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Abstract

ABSTRACT� Using techniques from geometric measure theory and descriptive set theory� we
prove a general result concerning sets in the plane which meet each straight line in exactly two
points� As an application we show that no such �two point� set can be expressed as the union of
countably many recti�able sets together with a set with Hausdor� ��measure zero� Also� as another
corollary� we show that no analytic set can be a two point set provided every purely unrecti�able
set meets some line in at least three points� Some generalizations are given to 	n�point� sets and
some other geometric constructions�

To the memory of Paul Erd�os

�� Introduction

In ����� Mazurkiewicz ��	 showed that there is a 
two�point� subset M of R��
i�e�� M meets each line in exactly 
 points� One can easily modify Mazurkiewicz�s
argument to show that for each positive integer n� n � 
� there is an �n�point�
subset M of R�� a set M which meets each line in exactly n points� More re�ned
generalizations of this result were given by Erd�os and Bagemihl ��	� The axiom
of choice played a central role in these constructions� There is one indication that
perhaps the axiom of choice is not needed� Consider the set M which is the union
of all circles with center the origin and radius a positive integer� This F� set meets
every line in a countably in�nite set� Thus� the question naturally arises as to how
e�ective a construction of an n�point set can be� Speci�cally� can a two point set be
a Borel set� This question has been known for many years� I believe I �rst heard the
problem from Erd�os� who said it had been around since he was a �baby�� Larman
showed that if there is such a Borel set� then it must be somewhat complex ��	� He
showed that a 
 point set cannot be an F� set� Let me mention that it is also known
that if M is analytic and M is an n point set� then M is a Borel set� This follows
from the fact that every analytic subset A of R� such that each vertical �ber Ax

has cardinality � n lies in a Borel set B such that each vertical �ber has cardinality
� n� Also� Miller has shown that if one assumes G�odel�s axiom of constructibility�
V � L� then there is a 
 point set which is a coanalytic set ��	� It is also known
that a two point set must have topological dimension zero ��	� I have discussed this
in problem ���� in ��	� We will prove a theorem in this paper which implies that a
two point set cannot be a �� recti�able set� An old unsolved problem in geometric
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measure theory�see ��	 p� 
��� is whether the following proposition is true�

�P
� every purely unrecti�able compact ��set in R� must meet some line in at
least three points or�
more generally�

�Pn� every purely unrecti�able compact ��set in R� must meet some line in at
least n� � points�

Among several results� we will prove the following two theorems�

THEOREM �� Let n be an integer� n � 
� Let M be a subset of R� which meets
every line in exactly n points� Then M is not a ��recti�able ��set�

THEOREM ��� Suppose n � 
 and proposition �Pn� is true� Then there is no
analytic subset of R� which meets every straight line in exactly n points�


� Results

First� let us recall some facts and prove some elementary auxiliary theorems and
lemmas� One fundamental property of Hausdor� measures which will be used here
is the fact that if an analytic set A has positive s�dimensional Hausdor� measure�
Hs�A� � �� then there is a compact set K � A such that � � Hs�K� � �� This
theorem is proved in some form in several books ��	� ��	���		� A new more general
proof has been given by Howroyd �
	� The open ball with center x and radius r is
denoted by B�x� r�� Lebesgue measure is denoted by �� We begin with some simple
facts�

Lemma � If A � R� is analytic and at most countably many lines meet A in
an uncountable set� then the Hausdor	 dimension of A� dimH�A� � ��

Proof� Suppose dimH�A� � s � �� Since A is analytic� A would contain a
compact set E with � � Hs�E� � � ��		� By a theorem of Marstand �see ��	�
p� ���� there would be a point x of E and uncountably many lines L through x such
that dimH�E � L� � s� � � �� So� there would be uncountably many lines which
meet A in an uncountable set� a contradiction�

Lemma �� If W � R� and the orthogonal projection of W onto some line
has positive H� measure� then dimH�W � � �� In particular� if W meets every line
parallel to some �xed line in a nonempty set� then H��W � ���

Proof� Consider P � the orthogonal projection of W onto a line L� Since P
is nonexpansive� � � H��P �W �� � H��W �� This means that dim�M� � �� If
P �W � � L� then for the same reason� H��W � ���

Corollary 
� If A is an analytic set in R� and A meets every line in a countable
nonempty set� then dimH�A� � � and H��A� ���

Remark� One can construct a two point set H which has positive measure with
respect to Lebesgue measure� Of course� such a set H is not Lebesgue measurable�

We recall several more facts� A set S � R� is a ��set means � � H��S� � ��
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Also� every analytic set A in R� with positive H� measure contains a ��set� �Fal�
Rog	 and every ��set can be expressed as the disjoint union of its recti�able and
purely unrectiable parts� �see ��	� p� 
��� There are several di�erent equivalent ways
of de�ning recti�able� For our purposes� a ��set E is recti�able means there is a
sequence� f�ig�i��� of C� arcs such that H��En��i� � �� We can also assume these
arcs have a tangent at each its points� A ��set E is purely ��unrecti�able means for
every C� arc �� H��E � �� � � �see ��	 ��	�� A set E is ��recti�able means it can
be expressed as the union of countably many recti�able ��sets�

Theorem �� Let T be a Borel subset of R and let f � T � R be a Borel
measurable function such that G � Gr�f�� the graph of f is ��recti�able� Then
there is a sequence of pairs� f��ai� bi	� gi�g�i�� such that for each i� gi � �ai� bi	 � R
is of class C� and ��proj��Gn �Gr�gi��� � ��

Proof� We can express G as G � �iEi� where each Ei is a recti�able ��set� It
su�ces to show that each Ei can be covered as indicated in the conclusion� Towards
this end� �x i� set E � Ei and let hj � ��� �	 � R�� j � �� 
� ���� be one�to�one C�

maps such that H��En � �j� � �� where �j is the image of hj �
Fix j� Let � � �j � let h � hj � ���� ��� and let L be the length of the

recti�able arc �� It su�ces to show the conclusion holds for E � �� Let V �
fx � �x� f�x�� 	 E � � and � has a vertical tangent at �x� f�x��g� We claim
��V � � �� By way of contradiction� suppose ��V � � �� Let M � max��� �L	��V ���
Let V � f�x � 
x� x � 
x	 � x 	 V � � � B��x� f�x���

p
� �M�
x� � C�x�M� and

� � S�x�
p
� �M�
x� 
� �g� where C�x�M� is the cone with vertex �x� f�x��� axis

the vertical line through �x� f�x��� and boundary the lines through the vertex with
slopes �M and S�x�

p
� �M�
x� is the circle with center �x� f�x�� and radiusp

� �M�
x� Since V is a Vitali cover of V � there are pairwise disjoint intervals
Ii � �xi � 
i� x� 
i	 	 V such that

P

i � ��V �	�� For each i� let ti be the number

such that h�ti� � �xi� f�xi�� and let si be such that h�si� 	 S�xi�
p
� �M�
i� and

h maps the open interval from si to ti into C�xi�M� � B��xi� f�xi���
p
� �M�
i��

Since the intervals �si� ti	 are pairwise disjoint� L �
P

i kh�si��h�ti�k �
P

iM
i �
M���V �	�� � L� This is a contradiction and establishes the claim�

For each x 	proj����E�nV � let tx � h����x� f�x��� and let �x � � be such that
if js� txj � �x� then the slope of the tangent line to � at h�s� is in absolute value
� jMxj� �� where Mx is the slope of the tangent line to � at h�tx�� In particular�
�
�

��s� 
� �� for s 	 �tx � �x� tx � �x	 � Jx� Let �ax� bx	 � ���Jx�� Then �� is a C�

homeomorphism of these two intervals� De�ne gx � �ax� bx	 by gx�u� � ����
��
� �u���

By taking a suitable countable collection of these intervals and maps� we obtain the
required sequence of pairs�

For the next two theorems� let us suppose we have �xed a cartesian coordinate
system� For each point �u� v� 	 R� with v 
� �� let T�u�v� be the projection from
�u� v� onto the x�axis� i�e�� for each point �x� y� with y 
� v� T�u�v���x� y�� � z� where
�x� y�� �u� v� and �z� �� are collinear� To say that C is a positive cone means there
is a point ��� w� and an angle �� with � � � � 
	
 such that C consist of all points
p 	 R� such that the angle between the vector p� ��� w� and the positive y�axis is
less than ��

Theorem �� Suppose f � �a� b	 � R is C� and jf ��x�j � M � for x 	 �a� b	�
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E � �a� b	 is a Borel set and ��E� � �� Let G � Gr�f�� For each � � � � � � �� there
is a positive cone C such that if �u� v� 	 C� then ��T�u�v��G�E
R���a� b	� � ���E��

Proof� Let l� be the line of slopeM which intersects G and G lies in the closed
lower half plane determined by l�� Similarly� let l� be the line of slope �M which
intersects G and G lies in the closed lower half plane determined by l� and letW be
the cone de�ned by l� and l� which lies opposite G� If �u� v� 	W � then T�u�v� is one�

to�one on G and T�u�v���x� f�x�� � x� f�x�
u� x

v � f�x�
� De�ne g � g�u�v� � �a� b	� R

by g�x� � T�u�v��x� f�x��� So�

g��x� � �� f ��x��u� x�

v � f�x�
�

f�x�

v � f�x�
� f�x�f ��x��u� x�

�v � f�x���
�

We can make the derivatives of g and of g�� uniformly as close to one as we wish
by taking v large enough and ju	vj small enough� Therefore� there is a positive cone
C such that if �u� v� 	 C� then g�u�v� is a continuous one�to�one map of �a� b	 onto
a subinterval of �a� ��� ����E�	�� b� ��� ����E�	�	 and

��g�u�v��E�� � ��T�u�v��G � �E 
R��� �
�� � �




�
��E��

Thus� for �u� v� 	 C� we have ��T�u�v��G � �E 
R��� � �a� b	� � ���E��

Theorem �� Suppose fi � �c� d	 � R� i � �� ���� n are C�� E � �c� d	 is a Borel
set and ��E� � �� Let Gi � Gr�fi�� i � �� ���� n� There is a positive cone C such
that if �u� v� 	 C� then some line through �u�v� meets each set Gi in points whose
�rst coordinates are in E�

Proof� Let x be a point of E which is a density point of E� Choose an interval

�a� b	 centered at x such that ��E � �a� b	� � �n� �

n

�
�b�a�� It follows from theorem

� that there is a positive cone C such that if �u� v� 	 C� then ��T�u�v��Gi��E
R���
�a� b	� �

�n� �

n

�
�b � a�� for i � �� ���� n� Thus� if �u� v� 	 C� then �ni��T�u�v��Gi �

�E 
R�� � �a� b	 
� ��

Theorem �� Let n be a positive integer� n � 
� Suppose M � R� is such that
for every direction � and cartesian coordinate system with x�axis in the direction ��
there is an interval �a� b	� C� functions fi � �a� b	� R� i � �� ���� n� a Borel subset E
of �a� b	 with ��E� � � such that the graphs of the functions fi� i � �� ���� n over the
set E are pairwise disjoint subsets of M� Then either M is bounded or else some
line meets M in at least n� � points�

Proof� Suppose no line meetsM in at least n�� points� For each vector u with
kuk � �� it follows from theorem � that there is some ru � � and 
	� � �u � � such
that no points of M lie in the cone� Cu� with vertex ruu and consisting of all points
z such that the angle between z � ruu and the positive ray determined by u is less
than �u� For each u� let Au be the open arc subtended on the circle jrj � ru �� by
the boundary rays of the cone Cu� Let Iu be the central projection of Au onto the
unit circle� Let Iu� � ���� Ium��

cover the unit circle and suppose we have enumerated
these arcs in a counterclockwise manner� For each i� let h�i and h�i be the right
and left rays with vertex the origin determined by the endpoints of Iui � Since the
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unbounded region with boundary formed by the arc Aui and the rays h�i and h�i
is a subset of the cone Cu� there are no points of M in it� Let R � maxifrui � �g�
Then there is no point� p 	M with kpk � R�

In the next theorem� Mx� the x�section of a subset M of the plane is given by
Mx � fy � �x� y� 	Mg�

Theorem �� Suppose M � R� is H��measurable� ��recti�able� and A � fx �
card�Mx� � ng has positive Lebesgue measure� Then there is an interval 
c�d�� and
C� functions� fi � �c� d	� R� i�������n and a Borel subset E of 
c�d� with ��E� � �
such that the graphs of the functions fi over E are pairwise disjoint subsets of M�

Proof� There is a Borel set T � A with ��T � � � and Borel measurable
functions hi� i � �� ���� n such that the graphs� Gi� of the functions hi are pairwise
disjoint subsets of M� Since each set Gi is ��recti�able� by theorem �� there are C�

functions gij � �aij � bij 	� R such that

��proj��Gi n �j�Gr�gij��� � ��

Let Eij � �aij � bij 	 � T� For each i� ��T n �jEij� � �� Choose x 	 T and
j�� ���� jn such that x is a density point of each Eiji � Now� choose an interval �a� b	 �
�i�aiji � biji 	 with x in its interior such that ��E� � �� where E � �iEiji � �a� b	� Let
fi be giji restricted to �a�b	�

As an immediate corollary of theorems � and � we have�

Theorem �� Let n be an integer� n � 
� Let M be an H� measurable subset of
R� which meets every line in exactly n points� Then M is not ��recti�able�

Proposition Pn and n�point sets� In the next two theorems� we assume
that n � 
 and every purely unrecti�able compact ��set meets some line in at least
n � � points� Since it is not known whether this proposition is true� these results
are somewhat tentative�

Theorem �	� Assume n � 
 and proposition �Pn� is true� Let A be an analytic
subset of R� � Suppose H��A� � � and at most countably many lines meets A in at
least n� � points� then A � �Ei �N � where each Ei is a compact recti�able ��set
and H��N� � ��

Proof� Suppose A were to include a compact purely unrecti�able ��set W� We
could also assume that W misses the countably many lines which meet A in at least
n � � points� But� since proposition �Pn� holds� W and therefore� A� would meet
some additional line in at least n� � points� Thus� every compact ��set lying in A
is recti�able� If the �nal conclusion were not true� then� by trans�nite induction�
A would contain uncountably many pairwise disjoint compact ��sets� E�� � � ���
Since each E� is recti�able� ��proj��E��� � �� for all but at most one value of
�� where proj��E� means the orthogonal projection of E onto the line L� through
the origin that makes angle � with the x�axis and � is Lebesgue measure�or H�

measure� on the line L� �see ��	�p� ���� So� there is some � and some c � � such that
for uncountably many �� ��proj��E��� � c� This means there is some x on L� with
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x 	 proj��E��� for uncountably many �� Thus� the line through x perpendicular to
L� meets A in uncountably many points� This is a contradiction�

As a corollary of theorems � and ��� we have

Theorem ��� Suppose n � 
 and proposition �Pn� is true� Then there is no
analytic subset of R� which meets every straight line in exactly n points�

SOME GENERALIZATIONS� Let L be the space of all lines and let q �
L � � � f�� 
�g� In �B�E	� Bagemihl and Erd�os� using the axiom of choice show
that if q�L� � 
� for each L� then there is a set E such that for each line L�
card�E � L� � q�L��

QUESTION� Suppose q � L � N is such that for each line L� q�L� � 
� Under
what conditions is there a Borel set B such that for each line L� card�B�L� � q�L��

Theorem �� shows that if q has the constant value n and proposition �Pn� is
true� then there is no such Borel set� As the next theorem shows� there is one
necessary condition� the function q must be Borel measurable�

Theorem ��� Let B � R� be a Borel set and suppose for each line L�
q�L� � card�B � L�� Then q � L � � � f�� 
�g is measurable with respect to B�A��
the ��algebra generated by the analytic sets� Moreover� if� for each L� � � q�L� � ��
then the function q is Borel measurable�

Proof� Let g � F � B be a continuous one�to�one map of the closed subset F
of �� onto B� Let q � L � R be given by q�L� � card�L�B�� Then� for 
 � n � ��

q�L� � n� �x�� � � � � xn�xi 
� xj � i 
� j and �if�xi� 	 L	

and

q�L� � 
� � �P �P � F� P is perfect� f�P � � L	�

It follows from these equivalences that q is measurable with respect to B�A�� If� for
each L� 
 � q�L� � �� consider the map G � L � K�R��� the space of compact
subsets of R�� given by G�L� � L � B� Let

Hn � fK 	 R� � cardK � ng�
For each n� q���n� � G���Hn�� The function G is Borel measurable� To see this
consider

W � f�L� x� � x 	 L � Bg�
W is a Borel subset of L 
R� and for each L� WL being �nite� is compact� Thus�
the map L � WL � G�L� is Borel measurable�

Of course� as the next easy example shows it can happen that a given function
q has a 
Borel� realization� The combinatorics of when such a Borel set exist seem
quite complicated�

Example� Let B � f�x� y� � y � � �

x
g � f�x� y� � x� � y� � 
g� Then B is a

closed subset of R� and q�L� for each line L� 
 � card�L � B� � ��



on sets which meet each line in exactly two points �

References

�� F� Bagemihl and P� Erd�os � �Intersections of prescribed power� type� or measure ��
Fund� Math� �� ���	
�� 	
�

�

�� K�J�Falconer� The Geometry of Fractal Sets �Cambridge University Press� �����


� J�D� Howroyd� �On dimension and on the existence of sets of �nite� positive Hausdor�
measure �� Proc� London Math� Soc� to appear

�� J� Kulesza� �A two point set must be zero dimensional �� Proc� Amer� Math� Soc�
��
 ������� 		��		��

�� D� G� Larman� �A problem of incidence �� J� London Math� Soc� ���
��� ��
�����

�� P� Mattila � Geometry of sets and measures in Euclidean spaces � Cambridge Uni�
versity Press� ���	��

�� S� Mazurkiewicz� �Sur un ensemble plan qui a avec chaque droite deux et seulement
deux points communs �� C� R� Varsovie 
 ������� ��������

�� A� Miller� �In�nite Combinatorics and de�nability �� Ann� Pure Appl� Logic ��
������� �
������

�� J�van Mill and G�M� Reed� editors� Open Problems in Topology �North�Holland�
Amsterdam� ������

�	� C�A�Rogers�Hausdor� measure �Cambridge University Press� ��
���

Department of Mathematics
University of North Texas
Denton� Texas ��
��


