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Abstract. The paper extends the rigidity of mixing expanding repellers theorem by D.
Sullivan announced at 1986 IMC [Su], see also the unpublished manuscript by the second
author [Pr]. We show that for a regular conformal, satisfying ”Open Set Condition”, it-
erated function system of countably many holomorphic contractions of an open connected
subset of a complex plane, the Radon-Nikodym derivative du/dm has a real-analytic ex-
tension on an open neighbourhood of the limit set of this system, where m is the conformal
measure and p is the unique probability invariant measure equivalent with m. Next, follow-
ing [Su| and [Pr], we introduce the concept of non-linearity for iterated function systems of
countably many holomorphic contractions. Several necessary and sufficient conditions for
non-linearity are established. We prove the following rigidity result: If h, the topological
conjugacy between two non-linear systems F' and G, transports the conformal measure mg
to the equivalence class of the conformal measure m¢, then h has a conformal extension
on an open neighbourhood of the limit set of the system F. Finally we prove that the
hyperbolic system associated as in [MU2] to a given parabolic system of countably many
holomorphic contractions is non-linear what allows to extend our rigidity result to the case
of parabolic systems.
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§1. Introduction, Preliminaries. In [MU1] we have provided the framework to study
infinite conformal iterated function systems. We shall recall first this notion and some of
its basic properties. Let I be a countable index set with at least two elements and let
S ={¢;: X - X :i € I} be a collection of injective contractions from a compact metric
space X into X for which there exists 0 < s < 1 such that p(¢i(x), d:i(y)) < sp(z,y)
for every ¢+ € I and for every pair of points x,y € X. Thus, the system S is uniformly
contractive. Any such collection S of contractions is called an iterated function system.
We are particularly interested in the properties of the limit set defined by such a system.
We can define this set as the image of the coding space under a coding map as follows. Let
I™ denote the space of words of length n, I°° the space of infinite sequences of symbols in
I, I* =J,5;I"™ and for w € I", n > 1, let ¢, = Py 0 Py 00y, . fw e [*UI®
and n > 1 does not exceed the length of w, we denote by w|,, the word wiws...w,. Since
given w € I°°, the diameters of the compact sets ¢, (X), n > 1, converge to zero and
since they form a decreasing family, the set

M el (X)

is a singleton and therefore, denoting its only element by 7(w), defines the coding map
7w : I — X. The main object of our interest will be the limit set

J:W(IOO): U ﬂ¢w|n(X)7

wel>* n=1

Observe that J satisfies the natural invariance equality, J = [J;c; #i(J). Notice that if T
is finite, then .J is compact and this property fails for infinite systems.

An iterated function system S = {¢; : X — X : i € I} is said to satisfy the Open Set

Condition if there exists a nonempty open set U C X (in the topology of X) such that

¢i(U) C U for every i € I and ¢;(U)N¢;(U) = 0 for every pair i,j € I, i # j. (We do not

exclude clg;(U) N clg; (U) #0.)

An iterated function system S satisfying the Open Set Condition is said to be conformal

if X ¢ IR for some d > 1 and the following conditions are satisfied.

(la) U = Intga(X).

(1b) There exists an open connected set V such that X C V C IR? such that all maps
¢i, @ € I, extend to C'! orientation preserving conformal diffecomorphisms of V into
V. (Note that for d = 1 this just means that all the maps ¢;, i C I, are C! in-
creasing diffeomorphisms, for d > 2 the words orientation preserving conformal mean
holomorphic, and for d > 2 the maps ¢;, + C [ are orientation preserving Mobius
transformations. The proof of the last statement can be found in [BP] for example,
where it is called Liouville’s theorem)

(1c) There exist v,/ > 0 such that for every x € 0X C IR? there exists an open cone
Con(zx,v,l) C Int(X) with vertex z, central angle of Lebesgue measure v, and altitude
l.



(1d) Bounded Distortion Property(BDP). There exists K > 1 such that

|60 (W)| < K4, (2)|

for every w € I'* and every pair of points =,y € V, where |¢,, (z)| means the norm of
the derivative.

In fact throughout the whole paper we will need one more condition which (comp. [MU1])
can be considered as a strengthening of (BDP).

(le) There are two constants L > 1 and « > 0 such that
[16: ()] = [ ()] < LIl lly — |
for every ¢ € I and every pair of points z,y € V.

Remark 1.1. Note that for d = 2, decreasing V if necessary, conditions (1e) and (1d) are
satisfied due to Koebe’s distortion theorem.

Let us now collect some geometric consequences of (BDP). We have for all words w € I*
and all convex subsets C' of V

(BDP1) diam(¢,, (C)) < [|¢}, ||diam(C)
and, for an appropriate V,
(BDP2) diam(¢, (V) < DI, ]|,

where the norm ||-|| is the supremum norm taken over V and D > 1 is a constant depending
only on V. Moreover,

(BDP3) diam(¢, (X)) > D™H| ¢,
and
(BDP4) ¢w(B(x,7)) D B(gu(z), K¢, |Ir),

for every z € X, every 0 < r < dist(X,0V), and every word w € I'*.

Frequently, refering to (BDP) we will mean either (BDP) itself or one of the properties
(BDP1)-(BDP4). Notice that for simplicity and clarity of our exposition we assumed the
open set U appearing in the open set condition to be Int(X).

As was demonstrated in [MU1], conformal iterated function systems naturally break
into two main classes, irregular and regular. This dichotomy can be determined from either
the existence of a zero of a natural pressure function or, equivalently, the existence of a
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conformal measure. The topological pressure function, P is defined as follows. For every
integer n > 1 define
DAl

weln

and .
P(t) = lim —logn,(t).

n—oo N,

For a conformal system S, we sometimes set ¢ = 1 = 1. The finiteness parameter,
s, of the system S is defined by inf{t : ¢(t) < oo} = fs. In [MUI1], it was shown
that the topological pressure function P(t) is non-increasing on [0, 00), strictly decreasing,
continuous and convex on [f,00) and P(d) < 0. Of course, P(0) = oo if and only if I is
infinite. In [MU1] (see Theorem 3.15) we have proved the following characterization of the
Hausdorff dimension of the limit set .J, which will be denoted by HD(.J) = hg.

Theorem 1.2. HD(J) = sup{HD(Jp) : F C I is finite} = inf{t : P(¢) < 0}. If P(¢) = 0,
then ¢t = HD(J).

We call the system S regular if there is ¢ such that P(¢) = 0. It follows from [MU1] that ¢
is unique. Also, the system is regular if and only if there is a t-conformal measure. Recall
that a Borel probability measure m is said to be ¢-conformal provided m(J) = 1 and for
every Borel set A C X and every i € [
— [ 1641t dm
A

m(p:(X) N ¢;(X)) =0,

for every pair i,5 € I, ¢+ # j. From now on we assume that the system S is regular and
we denote by ¢ the Hausdorff dimension of its limit set. We now define the associated
Perron-Frobenius operator acting on C'(X) as follows

= [d5(@)]° (¢ (@))-

1€l

and

Notice that the norm of £ is equal to ||£(1)|| < #(d) and the nth iterate of L is given by

the formula
= > 1L @) f(du(@)).

|lw|=n

Theorem 1.3 below explains what we really need this operator for. The conformal measure
m is a fixed point of the operator conjugate to £. We recall also (see [MU1, Theorem 3.8])
that there exists an invariant measure p in the sense that for every measurable set A,

n(lJ #i(4)) = u(4)

i€l



equivalent to m and the Radon-Nikodym derivative du/dm is bounded away from zero
and infinity. In Sections 4 and 2 we will need better knowledge about this derivative and
in particular we will need to know how it is computed. The approriate information is
contained in the following (see [MU3]).

Theorem 1.3. The Radon-Nikodym derivative du/dm has a version which continuously
extends to a function p : X — (0,00) and which is a unique fixed point of the Perron-
Frobenius operator £ whose integral with respect to the conformal measure m is equal to
1. Moreover the iterates £™ (1) converge uniformly on X to p.

We call two iterated function systems F = {f; : X - X,i € [}andG={g;: Y = Y,ie I}
topologically conjugate if and only if there exists a homeomorphism h : Jp — Jg such
that

hofi=gioh

for all 7 € I. Then by induction we easily get that ho f,, = g, o h for every finite word w.
The Section 2 of the paper [HU] contains the proof of the following.

Theorem 1.4. Suppose that FF = {f; : X - X,i € I)and G ={g; : Y = Y,i € I}
are two topologically conjugate conformal iterated function systems. Then the following 4
conditions are equivalent.

(1) 3C >1Vwe I*
_y _ diam(g,(Y))
Lo 0w 1<
© Gam(rx) =
(2) 9., (yw)| = |f(zy)] for all w € I*, where z,, and y, are the only fixed points of
fo: X — X and g, : Y — Y respectively.

(3) 3E > 1Vw € I*

E_\

oo < g
721

|
(4) For every finite subset T' of I, HD(Jg,r) = HD(JFr) and the conformal measures
ma,r and mproh” L are equivalent.

< FE.

E_‘

Suppose additionally that both systems F' and G are regular. Then the following condition
is also equivalent to the four conditions above.

(5) HD(Jg) = HD(JF) and the conformal measures mg and mp o h~1 are equivalent.

Since [HU] deals only with real-analytic 1-dimensional systems, for completeness we provide
the proof in Appendix 1.

Our main goal in this paper is to prove the rigidity theorem, (1) — (5) = the conjugacy has
a conformal extension. For finite systems arising from inverse branches of a holomorphic
expanding map on a mixing repeller a sufficient condition for this implication is that the
systems are non-linear, [Su, Pr]. Here we shall prove this rigidity for infinite systems. An
example in which this is applicable, complex continued fractions, was considered in [MU1].
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As a by-product we see that the non-linearity implies the rigidity: (1) — (5) = the
conjugacy is Lipschitz continuous. For infinite systems without the non-linearity assump-
tion this is false, see Appendix 1. A positive result on this rigidity was obtained in [HU].
Instead of the non-linearity a so-called bounded geometry property was assumed and the
preservation of the ”scaling” of "gaps” under the conjugacy. For completeness we provide
a precise statement of this theorem in Appendix 1.

We postpone the formulation of our main rigidity theorem to Section 4 where all
ingredients needed to state it and to prove it will be ready. In Section 2 generalizing the
approach from [PU] we prove the main technical result, the real analyticity of the Radon-
Nikodym derivative du/dm of invariant measure p with respect to conformal measure m.
In Section 3 we deal with various equivalent conditions of non-linearity, in Section 4 we
prove our main result, Theorem 4.1, and in Section 5 we extend the results of Section 4
to the case of parabolic iterated function systems. The Appendix 1 contains the proof of
Theorem 1.4 taken from [HU] and counterexamples concerning Lipschitz continuity of the
conjugacy. Appendix 2 is devoted to the proof of the continuity of the Radon-Nikodym
derivative of the invariant measure with respect to the conformal measure in the parabolic
case.

§2. The Radon-Nikodym derivative p is real-analytic. From now on throughout the
whole paper we assume that d = 2 and {¢;} is an Open Set Condition conformal regular
iterated function system.

We call the system S = {¢;}ics 1-dimensional if there exists a set D : J C D C V
composed of finitely many real-analytic curves with pairwise disjoint closures such that
¢i(D) C D for all i € I.

Lemma 2.1. If a non-empty open subset of J is contained in a 1-dimensional real-analytic
curve, then the system S is 1-dimensional.

Proof. Since J is compact it suffices to show that each point in J has a neighbourhood
contained in a real-analytic curve. The assumptions of the lemma state that there exists
a point x € .J, an open ball B(x) centered at x and M, a real-analytic curve, open-ended,
containing J N B(z). Fix now an arbitrary point z € J. Since z € J there exists w € I*
such that ¢, (2) € J N B(x), moreover ¢, (V) C B(z). Then the set ¢, (V)N M contains
¢, (V) NJ, an open neighbourhood of ¢, (z) in J and consists of countably many real-
analytic curves. Let I' be one of them, the connected component of ¢, (V)N M containing
¢, (2). Tt contains an open neighbourhood of ¢, (z) in J. Then ¢~!(T) contains an open
neighbourhood of z in J. W

Our main goal in this section is to prove the following.



Theorem 2.2. The Radon-Nikodym derivative p has a real-analytic extension on an open
connected neighbourhood U of X in V.

Proof. In view of the result obtained when proving the implication (g) = (a) of Theorem
3.1 of [HU], we may assume that our system is not 1-dimensional. First define the sequence
of functions b, : V" — (0, 00) by setting

(2.1) bn(2) = Z |¢¢/u(z)|67

|w|=n

where, let us recall, § = HD(J) is the Hausdorff dimension of the limit set. In view of
(2.15) in [MU1] |by(2)] = bn(2) < K° for all z € X and all n > 1. Hence, applying the
Koebe distortion theorem we conclude that there exists T' > 0 such that for each point
w € X there exists a radius r = r(w) > 0 such that B(w,2r) C V and for all z € B(w, 2r)
and alln >1

(2.2) |bn(2)| = bp(2) < T.

Identify now @, where our contractions ¢;, i € I, act, to IR? with coordinates z,y, the
real and complex part of z. Embed this into €% with z,y complex. Denote the above
@ = IR? by @. We may assume that v = 0 in €. Given w € I* define the function
pw : By (0,2r) — @ by setting

_ $u,(2)

pel?) = 5 0y

Since Bg, (0,2r) C @ is simply connected and p, nowhere vanishes, all the branches of
the log p,, are well defined on Bg (0,2r). Choose this branch that maps 0 to 0 and denote
it also by log p,,. By Koebe’s Distortion Theorem |p,| and |argp,,| are bounded on B(0, )
by universal constants K1, Ko respectively. Hence |logp,| < K =log K1 + K5. We write

oo
log p, = Z A 2™
m=0
and note that by Cauchy’s inequalities
(2.3) lam| < K/r™.

We can write for z = x + 1y in @

o0 oo
Relog p, = Re Z am(x +iy)™ = Z Re (ap+q <p + q) iq>xpyq = Zcp,qxpyq.
q
m=0 p,q=0

In view of (2.3) we can estimate |c, | < |apiq[2PT9 < Kr~®P+920+4, Hence Relog p,,
extends, by the same power series expansion Y ¢, ,2Py9, to a complex-valued function on
the polydisk IDge (0,r/2) and

(2.4) |Relog p,| < 4K on IDge(0,r/4).
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Now each function b,, n > 1, extends to the function

(2.5) Bu(2) = ) |¢,,(0) e Reto8rw (),

|w|=n

whose domain, similarly as the domains of the functions Relog p,,, contains the polydisk
D¢ (0,7/2). Finally, using (2.2) and (2.4) we get for all n > 0 and all z € IDg (0,7/4)

1B, (2)| < Z |¢‘/Aj(0)|6eRe(6Relong(Z)) < Z |¢‘/U(0)|666|Relogpw(z)|

lwl=n |w|=n

<Nl (0). < Mo

|lw|=n

Now by Cauchy’s integral formula (in IDgz (0,7 /4)) for the second derivatives we prove that
the family B, is equicontinuous on, say, D¢z (0,7/5). Hence we can choose a uniformly
convergent subsequence and the limit function G is complex analytic and extends p on
J N B(0,r/5), in the manner described in Theorem 1.3. Thus we have proved that p
extends to a complex analytic function in a neighbourhood of every point v € J in @2, i.e.
real-analytic in ¢§. These extensions coincide on the intersections of the neighbourhoods,
otherwise J is real-analytic and we are in the [HU] case, referred to at the beginning of
the proof. B

For every w € I* denote by Dy = d“doﬂ the Jacobian of the map ¢, : J — J with
respect to the measure p. As an imme(fiate consequence of Theorem 2.2, the following
computation

O by _ oo dmody dm (kN s dm

de  dmo ¢, dm du
and the observation that |¢/ |° is real-analytic on V, we get the following.
Corollary 2.3. For every 7 € I the Jacobian Dy, has a real-analytic extension an- on the
neighbourhood U of X produced in Theorem 2.1.
63. Non-linearity.

The main goal of this section is to prove the following.

Theorem 3.1. Suppose that the system S = {¢;};cr is regular and denote the corre-
sponding conformal measure by m. Then the following conditions are equivalent.

(a) For each i € I the extended Jacobian D¢i : U — IR is constant, where U is the
neighbourhood of X produced in Corollary 2.3.
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(b)

(c)

—~
@
o

~—

—~
—

There exist a continuous function u : X — IR and constants ¢; € IR, i € I, such that
log |§;| =u —uodi+c

forallze 1.

There exist a continuous function w : J — IR and constants ¢; € IR, i € I, such that
log |§;| =u —uodi+c¢

forallze 1.

The conformal structure on J admits a euclidean isometries refinement so that all maps
¢;, 1 € I, become affine conformal, more precisely there exists an atlas {¢; : Uy — €}
with open disks Uy, consisting of conformal injections such that | J, Uy D J,allU,NU,
and U; N ¢;(Us) are connected and the compositions 1 o 97! and 1) o ¢; o 7,
respectively on ¢s(U; N Us) and 9, o ¢;1(Ut N ¢;(Us)), are conformal affine with
((Yeoyh) | = 1.

As (d1) but no assumptions on |(+; o 97 1)’| (i.e. the atlas is only conformal affine).
There exist a cover {By}xea of J consisting of open disks and a family of harmonic
functions 7y : By — IR, A € A, such that for all A, \' € A and all i € T

(3.1) Yx — Ya = const

on By N By and

(3.2) argag; — vy + ya 0 ¢y = const

on ¢; (B N ¢i(By)), where argy¢. : By — IR is a continuous branch of argument of

¢} defined on the simply connected set By. All the sets ByN By and QS[I(BS\HQSZ-(BA))
are connected.

) As (eh) but harmonic replaced by real-analytic.

As (eh) but harmonic replaced by continuous.

) VD¢;(z) = 0forall z € J and all i € I if S is 1-dimensional. If S is not 1-dimensional

then . .
det(VDg; o ¢, (2), VDpi(z)) =0

forallze€ Jandalli € I,we I* .

Proof. We shall prove the following implications (a) = (b) = (¢) = (d1) = (d2) = (a),
(d2) = (eh) = (er) = (ec) = (d2), (a) = (f) and (f) = (er).
e (a) = (b). Since for every i € I, Dy, = (po ¢;) - |¢}]° - p~1, we have

log(|Dy,|) = log(|p| o ¢:) + & log | ¢ — log ||

Thus to finish the proof of the implication (a) = (b) it suffices to set ¢; = %log([)@) and
1
u= tlog|pl.



e The implication (b) = (c) is obvious.
(c) = (d1). Fix an element v € .J and an element 7 € I*°. Given n > 1 and a word w € I™
we denote by w the flipped word wy,w,_1...w1. Our first aim is to show that the series

(3.3) > (10g16}, (b ()] — log |6}, (b—(v))

n>1

converges absolutely uniformly on V', where for n = 1 we set ¢ = Idy. Indeed, it

follows from (1d) and (1e), compare (4.2) of [HU], that

T|n71

«

log 6/, (¢7—(2))|  log ¢!, (6—(0))| < KL |o7—=(2) = b= (v)
< KLsmDa )y — gl
(3.4) < K Ldiam®(V)s(r—De,
Since K Ldiame(V
3" K Ldiam® (V)" D2 < 11#() < 0,
— Sa
n>1

the proof of the absolute uniform convergence of the series defined by (3.3) is complete.
We now can define the function w, : V' — IR by setting

(3.5) uy(2) = u(v) + 3 (log |9}, (67—(2))| — log|¢}, (b7 ()]}

n>1

T|n—1

The function u, : V — IR as the sum of an absolutely convergent series of harmonic
functions, is harmonic. Iterating the formula appearing in Theorem 3.1(c), we obtain for
every n > 1 and every z € J

n

u(z) — u(v) = 3 (log |4, (6—(2))| ~ log |6, (6—(0))]) + w(d=—(2)) — u(b—(v))

k=1

Since, by (BDP), |¢m(z) - qu
on a compact set is uniformly continuous, it follows from the last display that u,(z) = u(2)
for all z € J, i.e. u, is a harmonic extension of v on V. From now on we will drop the
subscript v writing simply u : V' — IR. Since all the functions log |¢}| and uw — u o ¢; + ¢;,
¢ € I, are harmonic on V, each set

(v)] < s™ and since the function u : J — IR as continuous

Zi={z eV :log|d:(2)| = u(z) —uo¢;(2) + c;},

1 € I, is either equal to V or is a real-analytic set.

Suppose first that Z; = V for all i € I. For every w € J consider a ball B(w) C V
centered at w. Let [, : B(w) — IR be a harmonic conjugate function to the harmonic
function v : B(w) — IR so that u+il,, : B(w) — 'is holomorphic. Write G, = exp(u-+il,,)
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and denote by v, : B(w) — € a primitive function of G,,. Since ¢ (w) = G, (w) # 0,
there exists a disk U, C B(w) centered at w and such that |y, is injective. Using
Koebe’s distortion theorem for arguments (see [Hi]) we may assume that in addition all
the sets Uy, to be so small that all the images ¢;(Uy), i € I, w € J, are convex. We claim
that the family {1, : Uy — €}, 7 forms an atlas demanded in (dl). Indeed, fix w,v € J
and consider an arbitrary point z € U, N U,. Then

(P 0151 (o(2)) = 1y (2) - (¥, (2)) 7" = Gu(2) - G5 (2) = exp(i(lu(2) — 1u(2)))

and therefore (1, o ;1) is constant with absolute value 1 on v, (U, N U,), since h,, and
h, differ by an additive constant on the connected set U,, N U, as harmonic conjugates to
the same harmonic function wu.

To discuss (lbv qﬁl Vo ) fix again arbitrary w,v € J and for every i C I consider

the intersection U, N qﬁi U,). As the intersection of two convex sets, this set is convex, and

consequently connected. Take now an arbitrary point z € qﬁi_l(Uv N qﬁgUw)). Since Z; =V,
we therefore have

(%o 0 Gi 090 ") (Wu(2))] = [, ) (93(2)) - D:(2) - (¥, (2)) 1| = G (2)) - b
= | exp(u(¢i(2) + ily(¢i(2)) — u(2) — il (2)] - |4;(2)]
= exp(u(¢i(2) — u(2))|¢i(2)|

= eci
Hence the function (wv og;o 1/)1;1)/ as holomorphic and having constant absolute value, is
constant on the connected set 1, o ¢; (U, N qSEUw)).

Suppose in turn that Z; # V for some i € I. Since the equation (c¢) of Theorem 3.1
is satisfied on compact J, then J C Z;. Since J is infinite its non-empty open part is
contained in a real analytic curve, so the system is 1-dimensional. Hence by Lemma 2.1
there are finitely many real-analytic pairwise disjoint curves whose union M contains .J.
Since ¢;(J C J for all i € I, decreasing M if necessary, we may assume that ¢;(M) C M
forall ¢ € I.

Change coordinates holomorphically on a neighbourhood of M so that M C IR. (This uses
the consequence of our assumptions that there is no closed curve among the components
of M, with relaxed assumptions allowing the existence of such a curve we would change it
to the unit circle and then use charts being branches of z — logiz.)

Since the function w : M — IR is real-analytic, it uniquely extends to a complex-analytic
function % on an open neighbourhood of M in V. Now we proceed similarly as in the
previous case; we define 1), w € J, to be a primitive of e® on a sufficiently small neigh-
bourhood of w € V and we check that (vp — w ot 1) =1 on 9, (U, N U,). Now note

that @ — wo ¢; + ¢; = loa?ﬁﬂ, where the latter expression is a holomorphic extension of

log |¢}|, which extends the equality (c). Note that logﬁﬁﬂ = log +¢;, where £+ depends as
@ is positive or negative. We use the fact it is real! The equality extends the equality on
J because the functions on both sides are holomorphic. We conclude with

(g0 () © b © 5Y) (Y (2))] = e
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for all z € QS;I(UD N qﬁgUw)). , hence (@b@(w) o ;o w;l)/ is constant on the connected set
P 0 ;7 (U, N QSEUM)). The proof of the implication (¢) = (d1) is complete.

Remark 1. As an intermediate step in the proof of the implication (¢) = (d1) we proved
(bh) (compare later (eh)), namely the property (b) with v harmonic on a neighbourhood
of J, here V, in case of the system S not 1-dimensional ( Z; = V for all i). For S 1-
dimensional we also can prove (bh) but indirectly, via (d1). Indeed assuming (d1) and M
in IR we set the harmonic extension u = log |¢] | independent of v.

e The implication (d1) = (d2) is obvious.

e (d2) = (a). Let {9\ : Ux — @} rep be a finite conformal affine atlas for the system S.
Fix 8 € A, take a number ng > 1 so large that diam(V')s™ is less than a Lebesgue number
of the cover {Uy}xea of J, consider any number n > ng and for every w € I"™ choose one
element A(w) € A such that ¢, (V) C Uy(,). Next, given n > ng and w € I"™ consider the
map

(¥r(w) © Pw © %_1)/ oY

defined on Ug. Since our atlas is affine, this function is constant on every sufficiently small
neighbourhood of every point in J N Ug and therefore, as real analytic, it is constant on
Ugs. Denote its value there by cg . Since for every z € Up

(3.6) > A6 R A CHE) i S A £r(w),

lw|=n |w|=n

since by Theorem 1.3

(3.7) lim L£"(1)(z) = p(2)

n— 00

and since the product |¢g(z 2)|°- ¥, Aw) (¢ (2))] 79 is uniformly bounded away from zero and
infinity, we conclude that there exists a constant M > 1 such that for all z € Ug and all
n>1

(3.8) M'< > ), <M.

|lw|=n

Fix now an € > 0 and n; > ng so large that for all m» > n; and all w € I"

sup{[¥/} ) © bw| 7} — Inf{|9)} ) 0 dul T} < /M.

Then, using (3.6), we conclude that for all n > ny and all 21, 23 € Ug

D (Bl (Bu(z2) 70 = (¢ (20))70)| <&

|lw|=n
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and therefore

lim [ Y (6wt w) (b (22))] 7 = € w P (y (Bu(21))]7%) | = 0.

n— 00
|lw|=n

Combining this, (3.6) and (3.7) we conclude that there exists a constant cg > 0 such that
for all z € Ug
lim D e [1hw) ($(2) 7 = cp.

n—00
|lw|=n

Combining in turn this, (3.6) and (3.7) we conclude that for all z € Ug
(3.9) p(z) = cﬂ|@bg(z)|5.

Fix now i € I, w € Ug N J, and choose A € A such that ¢;(w) € Uy and a connected
neighbourhood V,, C Ug of w such that ¢;(V,,) C Ux. Then for every z € V,,

D, (2) = po dil2)|8(2)°p(2) ™" = exlh (i(2)) 1 - 164(2)I° - €5 ()| 7
= excy ([WA (6i())] - 164(2)] - [ (=) 7)°

and therefore, since our system S is affine, D¢i is constant on V,,. Since, by Theorem 2.2,
Dy, is real-analytic on U, we thus conclude that Dy, is constant on U. The proof of the
implication (d2) = (a) is finished.

e (d2) = (eh). We can assume the sets U; appearing in condition (d2) are open balls.
Since J is compact, we may choose from the family {U;} a finite subcover {By}aea of J.
Define then for every A € A the map 5 : By — IR to be a continuous branch of argy}
and additionally for every i € I, argx¢, : Bx — IR to be a continuous branch of argument
of ¢;. These branches exist since By is simply connected and ¢} and ¢; nowhere vanish.
Of course all the maps vy, A € A, are harmonic. Consider now two indices A\, \’ € A such
that By N By # 0. Since our atlas is affine, 1 (2) = ¥x o ¥.' (¥ (2)) = a(ha(2)) + b
for all z € By N By and some a,b € €. We conclude that v, — vy is on By N By equal
to arg(a) up to an integer multiple of 2. This means that (3.1) is satisfied. Since all the
contractions {¢; };cr are affine in the atlas ¢y : By — @, we conclude that given A\, A" € A,
i € I there exist constants d,c € @ such that for every z € ¢; ' (Bx N ¢3(By))

Ya 0 di(2) = a0 hi 0 Y3 (U (2)) = dia(2) +c.

We conclude that argx¢;, — vyx + var 0 ¢; is equal to arg(d) up to an integer multiple of 27
on the connected set ¢; ' (Bx N;(By)). This means that (3.2) is satisfied. Thus the proof
of the implication (d2) = (eh) is complete.

e The implications (eh) = (er) = (ec) are obvious.
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e (ec) = (d2). The general idea is here the same as in the proof of the implication
(¢c) = (d1). Surprisingly, we do not get directly (¢) = (d1). For this we need to go via
(d2) = (a) = (d1).

Let 40 > 0 be a Lebesgue number of the cover {By}ea of J. By compactness of .J
there exists a finite set 7" and points v; € J, t € T, such that the family {B(v¢, ) hter
is a cover of J. Since 49 is a Lebesgue number of the cover {By}aea, for every t € T
there exists at least one element A(t) € A such that B(v,20) C Byy). Fix now tg € T,
T € I, that is similarly as in the implication (¢) = (d1). Then for each integer n > 1

choose ¢, € T such that ¢T(Uto) € B(v,,d). Since ¢ on B(v,, ) shrinks distances
by factor at least s < 1 for n > 1, we get ¢T(B(Ut0,5)) C B(w,, (14 s)d). Now, for

every i € I and every A € A let argy¢, : By — IR be a continuous branch of argument of
¢%. It follows from Koebe’s theorem for argument (see [Hi]) that for arguments argy¢; an
analogous inequality as (1le) for log |¢}| is satisfied. Namely, with L sufficiently large and
a > 0 sufficiently small

largxg; (y) — argad;(x)| < Lly — =[*

for all A € A, all i € I and all z,y € By. Hence for all z € B(vy,, d)

Z |arga e, _,) b, (¢ —(2) — argz\(tn_1)¢/rn(¢7-|n—_1(vto))|

n>1
< Z Lsa(n—1)|z — vy, |a
n>1
) 1
(3.10) < Ldiam® (V) . < 00
— g«

Iterating formula (3.2) we obtain for every n > 1 and every z € B(v,,0)
Tato) (2) = Vg (V1) =

= arga,_y) (P, (b77(2) — argae, 1) 7, (6

k=1
+ Wta) (777(2) = acta) (B (080))-

(V1))

T|k—1

Since for all t € T', B(vy, (1 + 5)6) C B(vt,20) C By, all the functions )| B(w,,(145)s)
are uniformly continuous. Therefore, since the set T is finite, since ¢T(z), ¢7(vt0) €

B(vt,, (14 s)d) and since |¢T(Z) - ¢T(Ut°)| < 0s™, applying (3.10) we conclude that for
all z € B(vy,, )

Macto) (2) = Magto) (Vo) + > a8ty (B, (77— (2)) — ar8a () i (S (v1,))-

k=1

T|k—1 ’T|k_1

Thus the function 7>\(t0)| B(vyy,8) 38 the sum of an absolutely uniformly convergent series
of harmonic functions is harmonic. So, all the functions yy) : B(vs,0) — IR. t € T, are
harmonic.

14



Remark 2. In case S is not 1-dimensional the equation (ec) assumed only on J (analogously
to (c)) would be sufficient for 7, extended by the formula above to satisfy (ec) on V, in
particular (eh) would be proved.

However, if S is 1-dimensional the existence of vy satisfying (ec) on J is always true.
Just take for v an argument of the direction tangent to M the union of a finite family of
real-analytic curves containing J.

Now, for every t € T' by l; : B(vt,0) — IR denote the harmonic conjugate to (-
Thus the function Gy = exp(ly + ivay)) : B(v,0) — @ is holomorphic and denote by
Yt B(vg, 8) — € a primitive of Gy. Fix w € J and choose ¢ € T such that w € B(vy,§).
Since i(w) = exp(ls(w) + iyaw) (w)) # 0, there exists a disk U, C B(vy,d) such that
Yi|u, is injective. Applying, as before Koebe’s distortion theorem for arguments (see [Hi])
we may assume the disks U, to be so small that all the sets ¢;(U,) are convex. We
claim that the family {1, : U, — @}, 7 forms an affine atlas for the iterated function

system S. Indeed, fix w,v € J and consider ¢,#' € T such that U,, C B(v¢,8) C By and
U, C B(vy,6) C Byry. Then for every z € U, N U, we get

(w0 ¥y ) (u(2)) = 91, (2) (1, (2)) 71 = Gay (2) Gy 1) (2)
= exp(lt(z) +iva) (2) =l (2) — i’YA(t')(z))
= eXP( (e (2) — ’YA(t')(Z)) eXP(lt(Z) - lt’(z))'

Since by (3.1) vat) — Vaq) is constant on z € Uy, NU, C Uy) NUyy and since Iy and [y
differ on Uy4)NU) ¢y by an additive constant as harmonic conjugates to harmonic functions
Yae) and v,y respectively, we conclude that (¢, o ;1) is constant on ¢, (U, NU,).

Now fix w,v € JJ, i € I, and write C = ¢; ' (¢;(U,) N U,)). Since ¢;(Uy,) NU,)) is a
convex set and therefore connected, its continuous image C' is also connected. Then there
are t,t' € T such that U, C B(v,d) C By, Uy C B(vy,0) C By and C is contained
in a connected component of By N qﬁi_l(B,\/(t)). Using the chain rule we then get for all
zeC

(o 0 di 0 Py, 1) (1o (2)) = ¥, (1(2)95(2) (¥, (2)) 71 = G ((2)) i (2) G (2)
= exp (i(1a() (¢ (2))) + ler(4i(2)) + log |67 (2)| + dargae $i(2) — ivar) (2) — 1 (2))
= exp Iy (4i(2)) + log |¢7(2)| — 1e(2)) exp (i(arga) #i(2) — Yage(2) + e (hi(2))-

Hence, using (3.2) we conclude that the derivative (¢, 0$; 01 1)" has a constant argument
on ,(C) and consequently (i, o ¢; o 1)’ is constant on ,(C). The proof of the
implication (ec) = (d2) is complete.

e The implication (a) = (f) is obvious.

e (f) = (er). Suppose first that the system S is 1-dimensional. Then the condition

VDg, = 0 on J is similar (formally weaker) to Dy, constant in (a). We prove (er)
similarly, via (¢) = (d1) = (eh).
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Assume now that S is not 1-dimensional. Suppose that VD@- =0on J foralliel.
Since S is not 1-dimensional, it implies that VDy, = 0 on U for all 7 € I. Thus D(ﬁi =0
is constant on U for all i € I, since U is connected. So, the item (a) is proved in this case
and therefore, in viev of what we have already proved, also (er2).

So, we may assume that there exists j € I and w € .J such that VDy (w) # 0. By
continuity of the function Vf)qu there thus exists a neighbourhood W C V of w € €
on which VDy. nowhere vanishes. Let us consider on W the line field [ orthogonal to
VD,,. By the definition of the limit set J for every z € J there exists 7 € I such that
¢-(2) € JNW. Then define

(3.11) 1(2) = (67 1), () (1(D-(2))),

where, changing temporarily notation, (¢;1')4.(»))" denotes the derivative of the map ¢;*
evaluated at the point ¢,(z) and the display above expresses its action on a line element.
We want to show first that in this manner we define a line field on J. So, we need to show
that if ¢, (2), ¢,(2) € JNW, then

(3.12) (67 1), () Uer(2))) = (D7), ) (U (2)))-

Suppose on the contrary that (3.12) fails with some z, 7,7 as required above. Then there
exists a point x € W N .J and v € I'* (in fact for every z € W there exists 7) such that
¢~(x) is so close to z that

(7 ) (4 ) LD (D5 (2)))) 7 (B )iy, (6 ) (L (D7 (2)))).-

Hence
(D7), (@)1 (Dr(2)) # (D37)p, () L (P ().
So, either
(677)p, . (@l (Dry (@) # U(2)
or

(D Vi, () (D (@) # U()
Suppose for example the first incompatibility of I’s holds. Then

det(V Dy, 0 1o (2), VD4, (x)) # 0

contrary to our assumption. Thus the line field [ is well-defined on J and it immediately
follows from the method this field is constructed that it is invariant with respect to all the
contractions ¢;, ¢ € I.

Notice that formula (3.11) defines an invariant line field on V. We can use any 7 € I* such
that ¢, (V) C W. The resulting [ does not depend on 7 because for any other such n (3.12)
holds for z € J, so it holds on entire V. Otherwise the system would be 1-dimensional
because [ is real-analytic so the equation holds on a real-analytic set.

The argument arg/ is of course defined up to integer multiplicity of =.
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Using again Koebe’s distortion theorem for arguments (see [Hi]), one can find {B,}, a
finite cover of .J by disks contained in V, small enough that all the images ¢;(B)), i € I,
are convex. Then all the intersections By N By and By N ¢;(By/) are connected.

Define vy, as an arbitrary branch of argl on By. Then (3.1) and (3.2) follow from the
invariance of [ by S, with constants ¢(\, A" and ¢(A, N, ) being multiplicities of 7. Thus
(er) is proved.

Remark 3. This is even stronger than (er) where the constants are any real numbers.
Indeed the existence of an analytic invariant line field is a strictly stronger condition then

others in Theorem 3.1. See [Pr| for an example.
|

Definition 3.2 We call the iterated function system S linear if one (or equivalently all)
conditions of Theorem 3.1 is satisfied. Otherwise we call this system non-linear.

64. Rigidity. We begin this section with the following.

Proposition 4.1. Suppose that ' = {f; : X — X}iey and G = {g; : Y — Y};er are
two non-linear topologically conjugate systems. Suppose also that the measures m¢g and
mpoh™! are equivalent. If one of these systems is 1-dimensional, then so is the other one.

Proof. Suppose on the contrary that G is not 1-dimensional. Then it follows from
Theorem 3.1 that there exist y € Jg, j € I, w € I* and a neighbourhood Wy C @ of y
such that the map

g = (ng 07w7D9j)

is invertible on Ws. Since the measures mg and my o h~! are equivalent, after an appro-
priate normalization pp = g o h meaning that Dy, = d‘éﬁ—:h = 1. Since ho f; = g, oh for
all 7 € I'** and since Dy, =1,

Goh=F

on J, where F = (ij o fyw,[)fj). Write z = h=!(y). Then h = G~ o F on Wy N Jp for
some open neighbourhood W of z in @ such that F(Wy) C G(W3). Since F,G~! are real-
analytic, the image G =1 o F(W1 N Mp) for an adequate Wy small enough is a real-analytic
curve and G~ o F(W1 N Mp)N.Jg contains an open neighbourhood of y in Jg. Now using
Lemma 2.1 we conclude that G is 1-dimensional. ll

The main result of this paper is contained in the following.

Theorem 4.2. If two Open Set Condition conformal regular iterated function systems

F={fi: X—>X:iel}and G={g;:Y =Y :i¢€ I} are non-linear and conjugate by a

homeomorphism h : Jp — Jg, then the following conditions are equivalent.

(a) The conjugacy between the systems F' = {f;: X - X :i€l}and G={g;: Y = Y :
i € I} extends in a conformal fashion to an open neighbourhood of Jg.

(b) The conjugacy between the systems F' = {f; : X - X :i€l}and {g;:Y =Y :i €
I} extends in a real-analytic fashion to an open neighbourhood of Jp.
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(¢) The conjugacy h : Jp — Jg between the systems F' = {f; : X — X : 4 € I} and
G ={g;:Y = Y :i€ I} is bi-Lipschitz continuous.

(d) 19, (yw)| = |fL(x,)] for all w € I*, where z, and y, are the only fixed points of
fo: X — X and g, : Y — Y respectively.

(e) IS > 1Vwe I*
diam(g,,(Y))

_1<—< .
S G, (X)) = °
(f) 3E > 1Vw e I*
!
o el
S0l s

(g) HD(Jg) = HD(JF) and the measures mg and mg o h~! are equivalent.
(h) The measures mg and mg o h™! are equivalent.

Proof. The implications (a) = (b) and (b) = (c) are obvious. That (¢) = (d) results
from the fact that (c¢) implies condition (1) of Theorem 1.4 which in view of this theorem is
equivalent with condition (2) of Theorem 1.4 which finally is the same as condition (d) of
Theorem 4.2. The implications (d) = (e) = (f) = (g) have been proved in Theorem 1.4.
The implication (g) = (h) is again obvious. We are left to prove that (h) = (a). We
shall first prove that (h) = (b). So, suppose that (h) holds. Then, after an appropriate
normalization pur = pg o h meaning that Dy = d’d‘i—:h = 1. If F'is 1-dimensional, then by
Proposition 4.1, so is G and the implication (h) = (b) follows from Theorem 3.1 of [HU].
Hence, we may assume that neither system F' or G is 1-dimensional. Therefore, since G is
non-linear, there exist y € Jg, j € I, w € I'* and a neighbourhood Wy C @ of y such that
the map

g = (‘ng nga[)gj)

is invertible on Ws. Since ho f, = g, o h for all 7 € I* and since Dy, =1,
Goh=F

on Wi N Jg, where F = (ij o gw,f)fj) and Wy is a neighbourhood of z = h=1(y) C (.
Since G is invertible on W, G(y) = F(z) and F is continuous, we may assume that
F(Wy) C G(Ws). Hence Gt o F is well-defined on Wy and G~ o Flw,ns, = h. Consider
now w € I* such that f,(Jr) C Wj. Since

G o F(fu(Jr)) =ho fu(Jr) = guo h(Jr) = gu(Ja) C gu(Va),

since g, (W3) is open, since f, and G~! o F are continuous, there exists an open neigh-
bourhood Vi C Vg of Jr such that f,(Vy) C Wy and G~ o F(f, (V1)) C gw(Ws). Hence,
the map

g to (G o F)of, Vi =@

is well-defined, by Corollary 2.3 is real-analytic, and g to (G 1o F)o f,|s, = h. Thus, the
property (b) is proved. The last step of the proof of Theorem 4.2, that is the implication
(b) = (a) can be carried out similarly as the proof of Lemma 7.2.7 in [Pr]. B
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§5. Rigidity of parabolic systems. We first recall from [MU2] the concept of conformal
parabolic iterated function systems. Let X be a compact connected subset of a Euclidean
space IR?. Suppose that we have countably many conformal maps ¢; : X — X, i € I,
where I has at least two elements and the following conditions are satisfied.

(5a) (Open Set Condition) ¢;(Int(X)) N ¢;(Int(X)) = 0 for all i # j.
(5b) |pi(x)| < 1 everywhere except for finitely many pairs (i,z;), ¢ € I, for which z; is
the unique fixed point of ¢; and |¢}(z;)| = 1. Such pairs and indices i will be called

parabolic and the set of parabolic indices will be denoted by €. All other indices will
be called hyperbolic.

(5¢) Vn > 1 Yw = (wq,...,w,) € I™ if w, is a hyperbolic index or w,_; # wy, then ¢,
extends conformally to an open connected set V C IR? and maps V into itself.

(5d) If 7 is a parabolic index, then [, 5, #i»(X) = {z;} and the diameters of the sets
¢in (X)) converge to 0. -

(5e) (Bounded Distortion Property) 3K > 1Vn > 1 Vw = (w1, ...,wy,) € [" Vz,y € V if w,
is a hyperbolic index or w,,_1 # w,, then

/
|¢%, ()]
(5f) 3s < 1Vn >1Vw € I" if w, is a hyperbolic index or w,,—1 # wy, then ||¢] || < s.

(5g) (Cone Condition) There exist a, > 0 such that for every x € 90X C IR? there exists
an open cone Con(z,a,l) C Int(X) with vertex z, central angle of Lebesgue measure
a, and altitude .

(5h) There are two constants L > 1 and o > 0 such that

|16 (w)| = 1 ()| < LI Iy — =],

for every ¢ € I and every pair of points z,y € V.

We call such a system of maps S = {¢; : i € I} a subparabolic iterated function system.
Let us note that conditions (5a),(5c),(5e)-(5g) are modeled on similar conditions which
were used to examine hyperbolic conformal systems in Section 1. Condition (5h) also held
for many of the systems studied in [MU1] but was not a general requirement. We need this
condition in the sequel. If Q # () we call the system {¢; : i € I} parabolic. As declared in
(5b) the elements of the set I\ 2 are called hyperbolic. We extend this name to all the
words appearing in (5e) and (5f). Fix a finite set Q D Q. For every i € Q denote

Xi= |J ¢4i(X).
JEN{i}

In this paper we also need the following technical condition whose meaning will be explained
by Theorem 5.2 below. For all ¢ € 2

(5.1) D Idall%, < oo

n>0
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Since the set  is finite, the number

(5.1) T = max > llg;

n>0

is finite. We would also like to recall that in [MU2] the main construction was to associate
to a parabolic system S an infinite but hyperbolic conformal iterated function system.
Generalizing it a little bit, i.e. working with Q instead of ©, this construction goes as
follows. The system S & s generated by I, the set of maps of the form ¢;»;, where n > 1,

i €Q,i# 7, and the maps ¢y, where k € I\ Q. Note that Js: = Js \ {¢o(z;) i€ Quwe
I*}.

It immediately follows from our assumptions that the following is true (comp. Teorem
5.2 from [MU2]).

Theorem 5.1. If the system S satisfies all the conditions (5a)-(5h), then the system S
satisfies the conditions (1a)-(1d).

As a complement to this theorem we shall prove the following.

Theorem 5.1°. If the system S satisfies all the conditions (5a)-(5i), then the system S
satisfies the conditions (1a)-(1le).

Proof. In view of Theorem 5.1 we only need to prove condition (1le). So, fix i € (:2 and
j € I\ {i}. Consider arbitrary n > 1 and z,y € X. Write ¢t = min{|¢(x)| : i € Q,z €
X} > 0. We then have, assuming for example |¢}.;(y)| < |¢}a; ()],

/ 1 / |¢;"](y)| / |¢;n1(y)|

. — R = - 1 - — - |l 1] - J 77

|pin ()| — | J(x)l‘ |pin ()] |¢;nj($)|‘ < [|¢in;ll [log |¢;n]_(x)|‘
n—1

< |log |¢(y)] — log [ (w)[| + Z [log [ (bix j (y)] — og | (¢ ()]

< ||¢,||||¢ () = ||+Z_‘|¢ (hin 5 ( |¢§(¢ikj($)|‘>
1
< KL|y—37|a+ZZLWMJ'(?/)—@M(JU)P)
k=
Ln—ol
< KL|y—m|“+;Dw;kuwj(y)—¢j<x>|a>
k=0
L = / (63 @
< KL+;Z||¢ik||Xi) -z
k=0

T
SL(K‘}‘?) |y—$|a.
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The proof is complete. B

From now on we assume that the system S satisfies all the conditions (5a)-(5i). We shall
prove the following.

Proposition 5.3. If the system S is regular and parabolic (2 # (), then the associated
hyperbolic system S* = S¢ is non-linear.

Proof. We keep for the hyperbolic system S* the same notation and terminology as for
the hyperbolic system S in the sections 1-4. Theorem 5.7 from [MU2] says that the system
S* is regular and the d-conformal measure for S* is also conformal for S. This permits us
to extend for every k € I (even for parabolic k) the Jacobian

Dy, (2) = (f’g()”m( ).

In view of Theorem 2.1 all these functions Dy, have a real-analytic extensions on U.
Suppose now on the contrary that the system S* is linear. Fix i € Q and j € I'\ {i}. There
then exist two numbers D;; and D;z; such that Dy, (z) = Djj and Dy, (2) = D;2; for all
z € U. Now, for every z € X

— b (2))10

Z)) s p(2) 1
—— g2 ()] p(9ij(2) 19;(2)]°

Dy, (¢ij(2)) =

. D¢izj( ) . Dz’2j
Dy..(2) Dy

Since Dy, is real-analytic on U and since ¢;;(X) D ¢;;(Int(X)), an open subset of U, we
therefore conclude that Dy, (2) = D;2;/D;; := D; for every z € U. Hence for every z € X

p(¢in (2))
()

Applying this equality with n = 1 and z = z; we obtain

(52) $in () = DI

._p(mi) M| = b (2:)] =
D1 = X ) = ot = 1.

Thus, it follows from (5.2) and (5.d) that for every z € X
1/5
. p(z) 1/6
5.3 lim |¢;n (2)] = (7> = p(z
(5.3) Jim [0 (2)] = (22 )

Now, on one hand, in view of Theorem 3.8 in [MU1], p(z) > 0 for all z € J and, on the
other hand, it follows from (5.3) and (5.i) that p(z) = 0 for all z € X. This contradiction
finishes the proof. B
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As an immediate consequence of this proposition we get the following.

Corollary 5.4. If the system S is regular and parabolic (€2 # )), then for every finite set
2 D €, the associated hyperbolic system S* = S¢, is non-linear.

The main result of this section is the following.

Theorem 5.5. If both topologically conjugate systems F' = {f; : X — X,i € I} and
G ={g9; : Y — Y,i € I} are regular and at least one of them is parabolic, then the
conditions listed in Theorem 4.2 are mutually equivalent where in the items (d), (e), (f)
the words w are required to be hyperbolic.

Proof. Without loosing generality we may assume that the system G is parabolic. Let
Q = Q¢ UQp and let F* and G* be the corresponding hyperbolic systems. Let Jp — Jg
be the topological conjugacy between the systems F' and G. The chain of implications
(a) = ... = (h) can be proved in exactly the same way as in the proof of Theorem 4.2.
Notice that although (h) establishes also a topological conjugacy between the systems F*
and G*, we could not invoke this fact to give a proof of implications (a) = ... = (h) since
not all hyperbolic words of F' (or ), for ex. the words of the form iji, i € Qp, j € I\ Qp,
can be represented as concatenations of words from F* (or G*).

To prove (h) = (a), we can use the fact that h establishes a topological conjugacy
between the systems F* and G*, apply Theorem 4.2 and Corollary 5.4. The proof is
complete. l

Appendix 1. Conjugacies and scaling.

Proof of Theorem 1.4. Let us first demonstrate that conditions (2) and (3) are equiv-
alent. Indeed, suppose that (2) is satisfied and let Kr and Kg denote the distortion
constants of the systems F' and G respectively. Then for all w € I*, || || < K¢algl,(yw)| =
Kal|fl(z,)] < Kg||fL|] and similarly ||fL|| < Krllg,||- So suppose that (3) holds and
(2) fails, that is that there exists w € I* such that |g/ (yw)| # |fL(zw)]. Without loos-
ing generality we may assume that |g/ (y.)| < |f.(zw)]. For every n > 1 let w™ be the
concatenation of n words w. Then gyn(yw) = 92(yw) = Yw and similarly fn(z,) = z,.
So, Tyn =z, = Tp(w™) and yun = Yo = T6(w™). Moreover |g;. (y,)| = |g¢,(yw)|™ and
|[fom ()| = | £ (o) [ Hence

i e (U)]

=00 [ fin (w)|

On the other hand, by (3) and the Bounded Distortion Property

90 (W) K lgln]
| fon ()] [ fon ]

for all n > 1. This contradiction finishes the proof of equivalence of conditions (2) and (3).
Since the equivalence of (1) and (3) is by (BDP2) and (BDP3) immediate, the proof of the

=0.
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equivalence of conditions (1)-(3) is finished. We shall now prove that (3) = (5). Indeed, it
follows from (3) that E~ g ,(t) < ¢Yrn(t) < EYg(t) for all ¢ > 0 and all n > 1. Hence
Pg(t) = Pr(t) and therefore by Theorem 1.2, HD(Jg) = HD(JF). Denote this common
value by h. Although we keep the same symbol for the homeomorphism establishing
conjugacy between the systems F' and G, it will never cause misunderstandings.

Suppose now that both systems are regular (in fact assuming (3) regularity of one of these
systems implies regularity of the other). Then for every w € I'*

KWL me(flTe)) A" e

(KpE)™" < < < — <
196, 11" ma(9.(Ja)) — Kg"|g||"

So, the measures mg and mp o h~! are equivalent, and even more

dmpg o h1

(KpE)™" < < (EKg)".

de

Let us show now that (5) = (3). Indeed, if (5) is satisfied then the measure pr o h=1 is
equivalent to pg. Since additionally upr o h™! and ug are both ergodic (see Theorem 3.8
of [MU], they are equal. Hence, using the equality HD(Jp) = HD(Jg) := h, we get

lo2l1" = [ gL dme = me(g(Ja)) = na(a.(Jc)
= pr o h™ (gu(Ja)) = pr(fu(Jr)) < mr(fu(JF))
S ARl

and raising the first and the last term of this sequence of comparabilities to the power 1/h,
we finish the proof of the implication (5) = (3).

The equivalence of (4) and conditions (1) - (3) is now a relatively simple corollary. Indeed,
to prove that (3) implies (4) fix a finite subset T of I. By (3) E~Y <||f.||/llg.]| < E for
all w € T*, and as every finite system is regular, the equivalence of measures mqg,r and
mpr o h™! follows from the equivalence of conditions (3) and (5) applied to the systems
{fi:i€T}and {g;: ¢ € T}. If in turn (4) holds and w € I'*, then w € T*, where T is the
(finite) set of letters making up the word w and the measures mg r and mpr o h™! are
equivalent. Hence, by the equivalence of (2) and (5) applied to the systems {f; : i € T'}
and {g; : i € T} we conclude that |g,(y.,)| = |f,(xw)|. Thus (2) follows and the proof of
Theorem 1.4 is finished. W

We now recall from [HU] the following.

Definition. A conformal system S = {¢; : X — X : i € I} is said to be of bounded
geometry if there exists C' > 1 such that for all i, € I, i # 5

max{diam(¢;(X)), diam(¢; (X))} < Cdist(¢;(X), ¢;(X)).
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Theorem, [HU]. If both conformal iterated function systems F' = {f; : X — X :i € I}
and G = {g; : Y = Y :i € I} are of bounded geometry, then the topological conjugacy
h : Jp — Jg is bi-Lipschitz continuous if and only if the following two conditions are
satisfied.

(a) Q—l < diam(fw(X))

= Gam(g,(V) =

for some Q > 1 and all w € I'*.

_y _ dist(gi(Y), g5(Y))
b D7l < 4
(b) ~ dist (f;(X), f;(X))
for some D > 1 and all 4,7 € I, 1 # j.

D

IN

Example 1. For infinite system, even in IR, it is not true that (a) implies h Lipschitz
continuous. We shall construct such F, G, with bounded geometry.

Let A; = [%,% + exp —2i] for ¢ = 2,3,... and A = [exp —i,exp —i + exp —2i], f; :
[0,1] — A; and g; : [0,1] — A} affine, onto, preserving orientation. Let A map the end
points of f,([0,1]) to the end points of ¢,([0,1]) for all w € I*. Then f extends uniquely,
continuously, to the limit sets of the systems due to diam(f, ([0, 1]), diam(f, ([0, 1]) — 0 if
the length of w tends to co. By the construction it is a continuous conjugacy, but it is not
Lipschitz even on |, fi({0,1}).

If the sets X and Y are both contained in the real line IR, then it can be relatively easily to
prove that already conditions (a) and (b) (without boundedness of geometry) imply that
the conjugacy h is Lipschitz continuous.

Appendix 2. The Radon-Nikodym derivative p = du/dm in the parabolic case.
To fix terminology, © in this Appendix is a o-finite S-invariant measure equivalent with ¢-
conformal measure m. The existence and (obvious) uniqueness of p up to a multiplicative
constant have been proved in Corollary 5.11 of [MU2]. In this appendix we establish the
continuity property of p = du/dm in the parabolic case. In order to complete terminology,
by p* we will denote the unique probability measure that is S*-invariant and equivalent
with conformal measure m and by p* the Radon-Nikodym derivative p = dp*/dm. Our
result in this appendix is the following.

Theorem A2.1. If a regular parabolic system S satisfies all the conditions (5a) — (5h)
and the alphabet [ is finite, then the Radon-Nikodym derivative p = du/dm is continuous
on the set J\ {z; : i € Q}

Proof. According to formula (5.1) from [MU2] and the definition of conformal measure

we obtain y
M % * /|0
el )N (7 o i) - |l

k>1i€Q
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Given now i € ©, j € I\ Q and n > 0 we shall prove the the series Y, <, |¢/.|° converges
absolutely uniformly on ¢;»;(X). Indeed, fix x € X. Then it follows from (5e) that putting
Tijm = inf{|¢}.;(2)] : 2 € X} > 0, we get

/ |¢/k+n ( )
E>1 E>1 Tijjin E>1
X< K
jhtn < < 0.
jn k>1 Tiajan

Since p* is bounded from above by K°® we therefore conclude that the series

S(i) =) (0" o dir) - |4’

k>1

converges absolutely uniformly on the set ¢;»;(X). Employing now (5d) and using finite-
ness of I we therefore deduce that the function ¥ () is continuous on the set

U U i (X) 2 T\ {a}-

J#i k20

Since  is finite we finally get that p = p* +
i € Q}. The proof is complete. B

icq 5(1) is continuous on the set J \ {; :
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