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THE BAIRE ORDER OF THE FUNCTIONS
CONTINUOUS ALMOST EVERYWHERE. II

R. DANIEL MAULDIN

ABSTRACT. Let S be a complete and separable metric space and u
a o-finite, complete Borel measure on S with «(S) >0. Let ® be the
family of all real-valued functions defined on S whose set of points of
discontinuity is of y~measure 0. Let Ba(d’) be the functions of Baire’s
class a generated by ®. It is shown that Bl(ﬁ) = Bz(ﬁ’) if and only if
4 is a purely atomic measure whose set of atoms forms a scattered sub-
set of S and that if B (&) #£ Bz(tb), then the Baire order of & is aj; in
other words, if 0 < a <w,, then Ba(d’) £ Ba+ (®#). This answers a gener-
alized version of a problem raised by Sierpinski and Felsztyn. An exam-
ple is given of a normal space with Borel order 2 and Baire order @,

Sierpinski and Felsztyn in the first volume of Fundamenta Mathematicae
raised the following problem:

() Is there a function of Baire's class 2 on the unit interval which is
not the pointwise limit of a sequence of functions each continuous almost
everywhere [5]?

There is a discussion of this problem in the appendix of the 1937 edi-
tion of the first volume. This problem was solved by Zalcwasser and
Kantorovitch. Also, see [4].

In Theorem 4 of [4], the author shows that for each countable ordinal
a, there is a function of Baire’s class a + 1 which is not in the a class
generated by the functions continuous almost everywhere. Therefore, the
answer to (%) and to a generalized version of (%) is yes.

This paper contains a number of generalizations of results contained in

[4].

Definitions and notation. If X is a topological space and p is a com-
plete Borel measure on X, A is a subset of X, and B is a subset of A, then

(a) (A4, p) will denote the family of all real-valued functions defined
on A whose set of points of discontinuity is of y-measure zero, and

(b) ®(A, B) will denote the family of all real-valued functions defined
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372 R. D. MAULDIN

on A which are continuous at each point of B.

If X is a set and ® is a family of real-valued functions defined on X,
then BO(CI)) will denote ® and for each ordinal a, a >0, Ba(q)) will denote
the family of all pointwise limits of sequences from U,y<aB,y(¢). Of course,
Bwl(q)) = Ua<w1 Ba(q)) and thus, Bwl(q)) = Bw1+l(®). The first ordinal a
for which B(®) = B, ,(®) will be called the Baire order of ®.

The unit interval will be denoted by I

Recall that a subset M of a topological space is said to be scattered if
there is no subset of M which is dense in itself. Also, in this paper the
Borel sets form the o-algebra generated by the open sets and a measure p is
regular means p(E) = sup {u(F): F = F < E} = inf{u(U): U is open and E <

U}, for each p-measurable set E.

Theorem 1. Suppose u is a finite, positive complete Borel measure on
I and p(I) > 0. If p is not a purely atomic measure whose set of atoms forms

a scattered set, then the Baire order of ®(I, p) is ;-

Proof. Let M be the set of all atoms of the measure p. Either (1) the
countable set M contains a dense in itself subset K, or (2) y(l - M)>o0.
If the first case holds, then K is a perfect subset of I such that if an open
set U meets K, then ﬂ(? N U) > 0. If the second case holds, then there is
a perfect set lying in I — M such that if an open set meets P, then u(P N V)
> 0.

It is easy to check that one may now proceed exactly as in [4], and con-

clude that the Baire order of ®(1, ;1) is -

Theorem 2. Let K be a subset of a metric space S and let D and A
be G subsets of S containing K with KCD CA. Then

(a) if a>0, each function in B{®(D, K)) has an extension to a func-
tion in Ba(q)(A, K)),

(b) the Baire order of ®(D, K) is no more than the Baire order of
(4, K),

(c) if the Baire order of ®(D, K) is >0, then ®(A, K) and ®(D, K)

have the same order.

Proof. (a) If f ¢ Ba(CD(D, K)) and a >0, then by Theorem 3 of [2], there
is a function g of Baire’s class a (in other words, g € B (®(D, D)) such
that M = {x|f(x) # g(x)}, is a subset of an F__ set, W, with respect to D and
W does not intersect K.

Let
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. f(x), xeD,
f(x) =
g(x), x€ A~ D.

The set of all x such that Rx) # 8(x) is M. Let W= U,_F, where
for each n, F isAclosed with respect to D and let F be the closure of F,
in A, Then MCW =UJ,_,F, and W is an F_ set with respect to A which
does not meet K. Thus, by Theorem 3 of [2], fe Ba((D(A, K)).

(b) It may be shown by transfinite-induction, that for all a, 0 < a, if
f € B {®(4, K)), then the restriction of f to D is in the family B (®(D, K)).
From this we see that if [ is exactly of class B (®(D, K)) (f € B(®(D, K))
- U,y<aB,y(‘I>(D, K))), then no extension of f to A can be of lower class
with respect to ®(A, K). Thus, the Baire order of ®(D, K) is no more than
the Baire order of ®(4, K).

(c) Suppose the Baire order of ®(A, K) is greater than y, the Baire or-
der of ®(D, K). Let f be a function of exactly class B,yﬂ((D(A, K)) and
let » be the restriction of f to D. Then b € B,yﬂ(@(D, K)) and Eherefore
h € B_(®(D, K)). Since y >0, by part (a), there is an extension » of b to
A which is in By(CIJ(A, K)). Let M= {xl}?(x) # f(x)}. The set M is a subset
of A-D. But, A-D isan F_ set with respect to A which does not meet
K. It follows from Theorem 3 of [2], that f € B,y(CD(A, K)). This contradic-

tion completes the argument for part (c).

Theorem 3. Let A and D be Gy subsets of a metric space S with
D CA. Let p be a finite regular complete Borel measure defined on A. If
p(A = D) =0, then

(a) if a >0, each function in Ba(CD(D, @) has an extension to a function
in B (®(4, p)),

(b) the Baire order of ®(D, p) is no more than the Baire order of
(A, w), and

(c) if the Baire order of ®(D, y) is >0, then ®(A, p) and ®(D, p) have

the same order.
The proof of this theorem follows the corresponding proofs of Theorem 2.
Theorem 4. Let R be the set of all rational numbers in I, let B be a

Gy subset of I containing R. Then the Baire order of ®(B, R) is ;.

Proof. Let y be a finite, complete Borel measure on | such that p is
purely atomic and R is the set of all atoms of p. Then, the family ®(1, R)
is ®(I, p). It is easy to see that the Baire order of ®(B, R) is not 0. There-
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fore, by Theorem 2 (c), the Baire order of ®(B, R) is -

Theorem 5. Let K be a countable dense in itself subset of a complete
and separable metric space S and let A be a G5 subset of § containing K.
Then the Baire order of ®(A, K) is ;-

Proof. Let ¢ be a homeomorphism of K with the set of all rational
numbers in the unit interval I [1, p. 287]. Let ¢ be an extension of ¢ de-
fined ona G set B contammg K toa Gy set, qS(B) in I such that ¢ is
a homeomosphism of B and (;S(B) (1, p. 429].

It follows easxly by transﬁmte induction that [ € B (CI)(A N B, K)) if
and only if fo ¢_1 € B (®(¢(A N B), R)). Therefore, the order of the family
®(A N B, K) is w, by Theorem 3. Thus, the Baire order of the family
®(4, K) is ®, by Theorem 2 (c).

Theorem 6. Let M be a subset of a complete and separable metric space.
If M contains a perfect set, then the Baire order of ®(S, M) is o, If Mis
countable, then (1) the Baire order of ®(S, M) is <1, if M is scattered and
(2) the Baire order of ®(S, M) is wy if M is not scattered.

Proof. Suppose M contains a perfect set K. Since ®(K, K) is the
space of all real valued continuous functions defined on K, it follows that
the Baire order of ®(K, K) is - Also, for each a, 0 < a, each function
in B,(®(K, K)) has an extension to a function in B(®(S, 5)) [1, p. 434] and
thus to a function in B ®(S, M). It follows that if f € B(®(K, K)) but to
none of the preceding classes, then any extension of f to a function in
B (®(S, M) cannot belong to any class B,y(CD(S, M), y < a.

Therefore, the order of ®(S, M) is Wy

Now, suppose M is countable.

Case 1. The set M is scattered. In this case, Theorem 2 of [3] states
that the Baire order of ®(S, M) is < 1.

Case 2. The set M is not scattered. Let K be the dense in itself ker-
nel of M.

If M is K, then by Theorem 5 the Baire order of ®S, M) = &S, K) is w,.

If K is a proper subset of M, then the set M — K is scattered. There-
fore M - K is an F_ set [1, p. 258]. Then S-(M-K) is a G4 set con-
taining K and the Baire order of ®(S - (M - K), K) is w, by Theorem 5.
w41 @(S = (M - &), K)), o >0, then there is a
function g of Baire’s class a + 1 on S~ (M = K) such that the set M =

If f is of exactly class B

{x|f(x) # g(x)} is a subset of a set W which is an F_ set with respect to
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§-(M-K). Let g be an extension of g to S of Baire’s class a + 1. Then
obviously, g € B, ,(®(S, M)). Assume g € B(®(S, M)). Then there is a
function 5 in Baire’s class a on § such that the set M, = {x|8(x) #£ h(x)}
is a subset of an F _ set W1 in S such that W1 does not intersect K [2,
Theorem 3]. But, then [, the restriction of » to S— (M = K), is a function
of Baire’s a on S~ (M = K) and the set of all x such that I(x) £ f(x) is a
subset of W, N (S — (M = K)), which is an F_ setin S~ (M - K) which does
not meet K. Therefore, by Theorem 3 of [2], f is in B (®(S ~ (M - K), K)).
This contradiction proves that the order of ®(S, M) is w,.

Questions. Is there a subset M of I such that the Baire order of ®(I, M)
is 2? For each ordinal a, 2 < a <w,, is there a subset M of I such that

the Baire order of ®(I, M) is a?

Theorem 6. Let p be a finite regular Borel measure defined on the
space N consisting of all irrational numbers between 0 and 1. If p- has no

atoms and p(N) >0, then the order of ¢, p) is w,-

Proof. Let i be the unique extension of p to a complete Borel measure
defined on I such that (I = N) = 0. Then {i(I) >0 and i has no atoms.
Therefore the Baire order of ®(I, p) is @ Therefore, by Theorem 2, the
Baire order of ®(N, y) is w,.

Theorem 7. Let p be a o-finite regular Borel measure defined on a com-
plete and separable metric space S with u(S) > 0. Then (1) the order of
O(S, p) is <1 if and only if p is purely atomic and the set of atoms of p
forms a scattered set, and (2) the order of (S, p) is w,, if p does not meet

the conditions described in 1.

Proof. Part (1) of the conclusion is Theorem 3 of [3].
Let {K }> | be a sequence of disjoint Borel sets of finite y-measure

filling up S. Let p (A) = u(A NK)), for each 7 and each p-measurable set A. Let

o

2_’1
PR R el
n= n n

Then v is a finite regular Borel measure on § and a subset E of § is of
p-measure 0 if and only if (E) = 0.

Let v = Vgt Vg, where vy is purely atomic and v has no atoms. Let
M be the set of atoms of v,;. Of course, M is the set of atoms of p. It fol-
lows from part (1) of the conclusion that either M is not scattered or UuUS - M) >0.
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Case 1. Suppose M is not scattered. Let K be the dense in itself
kernel of M and let A be a G set containing K such that v(4) = (K).
Then (A - K) =0 and ®(4, v) = ®(4, K). Therefore, by Theorem 5, the
order of ®(4, v) is w, and by Theorem 3 the order of O(S, v) = O(S, p) is
;- :

Case 2. Suppose (S - M) > 0.

Let | be a perfect set lying in S — M such that if an open set U meets
J, then (] NU) >0. Let {y 1> ; be a dense subset of | and for each n,
let {Snp};;l
zero such that V(B(yn, Bnp) - B(yn, Bnp)) =0, where B(yn, 8np) is the ball
with center y, and radius 57117' Let Q be the union of all the sets
Bly,, Snp) - By, 8”)). It follows that Q N ] is an F_ subset of | with
Q) =0 such that | — Q is O-dimensional.

Let W=] - Q. Then W is a dense in itself 0-dimensional G set lying

be a decreasing sequence of positive numbers converging to

in J. By Theorem 3, the Baire order of ®(J, v) is the same as the order of
oW, v).

Let ¢ be a homeomorphism of W onto N, the set of all irrational num-
bers between 0 and 1 [1, p. 441], and for each v-measurable set E lying in
W, let M(E)) = v(E). It follows that A is a complete Borel measure on N
and a function f is in the class B(®(N, A)) if and only if /¢ is in the
class B(®(W, A)). By Theorem 5, the Baire order of ®(N, A) is w,. Thus,
the order of ®(J, v) is Wy

Finally, if 5 € B (®(S, v)), then the restriction of 5 to ] is in B(®(], v)).
Also, if a >0 and f € B{®(], v)), then there is a function g of Baire’s
class a defined on | such that the set M of all x such that g(x) # f(x) is
a subset of an F_ set T with respect to J.

Let g be an extenﬁion of Baire’s class a to all of §[1, p. 434], let
/:(x) = f(x), x € J, and /(x) = g(x), x € §—]. Then the set of all x such that
f(x) £ g(x) is a subset of T. Since T is an F _ set with respect to J, T is
an F_ setin § of v-measure zero, Therefore, by Theorem 3 of [3],fe€
B(@(S, v).

From the above considerations, it follows that the order of ®(S, v),

which is ¥(S, p), is Wy

Theorem 8. There is a hereditarily paracompact space which has Borel

order 2 and Baire order -

Proof. Let X be the unit interval and let a subset W of X be open if
and only if W= U NV where U is open and V is any subset of X — R,
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where R is the rationals. The space X is hereditarily paracompact [6].
S. Willard in [7] shows that every Borel subset of X is a Gy, set in X.
If { e C(X), then [ is continuous in the usual topology at each point of R.

Thus, by Theorem 4, X has Baire sets of arbitrarily high class.
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