of type 2 if and only if there is a {0, 1} valued
measurable function f such that both C(f, A) and D(f, A) have positive Lebesgue measure?

When A is asymptotically lacunary, it is possible to construct f € Cg (R) such that
both C(f,A) and D(f, A) have interior points, say ¢ and zp. In fact, Theorem 4 states
that we may require z¢ < xp. One can obtain xp < x¢ as well.

QUESTION 2. Given open sets G; and G5 when is it possible to find A and f
such that C(f, A) contains G; and D(f,A) contains G3?

We note a partial answer to Question 2. Suppose the counting function of A, n(z) =
#{A N[0, x]} satisfies a condition of the type

) n(x+£+a) —n(z+a)
(A) VL <0VaeR hgrgri)s:ip (@ +0) = () < 400

(as is the case for A = {logn}). Then either C has full measure on R or C does not
contain any interval. To see this note that if C' contains an interval, Baire’s theorem shows
that s(x) is bounded on some subinterval (zg, zg + £). Therefore,
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$0+e
[ 1@ty = 20) = nly =20~ )y = [ sla)to < .
Zo
According to (A), the same holds when xg is replaced by zo — a. Thus, s(z) < oo
a.e. The meaning of (A) is that A is asymptotically dense in a regular way. If we relax
condition (A) by replacing (Va € R) by (Va € Rt) or by (Va € R™), we obtain a weaker
conclusion, namely C has full measure on either a left or right half line.

Finally, let us make comments on the assumption that A is a discrete set of non-
negative numbers. Types 1 and 2 can be defined without this assumption. For example,
if A consists of all dyadic rationals, then C(f,A) = (0 or C(f,A) = R a.e. according to
J1f(x)|dz = 0 or > 0. This may be proved as a very simple application of the zero-one
law, while the proof of Theorem 1 uses the same tool in a much more elaborated way. More
generally, suppose A, is an accumulation point of A. Then D(f,A) D {z: f(z) > 0} — A\
a.e. To see this, suppose F' is compact, meas(F') > 0,c > 0 and f > con F. Let A, be
distinct elements of A converging to M. Set H = limsup,, ,  (F—A,). Then H C F -\,
meas(H) = meas(F') and H C D(f,A). In particular, if f > 0 a.e. and there is a sequence,
An, of accumulation points of A such that lim Ay = o0, then D(f, A) =R a.e.
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