
Math 1720 Midterm 1 Review Problems
(Section 7.4 not included in this review, but it is examinable for the midterm.)

0.
(a) Find

log27(9).

Solution.
Since 9 > 0, log27(9) is defined. We have

log27(9) = y

iff
27y = 9

iff
(33)y = 32

iff
33y = 32.

Since f(x) = 3x is 1-1 (as ax is a 1-1 function whenever 0 < a < 1 or 1 < a),
this is equivalent to

3y = 2

iff
y = 2/3.

So
log27(9) = 2/3.

(b) Find all solutions to the equation

ln(2− x) + ln(5− x) = 2 ln(5).

Solution.First note that ln(2− x) is defined just when 2− x > 0, i.e. when
x < 2. And ln(5− x) is defined just when 5− x > 0, i.e. when x < 5. Putting
both these conditions together, since 2 < 5, any valid solution must be in the
interval x < 2.

So, for x < 2, we have 2 − x > 0 and 5 − x > 0, so we can apply the
rule ln(a) + ln(b) = ln(ab) (which applies just when a, b > 0), and the equation
becomes:

ln((2− x)(5− x)) = 2 ln(5), x < 2

This is equivalent to

ln((2− x)(5− x)) = ln(52) = ln(25), x < 2.

Since ln is a 1-1 function, this is equivalent to

(2− x)(5− x) = 25, x < 2
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iff
10− 7x+ x2 = 25, x < 2

iff
x2 − 7x− 15 = 0, x < 2

iff

x =
−(−7)±

√
(−7)2 − 4(1)(−15)

2(1)
, x < 2

iff

x =
7±
√

49 + 60

2
, x < 2

iff

x =
7

2
±
√

109

2
, x < 2.

So we have two potential solutions, but for each, it is in fact a solution iff it is
< 2. So we check this for each potential solution.

Now 7
2 = 3.5 > 2, so

7

2
+

√
109

2
> 2,

so this is not a solution.
But 109 > 100, so

√
109 >

√
100 = 10, so 1

2

√
109 > 5, so

7

2
−
√

109

2
< 3.5− 5 = −1.5 < 2.

So

x =
7

2
−
√

109

2
< 2,

and so this is a solution, and in fact is the unique solution.

(c) Find all solutions to the equation

ex
3

= 6x.

Solution.
Note that both sides of the equation are defined for all values of x. The

equation is equivalent to

ex
3

= (eln(6))x = ex ln(6).

Since f(x) = ex is a 1-1 function (it’s the inverse of g(x) = ln(x), so is 1-1), this
is equivalent to

x3 = x ln(6)

iff
x3 − x ln(6) = 0

iff
x(x2 − ln(6)) = 0

iff
x(x+

√
ln(6))(x−

√
ln(6)) = 0.
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Note that 0 < ln(6) since 1 < 6, and since ln is an increasing function, ln(1) <
ln(6) so 0 < ln(6). Therefore

√
ln(6) makes sense.

So we have 3 solutions: x = 0 and x = ±
√

ln(6).

1.
(a) Find and simplify ∫ 1

−1
62xdx

Solution.Since 62x = (62)x = 36x, this is∫ 1

−1
(36)xdx

=
1

ln(36)
36x
∣∣1
−1

=
1

ln(62)
(361 − 36−1)

=
1

2 ln(6)
(36− 1

36
)

=
1

2 ln(6)
(
362 − 1

36
)

=
64 − 1

72 ln(6)
.

(I would consider 64 − 1 to be simpler than 1295.)

(b) Find and simplify ∫ 10

3

5

2− x
dx

Solution.Since d
dx (ln(|2− x|)) = 1

2−x (2− x)′ = − 1
2−x , we have∫ 10

3

5

2− x
dx = −5 ln(|2− x|)

∣∣10
3

(Alternatively, you might also have done a substitution of u = 2 − x to get
started.)

= −5 ln(|2− 10|)− (−5 ln(|2− 3|))

= −5 ln(| − 8|) + 5 ln(| − 1|)

= −5 ln(8) + 5 ln(1)

= −5 ln(8) + 5(0)

= −5 ln(8) = −5 ln(23) = −15 ln(2).

(Remark: the solution here has been corrected from an earlier version. In the
earlier version I swapped over the locations of plugging in x = 3 and x = 10,
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so ended up with an answer of +15 ln(2) instead. Note that −15 ln(2) is neg-
ative, since ln(2) > 0 since ln(x) > 0 for x > 1. You can verify independently
that the final answer should be negative, because the function we’re integrating,
f(x) = 5/(2−x), has f(x) < 0 for all x in the interval of integration, 3 ≤ x ≤ 10.

And 3 ≤ 10, i.e. the bounds of integration in
∫ 10

3
are in the usual order. So the

integral
∫ 10

3
f(x)dx must come out negative. (I’m also using the fact that f is

continuous over 3 ≤ x ≤ 10.))

(c) Find ∫ π/2

0

e3 sin(x) cos(x)dx

Solution.Since (3 sin(x))′ = 3 cos(x), we have

d

dx
(e3 sin(x)) = e3 sin(x)(3 sin(x))′ = 3e3 sin(x) cos(x).

So ∫ π/2

0

e3 sin(x) cos(x)dx

=
1

3
e3 sin(x)

∣∣π/2
0

(You might alternatively have done a substitution of u = 3 sin(x).)

=
1

3
(e3 sin(π/2) − e3 sin(0))

=
1

3
(e3 − e0)

=
1

3
(e3 − 1).

(d) Find ∫
ex − e−x

ex + e−x
dx

Solution.Since (ex + e−x)′ = (ex − e−x), and that’s the numerator, subbing
u = ex + e−x will be useful. Then du = (ex − e−x)dx, so∫

=

∫
du

u
= ln(|u|) + c

= ln(|ex + e−x|) + c

= ln(ex + e−x) + c,

the latter since ex + e−x > 0, since both ex > 0 and e−x > 0.

2.
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(a) Find
d

dx
(

x3

ln(x3)
).

Solution.Note that ln(x3) is only defined when x3 > 0, i.e. when x > 0, so we
have ln(x3) = 3 ln(x) for over its domain. So the derivative is equivalent to:

d

dx
(

x3

3 ln(x)
)

=
1

3

d

dx
(
x3

ln(x)
).

Appying the quotient rule,

=
1

3

(x3)′ ln(x)− x3(ln(x))′

(ln(x))2

=
1

3

3x2 ln(x)− x3(1/x)

ln(x)2

=
1

3

3x2 ln(x)− x2

(ln(x))2

=
1

3

x2(3 ln(x)− 1)

(ln(x))2
.

The domain of the original function, x3/ ln(x3), is the union of the intervals
(0, 1) and (1,∞). For x3/ ln(x3) is defined iff both numerator and denominator
are defined, and denominator is non-0. The numerator x3 is defined for all x.
The denominator ln(x3) is defined iff x3 > 0 iff x > 0, and is non-0 iff x3 6= 1
iff x 6= 1. Therefore the function is defined just for 0 < x < 1 and 1 < x. The
formula we found for the derivative gives the same domain (its numerator works
for x > 0 and its denominator (ln(x))2 works for x > 0 and is non-0 for x 6= 1),
so it is correct as written and needn’t be restricted.

(b) Find
d

dx
(
√
x
√
x
).

Solution.The function to be differentiated has the form f(x)g(x), where f(x) =√
x and g(x) =

√
x. Here the domain is

√
x > 0, i.e. x > 0, since we’re using√

x in the base. We first convert the function to be differentiated to base e:

=
d

dx
(eln(

√
x))
√
x

=
d

dx
(e
√
x·ln(x

1
2 ))

=
d

dx
(e(

1
2

√
x ln(x))).

Now applying the chain rule and that (ex)′ = ex:

= e(
1
2

√
x ln(x))(

1

2

√
x ln(x))′
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Pulling the 1
2 through and then applying the product rule:

=
1

2
e(

1
2

√
x ln(x))(

√
x
′
ln(x) +

√
x(ln(x))′)

=
1

2
e(

1
2

√
x ln(x))(

1

2
√
x

ln(x) +
√
x

1

x
)

=
1

2
e(

1
2

√
x ln(x))(

1

2
√
x

ln(x) +
1√
x

)

=
1

2
√
x
e(

1
2

√
x ln(x))(

1

2
ln(x) + 1)

From the first few steps, we have e(
1
2

√
x ln(x)) =

√
x
√
x

so:

=
1

2
√
x

√
x
√
x
(
1

2
ln(x) + 1)

You could also combine the powers of x into a single term: 1√
x

= x−
1
2 and

√
x
√
x

= (x
1
2 )
√
x = x(

1
2

√
x), so

=
1

2
(x−

1
2 )x(

1
2

√
x)(

1

2
ln(x) + 1)

=
1

2
x(−

1
2+

1
2

√
x)(

1

2
ln(x) + 1)

=
1

2
x(

1
2 (−1+

√
x))(

1

2
ln(x) + 1)

(c) Let a = (e13 + 6/π). Find

d

dx
(axxln(a)).

We must differentiate the product of the functions ax and xln(a), so by the
product rule:

= (ax)′xln(a) + ax(xln(a))′

For the first term: Since a is a constant, ax has a constant base and variable
exponent, so it’s an exponential function, so we use the exponential function
rule:

= ln(a)axxln(a) + ax(xln(a))′

For the second term: since a is a constant, so is ln(a), so xln(a) has variable base
and constant exponent, so we can just use the power rule:

= ln(a)axxln(a) + ax ln(a)xln(a)−1

= ln(a)ax(xln(a) + xln(a)−1)
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3. Let f(x) =
√
x6 − 4. Find the longest intervals over which f has an

inverse, and find the formula for the inverse over each such interval.
Solution.We have f(x) is defined just when x6 − 4 ≥ 0, i.e. when

x6 ≥ 4

iff
(x6)1/6 ≥ 41/6

(since f(x) = x1/6 is an increasing function) iff

|x| ≥ 41/6

iff
x ≥ 41/6 or x ≤ −41/6.

We look at f ′ to determine where f is increasing/decreasing, in order to deter-
mine where it is 1-1. Now

f(x) = (x6 − 4)
1
2

so by the chain and power rules,

f ′(x) =
1

2
(x6 − 4)−

1
2 (x6 − 4)′

=
1

2
√
x6 − 4

(6x5)

=
3x5√
x6 − 4

.

Now f ′(x) = 0 iff the numerator is 0 and the denominator non-0. The denomi-
nator is 0 just when x6 − 4 = 0, i.e. x = ±41/6 (so the derivative is not defined
at these points). And so calculating like above, f ′(x) is defined for x > 41/6

and for x < −41/6 (not at x = ±41/6).
The numerator is 0 just when 3x5 = 0, which is iff x = 0. But x = 0 is not

in the domain of f anyway.
The denominator

√
x6 − 4 > 0 for all x in the domain of f (and therefore

for all x in the domain of f ′). Therefore the sign of f ′(x) is the same as that of
its numerator, 3x5.

For x > 41/6, we have x > 0, so the numerator 3x5 > 0. Therefore f ′(x) > 0,
so f is increasing over the interval (41/6,∞). Since f is also continuous, it is
therefore in fact increasing over [41/6,∞).

For x < −41/6, we have x < 0, so the numerator 3x5 < 0. Therefore
f ′(x) < 0, so f is decreasing over the interval (−∞,−41/6). Since f is also
continuous, it is therefore in fact decreasing over (−∞, 41/6].

Since the domain of f is (−∞,−41/6] ∪ [41/6,∞), these are the longest in-
tervals over which f is increasing/decreasing: If we wanted to enlarge D1 =
(−∞,−41/6] to a larger interval, and actually include more points in the domain
of f , we would need to include +41/6 (since nothing in the interval (−41/6, 41/6)
is included in f ’s domain). But f(−41/6) = 0 = f(41/6), so f is not decreasing
over (−∞, 41/6], and therefore is neither decreasing over any interval larger than
that.
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(We can ignore points in the interval (−41/6, 41/6) since none of these are
included in the domain of f .)

Since f is decreasing over D1 = (−∞,−41/6], it is 1-1 over this interval.
Since f is increasing over D2 = [41/6,∞), it is 1-1 over this interval. And f
is not 1-1 over any intervals which are larger in any useful way: as remarked
above, if we extend (−∞,−41/6] to the larger interval (−∞, 41/6], then since
f(−41/6) = 0 = f(41/6), we have f is not 1-1 over the latter interval. So D1,
D2 are the largest intervals over which f is 1-1.

(Again we ignore points in the interval (−41/6, 41/6).)
Since f has an inverse over an interval iff it is 1-1 over that interval, we know

that the longest intervals over which f has an inverse are D1 and D2. Note that
the range of f over [41/6,∞) is [0,∞). This is because f(41/6) = 0, and f is
increasing over the interval [41/6,∞) (established earlier), and f(x) ≥ 0 for all
x in [41/6,∞). And f is continuous over [41/6,∞),

lim
x→∞

(x6 − 4) =∞,

and since also
lim
z→∞

√
z =∞,

we get

lim
x→∞

√
x6 − 4 =∞.

Therefore by the intermediate value theorem, for every a ≥ 0 there is c in the
interval [41/6,∞) such that f(c) = a. So the range of f over D1 = [41/6,∞) is
R1 = [0,∞).

Since f is an even function, and D2 = (−∞,−41/6] is the reflection of
D1 = [41/6,∞) across the y-axis, we get that the range of f over D2 is R2 =
R1 = [0,∞). (That is, if x is in (−∞,−41/6] then f(x) = f(−x), and −x ≥ 41/6,
so f(x) = f(−x) ≥ 0. And if a is in [0,∞), then there’s c in [41/6,∞) such that
f(c) = a, so f(−c) = a also, and −c is in (−∞,−41/6]. Thus the range of f
over (−∞,−41/6] is [0,∞).)

Now for x in D1 or in D2, and for any number y, we have

f(x) = y

iff √
x6 − 4 = y

iff (note the above line implies y ≥ 0)√
x6 − 4 = y, y ≥ 0

iff
x6 − 4 = y2, y ≥ 0

iff
x6 = y2 + 4, y ≥ 0

iff
x = ±(y2 + 4)1/6, y ≥ 0.
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Now for f over the interval D1 = [41/6,∞), we have x ≥ 41/6, and (y2 + 4)1/6 ≥
0, so in this case f(x) = y iff

x = +(y2 + 4)1/6, y ≥ 0.

So letting
g(y) = (y2 + 4)1/6, y ≥ 0,

we have that g is the inverse of f over D1 = [41/6,∞). And we swap over the
domains and ranges, so the domain of g is R1 = [0,∞) (as also indicated above
by “y ≥ 0”), and the range of g is D1 = [41/6,∞).

Now for f over the interval D2 = (−∞,−41/6], we have x ≤ −41/6, and
(y2 + 4)1/6 ≥ 0, so in this case f(x) = y iff

x = −(y2 + 4)1/6, y ≥ 0.

So letting
h(y) = −(y2 + 4)1/6, y ≥ 0,

we have that h is the inverse of f over D2 = (−∞,−41/6]. And we swap over
the domains and ranges, so the domain of h is R2 = [0,∞) (as also indicated
above by “y ≥ 0”), and the range of h is D2 = (−∞,−41/6].

4. Let f(x) = e−x
2

. (a) Does f have an inverse over the interval (−2, 5)?
(b) Find the formula for the inverse of f over the interval D = [5, 10], and find
the domain and range of the inverse.
Solution.

(a) No, because f is not 1-1 over the interval (−2, 5), because e.g. f(−1) =

e−(−1)
2

= e−1, and f(1) = e−(1)
2

= e−1, so f(−1) = f(1), but −1 6= 1, and −1
and 1 both lie in the interval (−2, 5).

(b) (Note f has an inverse over [5, 10] because

f ′(x) = (e−x
2

)′ = e−x
2

(−x2)′ = −2xe−x
2

,

and for all x, e−x
2

> 0, and for 5 ≤ x ≤ 10, we have x > 0, so

f ′(x) = −2xe−x
2

< 0

for 5 ≤ x ≤ 10. Thus, f is decreasing over this interval, so is 1-1 over this
interval, and therefore has an inverse over this interval.)

Now for 5 ≤ x ≤ 10 and y any number we have

y = e−x
2

, 5 ≤ x ≤ 10

iff
y = e−x

2

, 5 ≤ x ≤ 10, y > 0

(since e−x
2

> 0 for all x) iff

ln(y) = ln(e−x
2

), 5 ≤ x ≤ 10, y > 0

(since ln is 1-1 and we’re assuming y > 0) iff

ln(y) = −x2, 5 ≤ x ≤ 10, y > 0
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iff
− ln(y) = x2, 5 ≤ x ≤ 10, y > 0

iff √
− ln(y) = |x|, 5 ≤ x ≤ 10, y > 0

iff
±
√
− ln(y) = x, 5 ≤ x ≤ 10, y > 0

iff √
− ln(y) = x, 5 ≤ x ≤ 10, y > 0

(for 5 ≤ x ≤ 10, we can’t have x = −
√
− ln(y), since any

√
z ≥ 0 for any z).

So setting
g(y) =

√
− ln(y), y > 0, 5 ≤ g(y) ≤ 10,

this is the formula for the inverse of f over the interval [5, 10].
The range of the inverse is [5, 10] (since we’re computing the inverse for f

over the interval [5, 10]). The domain of the inverse is the range of f over [5, 10].
Since f is decreasing over this interval and is continuous, the range of f over this
interval is [f(10), f(5)], by the intermediate value theorem. Thus, the domain

of the inverse is [e−(10)
2

, e−5
2

] = [e−100, e−25]. So in the end, a clearer definition
of the inverse is

g(y) =
√
− ln(y), e−100 ≤ y ≤ e−25.

5. Suppose that f is a differentiable function, and that f is one-to-one, and

• f(2) = 4; f ′(2) = −1

• f(3) = 2; f ′(3) = −3

• f(4) = −2; f ′(4) = 0

(a) Why does f−1 exist?
(b) Let g = f−1. Find g′(2), if you have sufficient information. Find g′(3),

if you have sufficient information.
(c) Sketch a plausible graph of y = f(x) over the interval [0, 5]. (So it should

agree with all information given.) Then sketch the graph of y = g(x), having
the correct relationship to the graph of y = f(x).

Solution.
(a) f−1 exists because f is one-to-one.
(b) Hint: before doing this problem it can help to do part (c) first, to guide

your thinking about the relationship between f and f−1.
We know g = f−1. Consider g′(2). Here x = 2 is an input to g = f−1, and

this corresponds to 2 being an output of f . The data given shows that f(3) = 2,
and in this equation 2 is the output. Thus, since g = f−1, we have g(2) = 3
(tho this was not asked for). The data also specifies f ′(3) = −3. So we can find
g′(2):

g′(2) =
1

f ′(3)
=

1

−3
= −1

3
.

We do not have sufficient information to find g′(3) because the only f -outputs
specified in the data are 4, 2 and −2 (equal to f(2), f(3), f(4) respectively); 3
is not included in this list of f -outputs.

(c) See sketches document on website.
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