
Math 1720 Midterm 2 Review Problems

1. Compute
d

dx
(arcsec(ln(x))).

Solution. Using the chain rule,

= arcsec′(ln(x)) ln′(x)

=
1

| ln(x)|
√

ln(x)2 − 1

1

x
.

2. (a) Find

arctan(−1/
√

3).

(b) Fully simplify the expression

sec(arctan(x)).

(Your answer should not involve any trig or inverse trig functions.)
(c) Find ∫ −√2

−
√
3

1√
4− x2

dx

Solution. (a) (Method 1) arctan(−1/
√

3) is the unique angle θ such that −π/2 <
θ < π/2 (i.e. in quadrants 1 or 4) and tan(θ) = −1/

√
3. (Since tan is 1-1 over

the interval −π/2 < θ < π/2, and its range over this interval is (−∞,∞), there’s
exactly one θ satisfying these requirements.) Looking at the standard angles,
tan(θ) = −1/

√
3 when sin(θ) = 1

2 and cos(θ) = −
√

3/2, or when sin(θ) = − 1
2

and cos(θ) =
√

3/2: in these cases,

tan(θ) =
sin(θ)

cos(θ)
= −

1
2√
3/2

= − 1√
3
.

But we need θ in quadrant 1 or 4, so cos(θ) ≥ 0, so it’s the latter option:
sin(θ) = − 1

2 and cos(θ) =
√

3/2. This occurs exactly when θ = −π/6. So

arctan(−1/
√

3) = −π/6.
(a) (Method 2) arctan(−1/

√
3) = α where tan(α) = −1/

√
3 and −π/2 <

α < π/2. Use a reference triangle or the equation

tan2(α) + 1 = sec2(α)

to find that
(−1/

√
3)2 + 1 = sec2(α)

4/3 = sec2(α)

2/
√

3 = | sec(α)|

| cos(α)| =
√

3/2.
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Since −π/2 < α < π/2, we have cos(α) =
√

3/2, so either α = π/6 or α = −π/6.
Since tan(α) < 0, we have α = −π/6. So

arctan(−1/
√

3) = −π/6.

(b) Let α = arctan(x); so tan(α) = x. We need to find sec(α) in terms of
x = tan(α). As in part (a), use a reference triangle (see sketches document) or
the equation

tan2 +1 = sec2(α)

to see that
x2 + 1 = sec2(α)

| sec(α)| =
√
x2 + 1.

Since arctan(x) = α is in the interval −π/2 < α < π/2, we have cos(α) > 0, so
sec(α) > 0. So

sec(α) =
√
x2 + 1

So
sec(arctan(x)) =

√
x2 + 1,

as required.

(c) ∫ −√2

−
√
3

1√
4− x2

dx

We will use the fact that d/dx(arcsin(x)) = 1/
√

1− x2. For this, we first convert
the 4− x2 to the form 1− u2. So:

=

∫ −√2

−
√
3

1√
4(1− (x/2)2)

dx

So sub u = x/2. Then du = dx/2, so dx = 2du, and
√

4 = 2, so

=

∫ −√2

x=−
√
3

1

2
√

1− u2
2du

=

∫ −√2

x=−
√
3

1√
1− u2

du

= arcsin(u)
∣∣ ∫ −√2

x=−
√
3

= arcsin(x/2)
∣∣ ∫ −√2

x=−
√
3

= arcsin(−
√

2/2)− arcsin(−
√

3/2)
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And arcsin(−
√

2/2) = α where sin(α) = −
√

2/2 and −π/2 ≤ α ≤ π/2, which is
α = −π/4. Similarly, arcsin(−

√
3/2) = α where sin(α) = −

√
3/2 and −π/2 ≤

α ≤ π/2, which is α = −π/3.

= −π/4− (−π/3)

= 4π/12− 3π/12 = π/12.

3. Compute the limits
lim
x→∞

(1− 3/x)2x.

lim
x→0+

sin(x)tan(x).

Solution. (a)
lim
x→∞

(1− 3/x)2x.

As x→∞, 3/x→ 0 and 2x→∞, so this limit has form 1∞, which is indeter-
minate. We convert to base e:

= lim
x→∞

eln(1−3/x)2x

= elimx→∞ ln(1−3/x)2x

= eL

where
L = lim

x→∞
ln(1− 3/x)2x.

Now since 1 − 3/x → 1 as x → ∞ and ln(1) = 0 and ln is continuous,
limx→∞ ln(1 − 3/x) = ln(1) = 0. And 2x → ∞. So this limit has form 0 · ∞.
So we convert to

= lim
x→∞

ln(1− 3/x)

1/2x
.

This limit has form 0/0, so L’Hopital’s rule applies:

= lim
x→∞

ln(1− 3/x)′

(1/2x)′

= lim
x→∞

1
1−3/x (1− 3/x)′

1
2 (−x−2)

= lim
x→∞

1
1−3/x3x−2

1
2 (−x−2)

= lim
x→∞

−6
1

1− 3/x

And 3/x→ 0 in the limit, so

= lim
x→∞

−6
1

1
= −6.
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Thus, the final answer is
eL = e−6.

(b)
lim
x→0+

sin(x)tan(x).

As x → 0+, both sin(x) → 0+ and tan(x) → 0+, so this limit has the form 00,
which is indeterminate. We convert to base e:

= lim
x→0+

eln(sin(x)) tan(x).

= elimx→0+ ln(sin(x)) tan(x).

= eL

where
L = lim

x→0+
ln(sin(x)) tan(x).

This limit has form −∞ · 0+, so converting,

= lim
x→0+

ln(sin(x))

cot(x)

This limit has form −∞/∞, so L’Hopital’s rule applies:

= lim
x→0+

ln(sin(x))′

cot(x)′

Using the chain rule,

ln(sin(x))′ = ln′(sin(x))(sin(x))′ = (1/ sin(x)) ·cos(x) = cos(x)/ sin(x) = cot(x).

And by the quotient rule,

cot′(x) = (
cos(x)

sin(x)
)′ = (

cos′(x) sin(x)− cos(x) sin′(x)

sin2(x)
)

=
− sin(x) sin(x)− cos(x) cos(x)

sin2(x)
= − 1

sin2(x)
= − csc2(x).

To the limit is

= lim
x→0+

cot(x)

− csc2(x)
=

cos(x)/ sin(x)

−1/ sin2(x)

= lim
x→0+

cos(x)

−1/ sin(x)

= lim
x→0+

− cos(x) sin(x) = 1 · 0 = 0.

So the final answer is
eL = e0 = 1.
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4. Compare the growth rates of the functions

f(x) = 2x,

g(x) = ln(5x),

h(x) = xln(x).

Hint: for comparing f with h, convert to base e. Use the fact that if functions
k(x)→∞ and j(x)→∞ as x→∞, and if k(x) >> j(x), then k(x)−j(x)→∞
also.
Comparing f vs g, note that g(x) = ln(5x) = x ln(5), and ln(5) is a positive
constant. So g(x) = kx for some k > 0. But f(x) = 2x. It’s a standard
comparison fact that 2x >> x (as the base 2 is > 1 and x is just a power of x).
And the positive constant k does not change this, since

lim
x→∞

g(x)

f(x)
= lim
x→∞

kx

2x
= lim
x→∞

k(
x

2x
) = k lim

x→∞

x

2x
.

The limit on the right is 0 since x << 2x, so we get

= k0 = 0.

So kx << 2x.
Alternatively, you could compute the limit directly:

lim
x→∞

g(x)

f(x)
= lim
x→∞

ln(5x)

2x

= lim
x→∞

x ln(5)

2x
= ln(5) lim

x→∞

x

2x
;

the limit on the right has form ∞ ·∞, so applying L’Hopital’s rule,

= ln(5) lim
x→∞

(x)′

(2x)′
= ln(5) lim

x→∞

1

ln(2)2x
;

This limit has form 1/∞, which gives 0 so

= ln(5)0 = 0.

So g << f .
Now consider h. Note that it is h(x) = xln(x) = eln(x)

2

. Compare with f :
write f(x) = 2x = eln(2)x. So,

lim
x→∞

f(x)

h(x)
= lim
x→∞

eln(2)x

eln(x)2

= lim
x→∞

eln(2)x−ln(x)
2

.

= elimx→∞ ln(2)x−ln(x)2 .

= eL

where
L = lim

x→∞
ln(2)x− ln(x)2.
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Now using the hint with k(x) = ln(2)x and j(x) = ln(x)2, we have that ln(2)x−
ln(x)2 → ∞ as x → ∞, since it’s a standard comparison fact that x >>
ln(x)2, and therefore ln(2)x >> ln(x)2, since ln(2) is just a positive constant.
Alternatively, computing this,

lim
x→∞

ln(2)x

ln(x)2
= ln(2) lim

x→∞

x

ln(x)2
,

which has form ∞/∞, so using L’Hopital’s rule,

= ln(2) lim
x→∞

(x)′

(ln(x)2)′
= ln(2) lim

x→∞

1

2 ln(x)(1/x)

= (ln(2)/2) lim
x→∞

x

ln(x)
,

which still has form ∞/∞; repeating L’Hopital’s rule,

= (ln(2)/2) lim
x→∞

(x)′)

(ln(x))′

= (ln(2)/2) lim
x→∞

1

1/x

= (ln(2)/2) lim
x→∞

x =∞.

So this shows ln(2)x >> ln(x)2. So applying the hint, we have that limx→∞ ln(2)x−
ln(x)2 =∞. Therefore coming back to computing L, we have

L =∞.

Therefore the original limit limx→∞
f(x)
h(x) = eL = e∞ =∞, so f >> h.

For g vs h, we have g(x) = ln(5x) = x ln(5) = ln(5)eln(x), and h(x) =

xln(x) = eln(x)
2

. So

lim
x→∞

h(x)

g(x)
= lim
x→∞

eln(x)
2

ln(5)eln(x)

= (1/ ln(5)) lim
x→∞

eln(x)
2−ln(x)

= (1/ ln(5)) lim
x→∞

eln(x)(ln(x)−1)

= (1/ ln(5))elimx→∞(ln(x)(ln(x)−1))

= (1/ ln(5))eL

where
L = lim

x→∞
ln(x)(ln(x)− 1)).

And ln(x)→∞ as x→∞, so ln(x)− 1→∞ also, so this limit is ∞ ·∞ =∞,
so L =∞, so (1/ ln(5))eL =∞, so h >> g.

5.(a) Integrate ∫ 1

0

x22xdx
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(b) Antidifferentiate ∫
sin(3x) cos(x/2)dx.

(c) Antidifferentiate ∫
ln(x)2dx

(Hint: note the integrand is not ln(x2). Use a method like that used for antid-
ifferentiating

∫
ln(x)dx.)

Solution.
(a) We use integration by parts. Since integrating or diffing the 2x term
leads to the form k2x for some constant k, it is reasonable to diff the x2

term and work its power down to 0. So let f(x) = 2x and g(x) = x2. Let
F (x) =

∫
f(x)dx =

∫
2xdx = (1/ ln(2))2x. We have g′(x) = 2x. So by integra-

tion by parts, ∫
= Fg|10 −

∫ 1

0

Fg′dx

= (1/ ln(2))2xx2|10 −
∫ 1

0

(1/ ln(2))2x(2x)dx

which is (*):

=
1

ln(2)

[
2xx2|10 − 2

∫ 1

0

2xxdx

]
.

Looking at the remaining integral inside line (*), this is∫ 1

0

2xxdx

Integrating by parts again, intergrating the 2x term and diff’ing the x term
(note this is in the same “direction” again, reducing the power of the x term);
we get

= (1/ ln(2))2xx|10 −
∫ 1

0

(1/ ln(2))2x(1)dx

which is (**):

=
1

ln(2)

[
2xx|10 −

∫ 1

0

2xdx

]
.

And the last integral inside line (**) is:∫ 1

0

2xdx =
1

ln(2)
2x|10.

So line (**) equals

=
1

ln(2)

[
2xx|10 −

1

ln(2)
2x|10

]
.

=
1

ln(2)

[
2x(x− 1

ln(2)
)|10
]
.

So line (*) equals

=
1

ln(2)

[
2xx2|10 − 2

(
1

ln(2)

[
2x(x− 1

ln(2)
)|10
])]

.
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=
1

ln(2)

[
2xx2 −

(
2

ln(2)

[
2x(x− 1

ln(2)
)
∣∣1
0

])]
.

=
1

ln(2)

[
21(12)−

(
2

ln(2)

[
21(1− 1

ln(2)
)

])]
− 1

ln(2)

[
20(02)−

(
2

ln(2)

[
20(0− 1

ln(2)
)

])]
=

1

ln(2)

[
2−

(
2

ln(2)

[
2(1− 1

ln(2)
)

])]
− 1

ln(2)

[
0−

(
2

ln(2)

[
1(0− 1

ln(2)
)

])]
=

2

ln(2)
+

4

(ln(2))3
− 4

ln(2)2

− 2

ln(2)3

=
2

ln(2)
+

2

ln(2)3
− 4

ln(2)2
.

(b) ∫
sin(3x) cos(x/2)dx.

We use integration by parts. Integrate the sin term and differentiate the cos.
This results in:

= −1

3
cos(3x) cos(x/2)−

∫
−1

3
cos(3x)

1

2
(− sin(x/2))dx

= −1

3
cos(3x) cos(x/2)− 1

6

∫
cos(3x) sin(x/2)dx

Now with the remaining integral, again integrate by parts, going in the same
direction: the term we integrated in the previous one was sin(3x), so we integrate
the term this produced, i.e. cos(3x):

= −1

3
cos(3x) cos(x/2)− 1

6

[
1

3
sin(3x) sin(x/2)− 1

3

∫
sin(3x)

1

2
cos(x/2)dx

]

= −1

3
cos(3x) cos(x/2)− 1

18
sin(3x) sin(x/2) +

1

36

∫
sin(3x) cos(x/2)dx.

The remaining integral is just the original one. So let I =
∫

sin(3x) cos(x/2)dx.
Then we have the equation

I = −1

3
cos(3x) cos(x/2)− 1

18
sin(3x) sin(x//2) +

1

36
I.

Solving for I,

35

36
I = −1

3
cos(3x) cos(x/2)− 1

18
sin(3x) sin(x//2)
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I =
36

35

(
−1

3
cos(3x) cos(x/2)− 1

18
sin(3x) sin(x//2)

)
So our final answer is∫

sin(3x) cos(x/2)dx =
36

35

(
−1

3
cos(3x) cos(x/2)− 1

18
sin(3x) sin(x//2)

)
+ c.

(c) ∫
ln(x)2dx.

We use integration by parts. There are a couple of ways. First by the hint,
using the method used for antidifferentiating

∫
ln(x)dx. So consider ln(x)2 as

the product 1 · ln(x)2. We integrate the 1 and differentiate the ln(x)2, giving

= x ln(x)2 −
∫
x(2 ln(x)(1/x))dx

= x ln(x)2 −
∫

2 ln(x)dx

Using the fact that
∫

ln(x)dx = x ln(x)− x+ d, we have

= x ln(x)2 − 2(x ln(x)− x) + c

= x ln(x)2 − 2x ln(x) + 2x+ c.

Alternatively, one can consider ln(x)2 as the product ln(x) · ln(x). Thus:∫
ln(x) · ln(x)dx,

using integration by parts, using again what
∫

ln(x)dx is, written above:

= ln(x)(x ln(x)− x)−
∫

(1/x)(x ln(x)− x)dx

= x ln(x)2 − x ln(x)−
∫

ln(x)− 1dx

= x ln(x)2 − x ln(x)− (x ln(x)− x) + x

= x ln(x)2 − 2x ln(x) + 2x+ c.

6.(a) Integrate ∫ π/8

0

sin4(4x) cos2(4x)dx

(b) Antidifferentiate ∫
sec−1/3(x) tan3(x)dx

Solution.
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(a) We have an integral of a product of even powers of cosine and sine, so we
use the identities cos2 y = 1

2 (1 + cos(2y)) and sin2 y = 1
2 (1− cos(2y)):∫

=

∫
(sin2(4x))2(

1

2
(1 + cos(2(4x))))dx

=

∫
(
1

2
(1− cos(2(4x))))2(

1

2
(1 + cos(8x)))dx

=

∫
1

8
(1− cos(8x))2(1 + cos(8x))dx

=
1

8

∫
(1− 2 cos(8x) + cos2(8x))(1 + cos(8x))dx

We now expand the terms, as this will result in various powers of cos(8x), which
we can integrate term by term:

=
1

8

∫
1− 2 cos(8x) + cos2(8x) + cos(8x)− 2 cos2(8x) + cos3(8x)dx

=
1

8

∫
1− cos(8x)− cos2(8x) + cos3(8x)dx

=
1

8

[∫
dx−

∫
cos(8x)dx−

∫
cos2(8x)dx+

∫
cos3(8x)dx

]
.

We can now directly integrate the first two terms. For the cos2(8x) term, we have
an even power of cos(8x), so we again use the identity cos2(y) = 1

2 (1 + cos(2y)).

=
1

8

[
x− 1

8
sin(8x)−

∫
1

2
(1 + cos(2(8x)))dx+

∫
cos3(8x)dx

]
.

=
1

8

[
x− 1

8
sin(8x)− 1

2

∫
1 + cos(16x)dx+

∫
cos3(8x)dx

]
.

This results in (*):

=
1

8

[
x− 1

8
sin(8x)− 1

2
(x+

1

16
sin(16x)) +

∫
cos3(8x)dx

]
.

For the cos3(8x) term, we have an odd power of cos(8x), so we sub u = sin(8x),
separating one power of cos(8x) for the du term and writing the rest in terms
of u = sin(8x):∫

cos3(8x)dx =

∫
cos(8x) cos2(8x)dx =

∫
cos(8x)(1− sin2(8x))dx

=

∫
(1− u2) cos(8x)dx

Since du = 8 cos(8x)dx, we have

=

∫
(1− u2)(du/8) =

1

8

∫
1− u2du

=
1

8
(u− 1

3
u3) + c
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=
1

8
(sin(8x)− 1

3
sin3(8x)) + c.

Putting this back into line (*) we get the original integral is (and including the
bounds again):∫ π/8

0

f(x)dx =
1

8

[
x− 1

8
sin(8x)− 1

2
(x+

1

16
sin(16x)) +

1

8
(sin(8x)− 1

3
sin3(8x))

] ∣∣π/8
0

Now at x = 0 we have sin(8x) = sin(16x) = 0. At x = π/8 we have sin(8x) =
sin(8π/8) = sin(π) = 0 and sin(16x) = sin(16(π/8)) = sin(2π) = 0. So all
the sin terms evaluate to 0 when we plug in the bounds, leaving only the x
terms remaining, and when x = 0 this term also evaluates to 0 (but not when
x = π/8):

=
1

8

[
π/8− 0− 1

2
(π/8 + 0) +

1

8
(0− 0)

]
− 1

8
[0]

=
1

8
(π/8− 1

2
(π/8)) =

π

128
.

(b) Antidifferentiate ∫
sec−1/3(x) tan3(x)dx

We have a product of powers of sec and tan, with an odd positive power of tan.
So we use the method of substituting u = sec(x), separating sec(x) tan(x) from
the integrand for the du term:

=

∫
sec−1/3(x)(sec(x))−1 sec(x) tan(x) tan2(x)dx

Sub u = sec(x), so du = sec(x) tan(x)dx:

=

∫
sec−4/3(x) tan2(x)du

Use tan2(x) + 1 = sec2(x), so tan2(x) = sec2(x)− 1 = u2 − 1, and sec−4/3(x) =
u−4/3:

=

∫
u−4/3(u2 − 1)du

=

∫
u−4/3u2 − u−4/3du

=

∫
u2/3 − u−4/3du

= (3/5)u5/3 + 3u−1/3 + c

= (3/5) sec(x)5/3 + 3 sec(x)−1/3 + c.

7.(a) Antidifferentiate, simplifying fully.∫
(1− 3x2)3/2dx
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(b) Integrate ∫ 1

0

x3

1 + x2
dx.

(c) Antidifferentiate: ∫
x

(x2 − 2)25/2
dx.

Solution. ∫
(1− 3x2)3/2dx

There is no immediate substitution that will be useful for this integral. So we a
trig sub. The form a− bx2 appears in the integrand, with 1−3x2 = 1− (

√
3x)2,

so we use the sub x = 1√
3

sin(θ). Thus, we get dx = 1√
3

cos(θ)dθ, and 1− 3x2 =

1− 3( 1√
3
)2 sin(θ)2 = 1− sin(θ)2 = cos(θ)2, so

=

∫
(cos(θ)2)3/2 cos(θ)dθ

=

∫
| cos(θ)|3 cos(θ)dθ.

For subbing x = sin(θ), we use the interval −π/2 ≤ θ ≤ π/2 (the right side of
the circle, where sin(θ) goes through all values from −1 to 1), and so cos(θ) ≥ 0,
so | cos(θ)| = cos(θ):

=

∫
cos(θ)3 cos(θ)dθ.

This is an even power of cos(θ), so we use the identity cos2(θ) = 1
2 (1 + cos(2θ)):

=

∫
(cos(θ)2)2dθ

=

∫
(
1

2
(1 + cos(2θ)))2dθ

=

∫
1

4
(1 + 2 cos(2θ) + cos2(2θ))dθ

For the cos2(2θ) term, we again use the same identity (but with 2θ in place of
θ), giving:

=

∫
1

4
(1 + 2 cos(2θ) +

1

2
(1 + cos(2(2θ))))dθ

=

∫
1

4
(1 + 2 cos(2θ) +

1

2
+

1

2
cos(4θ))dθ

=
1

4

∫
3

2
+ 2 cos(2θ) +

1

2
cos(4θ)dθ

=
1

4

[
3

2
θ + 2(

1

2
sin(2θ)) +

1

2
(
1

4
sin(4θ))

]
+ c

=
3

8
θ +

1

4
sin(2θ) +

1

32
sin(4θ) + c
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Now we need to rewrite everything in terms of x. We subbed x = sin(θ), with
the interval −π/2 ≤ θ ≤ π/2, so this is equivalent to arcsin(x) = θ. So

=
3

8
arcsin(x) +

1

4
sin(2θ) +

1

32
sin(4θ) + c

For sin(2θ), use the identity sin(2θ) = 2 sin(θ) cos(θ), and, similarly,

sin(4θ) = 2 sin(2θ) cos(2θ) = 2 sin(θ) cos(θ) cos(2θ)

giving (*):
= 2 sin(θ) cos(θ)(cos2(θ)− sin2(θ))

(using also the identity cos(2θ) = cos2(θ)− sin2(θ)). Thus, everything has been
written in terms of sin(θ) and cos(θ). We need to write these in terms of x.
We have sin(θ) = x, so that’s fine. For cos(θ), use a reference triangle, or the
Pythagorean identity

sin2(θ) + cos2(θ) = 1

x2 + cos2(θ) = 1

cos2(θ) = 1− x2

| cos(θ)| =
√

1− x2

and again, as mentioned above, cos(θ) ≥ 0, so

cos(θ) =
√

1− x2.

So:

sin(4θ) = 2x
√

1− x2(
√

1− x2
2
− x2) = 2x

√
1− x2(1− 2x2).

So putting everything together, the antiderivative is

3

8
θ +

1

4
sin(2θ) +

1

32
sin(4θ) + c

=
3

8
arcsin(x) +

1

4
2x
√

1− x2 +
1

32
2x
√

1− x2(1− 2x2).

(b) ∫ 1

0

x3

1 + x2
dx.

Here there is no direct substitution for the integral. The term 1 +x2 appears in
the denominator, so we try a trig sub with x = tan(θ). This gives dx = sec2(θ)dθ
and 1 + x2 = 1 + tan2(θ) = sec2(θ). So:

=

∫ 1

x=0

tan3(θ)

sec2(θ)
sec2(θ)dθ.

=

∫ 1

x=0

tan3(θ)dθ

This is an odd power of tan, which we deal with as for products of powers of tan
and sec. So, since it’s an odd power, we sub u = sec(θ), separating sec(θ) tan(θ)
to facilitate this:

=

∫ 1

x=0

sec(θ)−1 tan2(θ) tan(θ) sec(θ)dθ

13



We have du = tan(θ) sec(θ)dθ. Use tan2(θ) + 1 = sec2(θ), to write tan2(θ) =
sec2(θ)− 1 = u2 − 1:

=

∫ 1

x=0

u−1(u2 − 1)du

=

∫ 1

x=0

u− u−1du

=
1

2
u2 − ln(|u|)|1x=0

=
1

2
sec2(θ)− ln(| sec(θ)|)|1x=0

Now we subbed x = tan(θ), which means we are restricted to −π/2 < θ < π/2.
Our actual interval of integration is x = 0 to x = 1. For x = 0, this gives
0 = tan(θ), and −π/2 < θ < π/2, i.e. θ = arctan(0), so θ = 0. And for x = 1,
we have θ = arctan(1), i.e. −π/2 < θ < π/2 and tan(θ) = 1, i.e. θ = π/4. So

=
1

2
sec2(θ)− ln(| sec(θ)|)|π/4θ=0

Now when θ = π/4 we have sec(θ) = sec(π/4) = 1/ cos(π/4) = 2/
√

2. When
θ = 0 we have sec(θ) = 1/ cos(0) = 1/1 = 1. So

=
1

2
(2/
√

2)2 − ln(|2/
√

2|)− 1

2
(12) + ln(|1|)

=
1

2
(4/2)− ln(

√
2)− 1

2
+ 0

= 1− 1

2
ln(2)− 1

2

=
1

2
(1− ln(2)).

(Note 1 > ln(2) so this is positive, as it should be, since the integrand was
positive over 0 < x < 1.)

(c) ∫
x

(x2 − 2)25/2
dx.

Here we can just use a regular sub of u = x2 − 2. For this gives du = 2xdx, so
du/2 = xdx, so

=

∫
du/2

u25/2

=
1

2

∫
u−25/2du

=
1

2

1

−23/2
u−23/2 + c.

=
−1

23
(x2 − 2)−23/2 + c.
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