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Abstract Random multiplication of a given set of s polynomials with coefficients in a finite
field following a random sequence generated by Bernoulli trial with s possible outcomes is a (time-
dependent) linear cellular automaton (LCA). As in the case of LCA with states in a finite field
we associate with this sequence a compact set - the rescaled evolution set. The law of the iterated
logarithm implies that this fractal set almost surely does not depend on the random sequence.
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1 Introduction

It has been observed that the evolution patterns of seeds (initial configurations) with respect to
many cellular automata exhibit self-similarity properties, [19], [24]. This phenomenon is especially
apparent for the evolution patterns of finite seeds with respect to the additive (linear) cellular
automata with states in the residue classes of the integers. Moreover, the self-reproducing property,
the main idea of the inventors of cellular automata, J. v. Neuman and S. Ulam, includes a kind of
self-similarity property, [2].

For the mathematical understanding of the problem of deciphering the self-similarity structure
of the pattern evolution (orbit) of a finite seed with respect to linear cellular automata (LCA) with
states in the residue classes of the integers modulo a prime number (or a prime power), the idea
of rescaling proposed by S. Willson is important. In a series of papers, S. Willson associated with
such an automata a compact set - the so called rescaled evolution set, [20], [22]. This set is a fractal
and its self-similarity structure codes the self-similarity properties of the evolution patterns of the
LCA. The self-similarity structure of the evolution set of LCA was described as a special graph
directed construction (in the sense of Mauldin-Williams, [15]), in [6], [5], [7], and [18].

The idea of a rescaled evolution set was used in [13] for the description of the self-similarity
properties of some classical number sequences - Gaussian binomial coefficients and Stirling numbers
of the first and second kind modulo a prime power. A generalization of the notion of a linear cellular
automaton necessary for this purpose, is a periodic time dependent cellular automaton. Such a
cellular automaton is generated by a periodic multiplication of a finite number of polynomials.

The purpose of this note is the randomization of the notion of a periodic time dependent
cellular automaton generated by s polynomials with coefficients in a Galois field and its geometrical
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representation - the rescaled evolution set. For every point of the code or shift space on s symbols,
by appropriately rescaling its geometrical representation, we obtain a sequence of compact sets.
One main question is the convergence of this sequence with respect to the Hausdorff distance. In
general this sequence of compact sets does not converge, and even if it does converge, then its limit
depends on the corresponding point of the shift space.

The main result (Theorem 1) in Section 7 is that a natural rescaled evolution set exists for
almost all points of the code space (with respect to the Bernoulli measure generated by a given
probability vector). Moreover, this ”expected” rescaled evolution set does not depend on the choice
of the point in the code space.

For the proof of this result we consider first in Sections 3, a deterministic situation which includes
the "expected ” rescaled evolution set and some of its specializations (for one polynomial, in Section
5, and in Section 4, for several polynomials and a rational probability vector or parameters). In
the last cases the rescaled evolution sets are affinely equivalent with the rescaled evolution sets of
appropriate linear cellular automata. In Section 8, we use this to calculate the Hausdorff dimension
of the expected evolution set in some cases.

To make the notations more transparent we shall work with generating polynomials of the
corresponding LCA or time dependent LCA.
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2 Preliminaries and notations

Let IF, be the Galois field with ¢ elements (g is a power of some prime number p) and let IF,[z]
be the ring of all polynomials with coefficients in IF,. The most important and useful property of
such polynomials r € IF[z] for this note is

(r(@))" = r(2?).
This was called the g-Fermat property in [7] since for ¢ prime number it is equivalent with the
small Fermat theorem, [10], pp. 70, 77.

Let S = (Sp)n, sn(x) = Y4 s(a,n)z® € IF,[z]. For the definition of the rescaled evolution set of
the sequence S we need some notations. The set

X(8) = UiI(a,n)|s(a,n) # 0},

where I(a,n) = [, + 1] X [n,n + 1] C IR?, is called evolution set of the sequence S.
The set X(S) codes some basic information (zero or non-zero) about the coefficients of the
polynomials s, € S, arranged with respect to n (the ”time”).

Examples 1 1. Linear cellular automaton L(r) corresponding to a nonzero polynomial r € IF [z].

The sequence of polynomials S(r) := (r"),>0 is the orbit of the initial seed (configuration)
6 = (d(0,n)) 7z, With respect to L(r). Then X(S) is a geometrical realization of this orbit in R?, [6],
[7], [8]- This is the set we see on the computer screen visualizing the evolution of the initial seed §
under L(r), [24]. Usually we shall use the notation X (r) instead of X(S).

2. Let r1,...,75; be nonzero polynomials with coefficients in IF, and r = (rq,...,rs). Let
01,...,0s be a positive real numbers and 6 = (01, ...,60;). The sequence of polynomials S(r;0) :=
(Ry)n>0, where



R, = H rz[ngi}
=1

is associated with the polynomials rq,...,7s and parameters 61, ...,60;. Here and later on we denote
by [a] the integer part of the real number a.

We shall denote the evolution set of the sequence S(r;#) by X (r;6).

3. We shall consider also the sequence of polynomials S(r;6;w) := (R, w)n>0 associated with
the polynomials

S .
Rn,w = H T;)l(n)
i=1
and the point w € @ = {1,... ,s}]N, where w'(n) = card{k | w(k) =14, k <n}.
The sequence S(r;@;w) for fixed w is generated by the multiplication of the polynomials
T1,...,7s according to the point w: Ry, = []i; Tw(i)- We shall denote the evolution set of this
sequence by X (r;0;w).

For m € IN, m > 2, the set

X (S) = X(S) N (R x [0,m])

is compact and nonempty in case at least one of the polynomials s, of the sequence & is not zero.
Then it is a point in the space IC(]RQ) of all nonempty compact subsets of the plane IR?. In this
space we consider the Hausdorff metric pgr, generated by the lo-norm of IR?, [11], pp. 214-215.

It is defined as follows : for a given A € K(IR?) and a positive number €, let

Ae ={z |||z — y||oo <€, for some pointy € A},

where ||z]]o = max{[z1], [w2[}, & = (21,22) € R%.
Then the Hausdorff distance pgr (A, B) between two sets A, B € K(IR?) is defined by

pu(A,B) = inf{e|A C B, B C A}

The metric space (K(IR?), py) is complete, moreover, if K € K(IR?) the space (K(K), py) of all
nonempty compact subsets of K is compact, [11], pp. 216, 407.

The sets X,,,(S) are compact but their union is unbounded in TR?. For this reason they are
rescaled by appropriate similitudes.

The increasing sequences ¢ = (a(n)),>0,b = (b(n))n>0 € NN such that
B(n) b(n)

aln) " a(n)’ =°

ax{

where dj, = deg sy, B(n) = max{dy | £ < b(n) — 1} and C is an appropriate constant are called
scaling sequences if the sequence of compact sets

(8a(n)=1 (Xp(n) (S)))n>0
converges with respect to the Hausdorff metric pg.
Here s, : R? — IR? is the similitude s.(z,y) = (cz,cy), (z,y) € R
Observe that



Sa(n)*l(Xb(n) (S)) - [03 C] x [Oa C]
The limit

lim ()1 (Xp(n) (S))

n—o0

is called rescaled evolution set of S (with respect to the scaling sequences a,b € ]N]N).

Examples 2 The sequences a = b = (¢")i>0 are scaling sequences for the sequence X (r) for every
nonzero polynomial r with coefficients in IFy, [20]. The rescaled evolution set corresponding to these
sequences is denoted by A,(r). In general this is a fractal set - for example for r(z) = 1+ z € IFy[z]
the set Ag(r) is the Sierpinski triangle. For more examples see [6], [5], [7], [8]-

In this note we shall consider the scaling sequences a = (¢");>0 and b = ([ag'])i>o for a positive
number a. We shall call them standard scaling sequences. In the last section we consider also some
other scaling sequences.

3 Existence of rescaled evolution set for several polynomials - gen-

eral case
Here we consider the nonzero polynomials ry,...,rs with coefficients in the Galois field IF, and
positive real numbers (parameters) a,f1,...,60;. The evolution set of the sequence of polynomials

S(r;0) = (Ry)n>0, where

is the set

X (r;0) = [ J{I(e,n)|R(e,n) # 0},
where r = (r1,...,r) and 6 = (61,...,0s).
The compact sets to be rescaled are

X[aqt} (I‘; 0) = X(I‘, 0) ﬂ(IR X [0’ [aqt]])'

The aim of this section is the following

Proposition 1 The sequence of compact sets

(Sq—t(X[aqt}(r; 0))t20 (1)
converges with respect to the Hausdorff metric ppr.

Proof

The metric space (K(R?), pg) is complete. Therefore the assertion is that the sequence (1) is a
Cauchy sequence with respect to the Hausdorff metric pg. It suffices to prove that there exists a
constant C' such that

pH(Sq—l (X[aqt'*‘l} (I'; 0))7 X[aqt] (I'; 9)) <C (2)
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for all £ € IN.
The estimation (2) follows from the inclusions

Sq-1 (X[aqu} (I‘; 0)) - (X[aqf] (I‘; 9))Ca (3)
X[aqf] (I‘; 9) - (szf1 (X[aqu] (I‘; 0)))0 (4)

for all £ € IN, where as defined earlier the subscript C indicates all points whose distance to the set
is less than C.

Proof of (3)

Let

I(k,n) C X[aq“‘l} (r;0), (5)

i.e., the coefficient R(k,n) of the polynomial R,, - the n-th element of the sequence S(r;0) - is not
zero and n < [aq'™1].
We shall prove first that the polynomial

S

Ro(z) = [[(ri(a) 1 = 37 R(a, n) 2 (6)

1 «

is a factor of the polynomial R,, i. e.,

R, = R,R, (7)
for some polynomial R, € TF,[z].
This follows from the inequalities
0 < [n6;] — [[g]Qi]q <qO+1),i=1,...,s (8)

where © = max{6;|i =1,...,s}.
In fact, let n =1¢+ 5 wherel € IN and 0 < j < ¢ — 1. Then

[ﬁ

lgh; —q <[ q]ei]q < [nb;] < lqgb; + ¢O,

which implies (8).
The inequality (8) and (7) imply also that

deg R, < Dq(© + 1), (9)

where D =Y 7d; and d; = degr;, i =1,...,s.
The coefficient R(k,n) of the polynomial R,, is not zero. Then from (7) and (9) follows: there
exists k1 € IN such that the k;-th coefficient R(k1,n) of the polynomial R,, satisfies

~

B(kr,n) £0 (10)
E—Dq©O©+1) <k <k. (11)

Consider the polynomial



S

Rpzy(@) = TL0rs() 0" = 37 R, [

1 «

This is the [Z]-th element of the sequence S(r; 0).
From (6) follows

Bin(2) = (Rpz(@)" = 32 Rew [ ). (12)
Then (10) and (12) imply that
ki = kagq, (13)
and
R(ks, () #0,
which gives
I(ks, [gl) C Xjugt)(136), (14)

(here we used [2] < ¥ < aq).
From (11), (13) and (14) follows

Sq—l(I(kan)) - (I(kQ’ [g]))CI - (X[aqt](r; 9))01’ for €y = D(® + l)a

and therefore
Sg-1 (X[aqt'*‘l} (r;0)) C (X[aqt] (r;0))c, - (15)
Proof of (4)
Let

I(k‘, n) C X[aqt] (I'; 0),

i.e., the coefficient R(k,n) of the polynomial R,, - the n-th element of the sequence S(r;0) - is not
zero and n < [aq'].
Consider the polynomial

(here we are using the g-Fermat property).

CasenZ%le

The polynomial



is a factor of the polynomial (R,)? for

ny :nq_[%]_la
where
. . 1
6 = min{0;|i =1,...,s}, andn > 9 +1,
ie.,

(Rn)q = RmRma (17)
and Rm is a polynomial with coefficients in IF,. Moreover, R, is the ni-th polynomial of the

sequence S(r;6).
In fact n; > 0 and

nadi] - (5] +1) — 1 < [m6] < qnb] < [n6), (18)
since
[n16;] < n16; < ngb; — CI% < gq(nb; — 1) < ¢[nb;] < [ngb;],
and
[n16;] > n10; — 1 = nq0; — 9z‘([%] +1) = 12> [ngb;] — @([%] +1) -1
Moreover,
0<n- <<l (19)
q q 0 0

The coefficient R(k,n) of the polynomial R, is not zero, then from (16) and (17) follows that
there exists k; € IN such that the ki-th coefficient R(k1,n1) of the polynomial Ry, is not zero and

kq — deg Ry, < k1 < kq. (20)
Then (18) implies
deg R, < D{O([3]+1) +1}. (21)
Therefore
I(kl, m) C X[aqt+1} (I‘; 9) (22)

From (19) , (20), (21), and (22) follows

I(k,n) C (s4-1(I(k1,m1)))c, C (sq_l(X[ath}(r; 9))c, (23)
for n > §+1 and Cp = max{j + 1, 2{O([F] + 1) + 1}.

C’asen<%+1




The inclusion

follows since

and

g DO 1
deg Rng < di[ngt] < 0= (5 +1),
1
and there exists [ with 0 <[ < q%(% +1) with I(l,ng) C X4qt+11(r; 0). Then |k — é| < %(% +1).
Combining (23) and (24) we obtain

X[aqt} (I‘; 0) C (Sq—l (X[aqH‘l} (I‘; 0)))03, (25)

where C3 = max{Cy, Z2(} + 1)}.
From (25) and (15) follows (2) with C = max{C}, Cs}.

|

We denote by A,(r;6;a) the limit of the sequence (1) with respect to the Hausdorff metric pp:

Ay(r;05a) = lim s, (X[gqr (13 0))-

t—oo 1

Remark 1 For s = 0, = a = 1,7 = 11 the set Ay(r;1;1) is the rescaled evolution set A,(r)
associated with polynomial r (or with the linear cellular automaton generated by the polynomial
"), [20], [7], [8]

For different values of the parameter a the sets A,(r;0;a) are different and in some cases
nonhomeomorphic. For example let ¢ = 2,s = 1,7(z) = ri(z) = 1 + =z € IFy[z],0; = 1. The sets
Ay(r;1;3) and As(r) are not homeomorphic. The second set is the Sierpinski triangle and the first
is given by

Aa(r;1;3) = s4(A2(r)) N ([0,3] x [0, 3]). (26)

The sets As(r;1;3) and Aa(r) are not homeomorphic, since the Sierpinski triangle has only 3
points - (0,0),(1,1),(1,0) - with branching index 2 and from (26) follows that the set Ax(r;1;3)
has 5 points with branching index 2 - (0,0), (0, 3), (1, 3), (2,3) and (3, 3), [16], pp. 125-126.

4 Rescaled evolution set for several polynomials and rational pa-
rameters 6;

Here we shall specialize the situation from the previous section. We consider the nonzero polyno-
mials rq,...,rs € IF [z], a positive real number a and positive rational numbers 6,...,6;. Assume
that 0; = %, where [ and k;,i = 1,...,s are positive integers and a = [. By F; : R? — IR? we

denote the affine map defined with Fj(z,y) = (2, %) for (z,y) € IR”.
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From Proposition 1 we know that the sequence (s,—¢(X;u(r;0)))s>0 converges to the set
Ay(r;0;1) with respect to the Hausdorff metric py. Here we shall describe this set. For this
description we shall use the representation of the rational numbers 6; = % and shall write
Xiqt (13 (le, e kl—s)) instead of X, (r;6). What we show is that the limit set associated with this
vector of polynomials and rational parameter values is the affine image of the limit set associated
with a single polynomial.

Proposition 2 The sequence of compact sets (s,-¢(Xqe (r; (le, . kTS

F7 N (Ag(rft - rhe)).

Proof
The assertion follows from the inequality

))))e>0 converges to the set

k ks
pur (X (B, ) X el i) < (27)
for all t € IN, where A = Y"{ d;k; and d; = degr;.
The inequality (27) follows from the following two inclusions

ki k
Xl (B ) (el ) (28)
ki k
X (rf' - r851) © (F(Xige (1, (- ) (29)
Proof of (28)
Let
k k
I(a,n) C qut(r; (Tla sy Ts))a
i.e., the coefficient R(a,n) of the polynomial R,, - the n-th element of the sequence S(r; (le, el kl—s))

is not zero and n < Ig’.
Let n=Im+45,0<757<Il—-1,mé&lN and let jk; = u;l +v;,0 <v; <l —-1,u; EN,s =1,...,s.
Then

ki .
[nHi]:[n—]:mki—i—ui,z:l,'”,s

l
and

S S

R, = Hrl[nei] = (T’IfZ e rks)mrql“ coepls, (30)
1

Therefore the polynomial R, (x) = (ri(z)¥ - rs(z)F)™ = 3, R(a,ml)z® is a factor of the
polynomial R,,. Since the coefficient R(a,n) of the polynomial R, is not zero, then there is an
integer a1 such that

R(ay,ml) #0 (31)
a—A<a—degr---r <a <a. (32)



Here R, is the m-th polynomial of the sequence S(r*t .. rks: 1)
From (31) and (32) follow

I(ay,m) C th(rlfi coerksi )

s

Fi(I(a,n)) C (I(a1,m))a.
The last two inclusions imply (28).

Proof of (29)

Assume that

I(e,;m) © Xge(rf* - 1),

i.e., the coefficient R(c,ml) of the polynomial R,, = (r’fi---rfS)m - the m-th element of the

sequence S(r¥1 ... rks;1) is not zero and m < ¢'. This polynomial R,,; is also the ml-th element of

the sequence S(r; (le, e kl—s)) Therefore
k k
I(C’ lm) C qut(l‘; (Tla sy Ts))
and

I(e,m) C (Fy(I(c,im)))r C (Xyqe (r; (==

which implies (29) since 1 < A.

O
Remark 2 The limit of the sequence (s, (Xt (r; (le, el kTs))))nZO depends on the representation
of the rational numbers 6; as fractions:
Fy (A (rFe b)) = i Xy (B ey orwe N
(A (rfre Bt —tlglosq_t( ulqt(r,(ﬁ,...,ﬁ)), oru € IN.

and these sets are in general different.

5 Rescaled evolution set for one polynomial

Here we shall consider another specialization of the situation considered in the Section 3: s =
L,r=r,a= % and 0 a positive real number. Let F : IR?> — IR? be the affine map defined with
F(z,y) = (z,0y) for (z,y) € R%.

From Proposition 1 we know that the sequence (s,—+(X . (7;0)));>0 converges to the set

(4]

Ay(r; 6; %) with respect to the Hausdorff metric pg. Here we shall describe this set.

t]('f';O)))tZ() converges to the set

I

Proposition 3 The sequence of compact sets (s —t(X[

q
F~1(Ay(r)), ie., Ag(r;0; %) = F1(A,(r)).

@

10



Proof
The assertion follows from the estimation

pur(F(X g (730)). X (1) < C.

where C'= max{d(f# + 1),0 + 3} and d = degr, which is equivalent with the inclusions

F(X,y1,(r:0)) € (X5 D), (33)
Xqi(ri1) € (F(X g, (r:0)))c- (34)
Proof of (33)
Let
I(k,n) C X[%}(’T’;O),

i.e., the coefficient R(k,n) of the polynomial

(r(2))" =3~ R(a,n)a"

[0}

is not zero. The polynomial 7" is the n-th element of the sequence S(r; 6). It is also [n6]-th element
of the sequence S(r;1). Therefore

I(k,[n0]) C Xy (r;1).
It follows that

F(I(k,n)) € (I(k, [n6]))1-

The last inclusion implies (33).
Proof of (34)

Let
I(k,n) C Xgp(r),
i.e., the coefficient r(k,n) of the polynomial

= Z r(a,n)z®

[0}

is not zero ( r™ is the n-th polynomial of the sequence S(r)).

The polynomial rl19) is a factor of the polynomial 7™ since

n—0-1< [0 <n

Since the coefficient r(k,n) of the polynomial 7™ is not zero, then there is a natural number £;
such that the coefficient R(k1,[§]) of the polynomial 1519 satisfies

11



R(k1, [5]) # 0, (35)
E—d@+1) <k <k (36)

The polynomial (517 is the [7]-th element of the sequence S(r;#). Then from (35) follow

ZhcX

I(k, (r;0).

%]
From (36) and the inequality
n
0<n—[F0<[0+2
follows

n

I(k,n) € (F(I(ky, [Z1))e,
which implies (34).

|

6 Rescaled evolution set for a perturbation of the sequence S(r;6)

Here we shall consider some perturbations of the sequence of polynomials S(r;#) under which the
rescaled evolution set is stable. Let rq,...,7, be nonzero polynomials with coefficients in I, and
let a,8;,...,0; be positive real numbers. We consider also the functions h, g; : IN — IN satisfying

e The function h is nondecreasing,

o lim, o 22 =,

e |gi(n) — [nb6;]| < h(n) for all n > N, where N is fixed natural number.

The function h is o(n) for n — +oo and the functions g; are small (h-small) perturbation of the
functions v; : N — IN, given by v;(n) = [n6;], for n € IN.

The condition that the function A is nondecreasing is not important but technically convenient.
We shall choose the natural number N so big that

h(n) 0
n S 2012)

where # = min{6#;|i =1,...,s} and © = max{6;|i =1,...,s}.
Consider the polynomials

and h(n) > 1, forn > N, (37)

S

Ry g(r) = H(Tz’(x))gi(n) = ZR(a,n)xo‘

1 o

and the sequence S(r;g) = (R, g)n>0, where r = (r1,...,7,) and g = (g1,...,9s). The sequence
S(r;g) is a small perturbation of the sequence S(r;6).
The goal of this section is the following

12



Proposition 4

lim s, (X[aqt} (I‘; g)) = Aq(r3 0; a’)a

t—oo ¢

i.e., the rescaled evolution set of the sequence S(r;g) does not depend on the small perturbation g.

Proof

The assertion follows from the estimation

for some constant C' and for all sufficiently large ¢ € IN, since lim;_, hlag’)

PH (X[aqt] (r; ), X[aqt] (r;0)) < Ch([a'qt])’

The last estimation is equivalent with the inclusions

X(agt(138) C (X[agt] (13 0)) Ch(laqt))s
Xiagt(130) C (X[aqt) (T3 8)) Ch(laqt))-

Proof of (38), case n > N

Let N <n < [aq'].
Define

m:[n—M].

6

Then from (37) follows that m is a nonnegative integer. Moreover,

which implies

n—w—lgmgn—M

0 C)

0<n—-m< %h([aqt]).

The polynomial R,, is a factor of the polynomial R, ¢, since

Let

e

nb; — h(n)g — 0 < [mb;] < gi(n) <nb; + h(n).

Rn,g = RmRma

for some polynomial R,, with coefficients in IF,. From (41) follows

Assume that

deg Ry, < D(% + 0 + 1)h([aq"]).

I(kv n) - X[aqt] (I'; g),

13

(41)

(42)

(43)



i. e., the coefficient R(k,n) of the polynomial R, g is not zero. Then (42) implies that there exists a
natural number k; such that the ki-th coefficient R(kq,n)of the polynomial R,, is not zero, which
means that I(k1,m) C X[,q¢(r;0). Moreover, (43) implies

kfm%+®+JM@¢D§h§k (44)

Then from (40) and (44) follows

I(kan) C (I(klam))C&h([aqt})a (45)
where C1 = max{Z,D(2 + © + 1)}.

Proof of (38), case n < N

Assume

I(k,n) C X[4qt1(r;8), and n < N,

then

0<k< DM, (46)
where D = "7 d;,d; = degr;, and M = max{g;(n)|n < N}.
Let I(l,n) C Xjaqt)(r;0). Since the degree of the n-th element R, of the sequence S(r;0) is
bounded from above by the number DN®, then
0 <1< DN®. (47)

From (46) and (47) follows

I(kan) - (I(lan))Cw (48)

where Cy = Dmax{N©, M}, since |k — 1| < Cs.
From (45) and (48) follow (38) for C' > max{C1, Ca}.

Proof of (39), case n > 2N

Let 0 < 2N < n < [aqg'].
Define

From (37) follows that m > N.
Therefore

gi(n) < [mb;] + h(m) <nb; — h(n)(O© + 1) +0; < nb; — 1 < [nb;] < nb;,

and

gi(rm) 2 s — {(2 +©) 5+ 2}([ag']).

14



Then

0 < ] — gs(m) < {(2+ ) +2}h([aq’)). (19)

Therefore the polynomial R,, ¢ - the m-th polynomial of the sequence S(r;g) - is a factor of the
polynomial R,, - the n-th polynomial of the sequence S(r;0):

gltm, (50)
and from (49)

deg R, < D{(2+ @)% + 2 h([ag!). (51)

Suppose I(k,n) C X[4q1)(r;60) and 2N < n < [ag']. Then (50) imply that there exists a natural
number k; such that k; coefficient R(k;,m) of the polynomial R, ¢ is not zero and moreover, from
(51) follows

k — Csh([ag"]) < ki <k,
for Cy = D{(2+ ©)9 + 2}. From the last inequality and

0<n—-m< ?h([aqt])
follows
I(k,n) C (I(k1,m))Cyn(agt))s (52)

where Cy = max{Cj3, 22}.

Proof of (39), case n < 2N

Since

deg R, <2ND®O,

and
deg Ry, g < M D, where M| = max{g;(n)|n < 2N},
then for I(k,n) C X{aq(r;0) and I(l,n) C X[ (r; g) follows

I(lvn) - (I(kvn))C’m (53)

where C5 = D max{M;,2NO}.
Then (39) follows from (51) and (52) for C' > max{C4, C5}.
Therefore the proposition is proved for C' = max{C}, Ca, Cy, Cs}.
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7 Random multiplication of polynomials - the main theorem
The goal of this section is the proof of the theorem:

Theorem 1 Let r = (r1,...,75),71,...,75 € IFy[z] (nonzero polynomials) and let a,§ =
(01,...,05),a >0,0; >0,i =1,...,5,>70; = 1. Then for almost all points w € Q = {1,...,5}]N
with respect to the Bernoulli measure pg, induced by the probability vector 6 follows:

a) The sequence of compact sets (8g-+(X[aqt)(r; 0;w)))e>0 converges with respect to the Hausdorff
metric and

Ay(r;0;a) = tlg& Sq=t(X[aqt)(r; 05 W)).
b) For s =2,r1 =r,r9 = 1,00 = 0,0, =1 — 0 the sequence of compact sets (Sq—t(X[qt}(r;g;u))))tzo

6
converges with respect to he Hausdorff metric and

Ay(r) = lim s 7t(X[%t}(r;9;w)).

o0 ¢
¢) For a rational probability vector 6 = (kl—l, ey kTS),l, ki,...,ks € IN the sequence of compact sets
(8-t (X[aqt) (13 (le, e kl—s);w)))tzo converges with respect to the Hausdorff metric and
k k
k ksy _ 15 . 1 Sy.
Aq(rrll ceerg ) = tl—l)r& sq_t(X[aqt}(r, (T, ceey T),u)))

Proof
For w = (w(n)), € OIN Jet

w'(n) = card{k | w(n) =i,k < n}.

Here we shall consider the polynomials

Ryo(z) = [[(ri()*' ™ =3 4(a, n)z®

and the sequence S(r;w) = (R w)n>0-
On the probability space (2, 11y) we consider the random variables Y,/ : Q —s {0,1}, defined
by

Yj(u)) _ { 1 w(n) =7

0 otherwise.

The expected value of Y,J with respect to the measure pp is E(Y;J) = 0, and the variance var(Y}}) =
0;(1—6;) = 0]2-. Then (Y,)n>o is i.i.d. sequence of random variables.

The law of iterated logarithm, [12], p. 42, implies that for almost all points w € € with respect
to the Bernoulli measure pg,

nL Y] —nb;
lim sup L1 E )

noo /20]2.77, loglogn

Therefore for almost all w € Q there exist a natural number N = N(w) such that

[n0;] — [2¢/20nloglogn] < W’ (n) < [n;] + [2y/20n loglog n]

16
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foralln > N and 0 = max{ajz | 7=1,...,s}. Here we used that w;(n) = >}, ij (w).
Define the functions g;,, : N — IN and A : N — IN with

giw(n) =wj(n), j=1,...,n,

and

h(n) = [2¢/20n log log n].

Then the functions h and g¢;,,7 = 1,...,s satisfy the conditions of the Proposition 4. Therefore
for almost all w € Q the sequence S(r;w) is a small perturbation of the sequence S(r;0) and the
theorem follows from the Proposition 4.

8 Hausdorff dimension of rescaled evolution sets

The Hausdorff dimension of the rescaled evolution set A,(r) = Ap(r;1;1) was calculated by S.
Willson in [22], using the Perron-Frobenius eigenvalue A of the transition matrix (associated to the
polynomial ), introduced by him: dimyAp(r) = %. Later on F. v. Hassler at all., [7] described
the rescaled evolution set A,(r) using the attractor of a special graph directed construction - matrix
substitution system. The transition matrix of S. Willson coincides with the transition matrix of this
graph directed construction. Since the graph directed construction of v. Haeseler et all. satisfies the
open set condition, then the formula of S. Willson follows from the formula of Mauldin-Williams,
[15], Theorem 3, for the Hausdorff dimension of the attractors of graph directed construction, [15].
In addition, from Mauldin-Williams, [15], Theorem 3, follows that the Hausdorff measure in the
dimension is positive and finite, since the transition graph of the graph directed construction of
Haeseler et all. is strongly connected, [9]. About the Hausdorff dimension see [3].
The goal of this section is the following proposition

Proposition 5 Letr = (rq,...,75),71,...,7s € Fylz],0;,a € R,a > 0,0; >0,i =1,...,s. Then
a) The Hausdorff dimension of the rescaled evolution set Ay(r;8;a) does not depend on a, i.e.,
dimp Ay(r;0;a) = dimp Ay(r; 6;1).
b) For s =1,r1 = 1,01 =0 follows

dimpAq(r;0;a) = dimpAy(r),
c¢) For 0; = (kl—l,...,kTS),l,kl,...,ks € IN follows
Bk
AR
d) For 0; > 0,i = 1,...,s and Y.;0; = 1, let ug be the Bernoulli measure on the space 2 =
{1,... ,s}]N. Then for almost all w € Q with respect to the Bernoulli measure g follows

dimp Aqg(r; ( );a) = dimpg Ay(rit - rks).

dimpg Ay(r;0;w;a) = dimg Ay(r; 0;1).

17



Proof
a) Recall that

Ay(r;0;a) = tlg& Sq-t(X[aqt)(r;0)).

Set x = [}E—Z] + 1. Then for ¢ big enough ¢; =t +  is a nonnegative integer and

Therefore

X[qt+n—2}(r; 9) C X[aqt}(r; 0) C X[qt+n}(r; 0)

The last inclusions imply

sqrn—2(Ag(r;0;1)) C Ay(r;0;a) C s54nAg(r; 0;1)).

The assertion follows, since the affine maps do not change the Hausdorff dimension.
b) The assertion follows from the Proposition 3 and a).
c¢) The assertion follows from the Proposition 2 and a).
d) Follows from the Theorem 1 and a).

Remark 3 In general, the set A,(r;6;1) and its Hausdorff dimension depend on 6, e.g. in the
case 0 = (’“T“, el k@“),u,l,kl, ..., ks € IN the Hausdorff dimension of the set A,(r; (’“T“, el ksl“))
depends in general on .

The formula of S. Willson gives the dimension of the rescaled evolution set for 6 vector with

rational coordinates. For all other cases we do not have a formula for calculating it.

9 Some remarks

1. The field of coefficients

We considered polynomials with coefficients in the Galois field IF,. All assertions proved in this
note hold in a more general situation - for m-Fermat polynomials with coefficients in a commutative
ring with 1.

Let R be a finite commutative ring with 1 and r a polynomial with coefficients in R. We say
that the polynomial r has the m-Fermat property (or is an m-Fermat polynomial) if

for a given natural number m > 2.

Examples 3 1. For R = IF, the Galois field with ¢ = p°® elements (where p is a prime number),
every polynomial p(z) € IF,[z] is a ¢g-Fermat polynomial, [10], pp. 62, 65.

2. For R = 7Z/p*7L, (p - prime number), the integers modulo p®, s > 2, every polynomial
p(z) = q(z)?" " € R[z] is a p-Fermat polynomial, [17], [22].

3. For more examples and comments see [1], Lemma 1, 2, pp. 11-12.
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2. Scaling sequences

Here we shall consider the simplest case - the sequence of polynomials S(r) for r € IF [x].

The set of scaling sequences for a given polynomial is quite big: for arbitrary sequences a =
(a(n))n>0 and b = (b(n))n>o satisfying the conditions dn% < C, where d = degr and C is
an appropriate constant, the sets s4(,)-1(Xy(n)(r)) are subset of [0,C] x [0,C] = [0, C]>. The space
(K([0, C]?), pmr) is compact. Therefore there exist subsequences a’ = (a(ng))g>0 and b’ = (b(ny)) k>0
such that the sequence (Sq(n,)-1)(Xp(n,)(7)))n>0 converges, i.e., the sequences a’ and ' are scaling
sequences for X(S(r)) (or for the polynomial r). In general these scaling sequences depend on
the polynomial r. We want to have scaling sequences independent on r. Such are the standard
sequences a = (q")i>0 and @ = ([aq'])i>0 for every positive real number a. For a = 1 these are
not only ”universal” scaling sequences but the corresponding rescaled evolution set A,(r) have a
self-similar structure generated by some special graf-directed system, [7]. Moreover, the rescaled

evolution set A,(r; 1;a) is determined by

Ay(r;1;a) = Ag(r) N (R x [0,a]), fora < 1

and

Ag(r; L a) = sy+1(Ag(r)) N (R x [0, al), for ¢ <a< gt

We shall call A,(r) the standard rescaled evolution set.

For some specific polynomials the self-similarity structure of the rescaled evolution set with
respect to some other scaling sequences is simpler in comparison with the self-similarity structure
of the standard rescaled evolution set. In [6] are given such examples. One of them is the following.

Let r(z) = 1 + 7 + 22 € TF3[z]. The sequences a = b = (252),,5¢ are scaling sequences for the
polynomial . Denote by B the rescaled evolution set with respect to these sequences:

B=lim s_2 (Xan_1(r)).
2

n—oo 3n—1

The set B is not affinely equivalent with the standard rescaled evolution set As(s), s € IF3[z] ( the
last set is the rescaled version of the geometrical representation (zero - non-zero) of the binomial
coefficients modulo 3, [4]. The sets B and As(r) are not homeomorphic and the self-similarity
structure of B is simpler.

Similar observations imply that the sequences ¢ = b = (n),>0 are not scaling sequences for all
polynomials with coefficients in IFo. Let 7 = 1 + x € IFo[z]. The standard rescaling evolution set
Ay (r) of this polynomial is the Sierpinski triangle. Assume that the sequences a = b = (n),>0 are
scaling sequences for the polynomial . Then

Ay(r) = tlggo so-t(Xot(r)) = tlggj 83.0-t(X3.2t(r)) = 53(}3& s9-t(X3.9:(r))) = s3(A2(r; 153)),

i.e., the sets As(r) and Ay(r;1;3) are affinely equivalent, which is not possible since they are not
homeomorphic.

At the end we shall prove that the sequences a = b = (3"),>0 are not scaling sequences for the
polynomial r(z) = 1 + z € IFy[z].

The evolution set X (r) of this polynomial is the geometrical representation (zero - non-zero) of
the sequence of binomial coefficients modulo 2 and its rescaled evolution set
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Ax(r) = lim 550 (Xen (1)

is the Sierpinski triangle.
The number £ = i%g—g is irrational and its simple continued fraction & = [0; ay, asz,...] is infinite.
Let
Pk
q_k = [0) aty .- - 7ak]7 ng(pka Qk) =1
be the k-th convergent of the continued fraction [0; a1, ao,...], [10], Ch. X.
Then
1
|£Qk _pk| < q_k’ fork = 1323"'3
[10], p. 140. The last inequality implies
29k 2
11— 3@| S —, (54)
qk
3v* 2
o <1+ q—k, (55)

for k =1,2,.... In [6] is proved
(56)

Ay(r) = lim Sy-q, (Xoa (7)) = Hm s5-p, (Xs3pk (1)).
—00 k—o00
Since lim g = oo this assertion follows from the following inequalities

pH (8g-a (Xaak (1)), 83-pi (X3re (1)) <

g o (Xau (1), Xaoe (1) + gre o1 (Xavs (1), Sgax5-m1 (Xaos (1)) <
2%|2qk — 3P| + 2%k|1 — %Miangpk (r)y <1+ %)3—:.
Assume that the sequence (s3-n (X3 (7)))n>0 converges. Then from (56) follows that its limit is

the Sierpinski triangle Aa(r).
We know that the sequence (sg—n(X3.27(r)))n>0 converges and its limit is the set
Ag(r; 153) = s4(A2(r)) N ([0, 3] x [0, 3]).

The last set is not homeomorphic to the Sierpinski triangle.

From (54) follows
2d3Pr+1

pi(Xz.90 (1), (Xzpp+1(r)) < 3d|2% — 3PF| < :
K

Therefore, the sequence (s3-p, (X320 (7)))r>0 converges and
lim sg-p, (X3.00 (1)) = lirglo Sg—py (Xgpp+1 (7)) = s3(Az2(r))

k—o00
(since the sequence (s3-p,-1(X3p,+1(r)))i>0 is a subsequence of (s3-n(X3n(7)))n)
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From (54) and (55) follows
P (Sg-a, (X3.00 (1)), 83-p (X3.206 (1)) = 5 prr (Xz.205 (1), Spar 3=y, (X3.00 (1)) <

2%k|1 — %Miangpk (r) < %,

therefore

Ap(ri133) = lim sy, (X0 (7)) = lim sy, (X () = 53(A(r),

i.e., the sets As(r;1;3) and Ay(r) are affinely equivalent, which is impossible since they are not
homeomorphic.

With similar arguments it follows that the sequences @ = b = (m"™),>0,m > 2 are not scaling
sequences for the polynomial r(z) = 14z € IFy[z] in the case the natural number m is not a power
of 2. This is a geometrical counterpart of the result of Allouche et all, [1], that the sequence of

binomial coefficients ((}) mod 2),; is m-automatic if and only if m is a power of 2.

3. Polynomials in k-variables

All results of this note also hold for polynomials r € IF[z1, ..., z;]. Then the rescaled evolution
sets are fractal subsets in the k + l1-dimensional Euclidean space IR¥*!. For the standard scaling
segiences a = a = (¢');>0 and the parameters @ = §; = --- = 0; = 1 this is proved in [6]. For example

the standard rescaled evolution set Ay(r) of the polynomial r(z1,z2) = 1 + 1 + x3 € Fo[z1, x5] is
the Sierpinski pyramid, [14].

4. Hausdorft dimension of rescaled evolution sets does not depend on scaling sequences

The squeezing trick of S. Willson, [23], applied in section 8 implies: if @ = b = (a(n)),>o are
scaling sequences and

Ag(r; 9) = lim Sa(n)-1 (Xa(n) (I'; 9))7

n—00

then

dimpgAy(r;0) = dimpgAy(r; 6;1).

S. Willson proved this for s = 1,6; = 1 with the following argument. For every n choose the natural
number k, such that ¢*» < a(n) < ¢¥»+!, then

qun (r;0) C Xa(n) (r;0) C qu'n+1 (r; 0),

and

Sq—kn—1 (qun (I'; 9)) C Sa(n)g—kn—1 (Sa(n)—l (Xa(n) (I'; 9))) C Sg—kn—1 (qun+1 (I'; 0)) (57)

By choosing a suitable subsequence if necessary we may assume that lim,,_, q,“,ﬁ% = \. By taking
limit in (57) we obtain

51 (A4(r;0)) C 53 (A4(r30)) C Ay (r30),

which implies the assertion.
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10 Open questions

Let r1,...,rs be polynomials with the coefficients in the Galois field IF; and let 01, ..., 8, be positive
real numbers.

e Is the Hausdorff dimension ¢(61,...,05) = dimgA,(r;0;1) a continuous function on § =
(01,...,0,) for a fixed r = (r1,...,75)?

e Is there a simple formula for the Hausdorff dimension of dimpgA4(r;0;1)?
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