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ABSTRACT

ABSTRACT. Using techniques from geometric measure theory and descriptive set theory, we
prove a general result concerning sets in the plane which meet each straight line in exactly two
points. As an application we show that no such ”two point” set can be expressed as the union of
countably many rectifiable sets together with a set with Hausdorff 1-measure zero. Also, as another
corollary, we show that no analytic set can be a two point set provided every purely unrectifiable
set meets some line in at least three points. Some generalizations are given to “n-point” sets and
some other geometric constructions.

To the memory of Paul Erdos

1. Introduction

In 1914, Mazurkiewicz [7] showed that there is a “two-point” subset M of R?,
i.e., M meets each line in exactly 2 points. One can easily modify Mazurkiewicz’s
argument to show that for each positive integer n, n > 2, there is an "n-point”
subset M of R2; a set M which meets each line in exactly n points. More refined
generalizations of this result were given by Erd6és and Bagemihl [1]. The axiom
of choice played a central role in these constructions. There is one indication that
perhaps the axiom of choice is not needed. Consider the set M which is the union
of all circles with center the origin and radius a positive integer. This F, set meets
every line in a countably infinite set. Thus, the question naturally arises as to how
effective a construction of an n-point set can be. Specifically, can a two point set be
a Borel set? This question has been known for many years. I believe I first heard the
problem from Erdds, who said it had been around since he was a ”baby.” Larman
showed that if there is such a Borel set, then it must be somewhat complex [5]. He
showed that a 2 point set cannot be an F, set. Let me mention that it is also known
that if M is analytic and M is an n point set, then M is a Borel set. This follows
from the fact that every analytic subset A of R? such that each vertical fiber A,
has cardinality < n lies in a Borel set B such that each vertical fiber has cardinality
< n. Also, Miller has shown that if one assumes Go6del’s axiom of constructibility,
V = L, then there is a 2 point set which is a coanalytic set [8]. It is also known
that a two point set must have topological dimension zero [4]. I have discussed this
in problem 1069 in [9]. We will prove a theorem in this paper which implies that a
two point set cannot be a o- rectifiable set. An old unsolved problem in geometric
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measure theory(see [6] p. 258) is whether the following proposition is true:

(P2) every purely unrectifiable compact 1-set in R? must meet some line in at
least, three points or,
more generally,

(Pn) every purely unrectifiable compact 1-set in R? must meet some line in at
least n + 1 points.

Among several results, we will prove the following two theorems.

THEOREM 9. Let n be an integer, n > 2. Let M be a subset of R? which meets
every line in ezxactly n points. Then M is not a o-rectifiable 1-set.

THEOREM 11. Suppose n > 2 and proposition (Pn) is true. Then there is no
analytic subset of R? which meets every straight line in exactly n points.

2. Results

First, let us recall some facts and prove some elementary auxiliary theorems and
lemmas. One fundamental property of Hausdorff measures which will be used here
is the fact that if an analytic set A has positive s-dimensional Hausdorff measure,
H?(A) > 0, then there is a compact set K C A such that 0 < H*(K) < co. This
theorem is proved in some form in several books [2], [6],[10]. A new more general
proof has been given by Howroyd [3]. The open ball with center z and radius r is
denoted by B(zx,r). Lebesgue measure is denoted by A. We begin with some simple
facts.

Lemma 1 If A C R? is analytic and at most countably many lines meet A in
an uncountable set, then the Hausdorff dimension of A, dimpy(A) < 1.

Proof. Suppose dimg(A) > s > 1. Since A is analytic, A would contain a
compact set F with 0 < H*(E) < oo [10]. By a theorem of Marstand (see [2],
p. 93), there would be a point z of E and uncountably many lines L through z such
that dimg(ENL) =s—1> 0. So, there would be uncountably many lines which
meet A in an uncountable set, a contradiction. |

Lemma 2. If W C R? and the orthogonal projection of W onto some line
has positive H' measure, then dimg (W) > 1. In particular, if W meets every line
parallel to some fized line in a nonempty set, then H(W) = .

Proof. Consider P, the orthogonal projection of W onto a line L. Since P
is nonexpansive, 0 < H'(P(W)) < H'(W). This means that dim(M) > 1. If
P(W) = L, then for the same reason, H*(W) = oco. [ |

Corollary 3. If A is an analytic set in R? and A meets every line in a countable
nonempty set, then dimg(A) =1 and H'(A) = co.

Remark. One can construct a two point set H which has positive measure with
respect to Lebesgue measure. Of course, such a set H is not Lebesgue measurable.

We recall several more facts. A set S C R? is a 1-set means 0 < H'(S) < oo.
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Also, every analytic set A in R? with positive H! measure contains a 1-set, [Fal,
Rog] and every 1l-set can be expressed as the disjoint union of its rectifiable and
purely unrectiable parts, (see [2], p. 26). There are several different equivalent ways
of defining rectifiable. For our purposes, a 1-set E is rectifiable means there is a
sequence, {I';}2°,, of C' arcs such that H'(E\UT;) = 0. We can also assume these
arcs have a tangent at each its points. A 1-set E is purely 1-unrectifiable means for
every C1 arc T', HY(ENT) = 0 (see [2] [6]). A set E is o-rectifiable means it can
be expressed as the union of countably many rectifiable 1-sets.

Theorem 4. Let T be a Borel subset of R and let f : T — R be a Borel
measurable function such that G = Gr(f), the graph of f is o-rectifiable. Then
o0

there is a sequence of pairs, {([a;,bi],9:)}32, such that for each i, g; : [a;,b;]] = R
is of class C' and X(proji (G\ U Gr(g;))) = 0.

Proof. We can express G as G = U; F;, where each E; is a rectifiable 1-set. It
suffices to show that each E; can be covered as indicated in the conclusion. Towards
this end, fix i, set E = E; and let h; : [0,1] = R?, j = 1,2,3... be one-to-one C*
maps such that H!'(E\ UT;) = 0, where ['; is the image of h;.

Fix j. Let I' = Ty, let h = h; = (¢1,92) and let L be the length of the
rectifiable arc I'. It suffices to show the conclusion holds for ENT. Let V =
{z : (z,f(z)) € ENT and T has a vertical tangent at (z, f(z))}. We claim
A(V) = 0. By way of contradiction, suppose A(V) > 0. Let M = max(1,3L/\(V)).
Let V = {[z — ey, x + €] : x € V, N B((z, f(x)),V1+ M3e;) C C(z,M) and
r'nS(z,v1+ MZ?e,) # 0}, where C(x, M) is the cone with vertex (z, f(z)), axis
the vertical line through (z, f(x)), and boundary the lines through the vertex with
slopes +M and S(z,v1+ M?3e,) is the circle with center (x, f(z)) and radius
V14 MZ2¢,. Since V is a Vitali cover of V', there are pairwise disjoint intervals
I; = [z; — €;,x + €] € V such that > ¢; > A(V)/3. For each i, let ¢; be the number
such that h(t;) = (z;, f(z;)) and let s; be such that h(s;) € S(z;,vV1+ MZ2¢;) and
h maps the open interval from s; to t; into C(z;, M) N B((x;, f(2:)), V1 + M?3e;).
Since the intervals [s;, ;] are pairwise disjoint, L > >, ||h(s;) — h(t;)|| > >, Me; >
M(M\(V)/3) > L. This is a contradiction and establishes the claim.

For each & €proj; (TNE)\V, let t, = h='((x, f(z))) and let §, > 0 be such that
if |s — t,| < 0., then the slope of the tangent line to I' at h(s) is in absolute value
< |M,| + 1, where M, is the slope of the tangent line to I" at h(t,). In particular,
gall(s) #£ 0, for s € [ty — 0z, te + 02] = Ju. Let [ag,bs] = 01(Jz). Then ¢ is a C*
homeomorphism of these two intervals. Define g, : [az, bz] by gz(u) = @a(; *(w)).
By taking a suitable countable collection of these intervals and maps, we obtain the
required sequence of pairs. |

For the next two theorems, let us suppose we have fixed a cartesian coordinate
system. For each point (u,v) € R? with v # 0, let T(u,v) be the projection from
(u,v) onto the z-axis; i.e., for each point (x,y) with y # v, T(, ) ((z,y)) = 2, where
(z,y), (u,v) and (z,0) are collinear. To say that C' is a positive cone means there
is a point (0,w) and an angle 8, with 0 < 6 < 7/2 such that C consist of all points
p € R? such that the angle between the vector p — (0, w) and the positive y-axis is
less than 6.

Theorem 5. Suppose f : [a,b] — R is C' and |f'(x)| < M, for x € [a,b],
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E C [a,b] is a Borel set and A(E) > 0. Let G = Gr(f). For each 7,0 < T < 1, there
is a positive cone C such that if (u,v) € C, then \(T(,, ) (GNEx R)N[a, b]) > TA(E).

Proof. Let [; be the line of slope M which intersects G and G lies in the closed
lower half plane determined by I;. Similarly, let I be the line of slope —M which
intersects G and G lies in the closed lower half plane determined by Iy and let W be
the cone defined by [; and I which lies opposite G. If (u,v) € W, then T(,, ) is one-

to-one on G' and Ty, . ((z, f(7)) =z — f(:r)vli;fé)
by g(l‘) = T(u,v) (1‘, f(l‘)) So,
f@)(w—z)  f(x) f@)f'(@)(u—2)

Y= T T i@ o= f@)

1

. Define g = g(y ) : [a,0] = R

We can make the derivatives of g and of g~* uniformly as close to one as we wish
by taking v large enough and |u/v| small enough. Therefore, there is a positive cone
C such that if (u,v) € C, then g, is a continuous one-to-one map of [a, b] onto
a subinterval of [a — (1 — T)A(E)/4,b+ (1 — 7)A(E)/4] and

M9 (B)) = ATy (G 1 (B % B)) > (2T )\(E).
Thus, for (u,v) € C, we have A(T(,,,)(G N (E x R))) N [a,b]) > TA(E). [ |

Theorem 6. Suppose f; : [c,d] — R,i = 1,...,n are C*, E C [c,d] is a Borel
set and \N(E) > 0. Let G; = Gr(f;),i = 1,...,n. There is a positive cone C' such
that if (u,v) € C, then some line through (u,u) meets each set G; in points whose
first coordinates are in E.

Proof. Let z be a point of ¥ which is a density point of £. Choose an interval

-1
[a, b] centered at z such that A(ENJa,b]) > (n
5 that there is a positive cone C such that if (u,v) € C, then A(T(,, ,)(G:N(E X R))N
-1
[a,b]) > (n )(b—a), for i = 1,...,n. Thus, if (u,v) € C, then N T, (Gi N
(E x R))Na,b] # 0. [ |

)(b—a). It follows from theorem

Theorem 7. Let n be a positive integer, n > 2. Suppose M C R? is such that
for every direction 6 and cartesian coordinate system with z-azxis in the direction 6,
there is an interval [a,b], C* functions f; : [a,b] = R,i = 1,...,n, a Borel subset E
of [a,b] with A(E) > 0 such that the graphs of the functions f;;i = 1,...,n over the
set E are pairwise disjoint subsets of M. Then either M is bounded or else some
line meets M in at least n + 1 points.

Proof. Suppose no line meets M in at least n+ 1 points. For each vector u with
|u|| = 1, it follows from theorem 6 that there is some r,, > 1 and 7/4 > 6,, > 0 such
that no points of M lie in the cone, C,,, with vertex r,u and consisting of all points
z such that the angle between z — r,u and the positive ray determined by w is less
than 6,,. For each u, let A, be the open arc subtended on the circle |r| = r, + 1 by
the boundary rays of the cone C,. Let I, be the central projection of A, onto the
unit circle. Let I, ..., I, , cover the unit circle and suppose we have enumerated
these arcs in a counterclockwise manner. For each 4, let h; and h; be the right
and left rays with vertex the origin determined by the endpoints of I,,,. Since the
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unbounded region with boundary formed by the arc A4,, and the rays h; and hzr
is a subset of the cone C,, there are no points of M in it. Let R = max;{r,, + 1}.
Then there is no point, p € M with ||p|| > R. [ |

In the next theorem, M,, the z-section of a subset M of the plane is given by
My ={y: (z,y) € M}.

Theorem 8. Suppose M C R2 is H'-measurable, o-rectifiable, and A = {x :
card(My) > n} has positive Lebesque measure. Then there is an interval [c,d], and
C*' functions, f; : [c,d] = R, i=1,...,n and a Borel subset E of [c,d] with \(E) > 0
such that the graphs of the functions f; over E are pairwise disjoint subsets of M.

Proof. There is a Borel set T C A with A(T") > 0 and Borel measurable
functions h;;i = 1,...,n such that the graphs, G;, of the functions h; are pairwise
disjoint subsets of M. Since each set G; is o-rectifiable, by theorem 4, there are C'
functions g;; : [a;j, b;j] = R such that

Aproji(Gi\ U;j(Gr(gi;))) = 0.

Let E;; = [as,bi;] NT. For each i, A(T'\ U;E;;) = 0. Choose z € T and
J1,---» jn such that z is a density point of each E;;,. Now, choose an interval [a, b] C
Nilaij;, bij;] with @ in its interior such that A(E) > 0, where E = N; E;j; N[a, b]. Let
fi be g5, restricted to [a,b]. [ |

As an immediate corollary of theorems 7 and 8 we have:

Theorem 9. Letn be an integer, n > 2. Let M be an H' measurable subset of
R?2 which meets every line in exactly n points. Then M is not o-rectifiable.

Proposition Pn and n-point sets. In the next two theorems, we assume
that n > 2 and every purely unrectifiable compact 1-set meets some line in at least
n + 1 points. Since it is not known whether this proposition is true, these results
are somewhat tentative.

Theorem 10. Assumen > 2 and proposition (Pn) is true. Let A be an analytic
subset of R2. Suppose H(A) > 0 and at most countably many lines meets A in at
least n + 1 points, then A = UE; U N, where each E; is a compact rectifiable 1-set
and H*(N) = 0.

Proof. Suppose A were to include a compact purely unrectifiable 1-set W. We
could also assume that W misses the countably many lines which meet A in at least
n + 1 points. But, since proposition (Pn) holds, W and therefore, A, would meet
some additional line in at least n 4+ 1 points. Thus, every compact 1-set lying in A
is rectifiable. If the final conclusion were not true, then, by transfinite induction,
A would contain uncountably many pairwise disjoint compact 1-sets, Fy,a < w;.
Since each E, is rectifiable, A(projs(Es)) > 0, for all but at most one value of
6, where projs(E) means the orthogonal projection of E onto the line Ly through
the origin that makes angle # with the x-axis and A is Lebesgue measure(or H!
measure) on the line Ly (see [2],p. 84). So, there is some # and some ¢ > 0 such that
for uncountably many «, A(projg(E4)) > ¢. This means there is some z on Ly with
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x € projg(Ey), for uncountably many «. Thus, the line through x perpendicular to
Ly meets A in uncountably many points. This is a contradiction. |

As a corollary of theorems 9 and 10, we have

Theorem 11. Suppose n > 2 and proposition (Pn) is true. Then there is no
analytic subset of R? which meets every straight line in exactly n points.

SOME GENERALIZATIONS. Let £ be the space of all lines and let ¢ :
L = wU{w,2¥}. In [B-E], Bagemihl and Erdos, using the axiom of choice show
that if g(L) > 2, for each L, then there is a set E such that for each line L,
card(ENL)=q(L).

QUESTION. Suppose g : £ — N is such that for each line L, ¢(L) > 2. Under
what conditions is there a Borel set B such that for each line L, card(BNL) = ¢q(L)?

Theorem 11 shows that if q has the constant value n and proposition (Pn) is
true, then there is no such Borel set. As the next theorem shows, there is one
necessary condition: the function q must be Borel measurable.

Theorem 12. Let B C R? be a Borel set and suppose for each line L,
q(L) =card(BNL). Then q: L = wU {w,2¥} is measurable with respect to B(A),
the o-algebra generated by the analytic sets. Moreover, if, for each L, 1 < ¢(L) < w,
then the function q is Borel measurable.

Proof. Let g : FF — B be a continuous one-to-one map of the closed subset F
of w” onto B. Let ¢ : £L — R be given by ¢(L) = card(L N B). Then, for 2 <n < w,

q(L) > n < 3z, ..., zp[z; #xj, 0 #j and Vif(z;) € L]
and
q(L) =2¥ < 3P[P C F, P is perfect, f(P) C LJ.

It follows from these equivalences that ¢ is measurable with respect to B(A). If, for
each L, 2 < q(L) < w, consider the map G : £ — K(R?), the space of compact
subsets of R?, given by G(L) = L N B. Let

H, ={K € R*: cardK = n}.

For each n, ¢~'(n) = G='(H,). The function G is Borel measurable. To see this
consider

W ={(L,z):x € LNB}.

W is a Borel subset of £ x R? and for each L, Wi, being finite, is compact. Thus,
the map £ — W, = G(L) is Borel measurable. [ |

Of course, as the next easy example shows it can happen that a given function
q has a “Borel” realization. The combinatorics of when such a Borel set exist seem
quite complicated.

1
Example. Let B = {(z,y) : y = £=} U {(z,y) : 2° + y* = 2}. Then B is a
x
closed subset of R% and ¢(L) for each line L, 2 > card(L N B) < 6.
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