Math 3410

Exam 2 Review Sheet

The exam will have about 7 problems and one extra-credit problem. You will need to simplify all answers as much as possible. You will be given the following formulas:

$$\mathcal{L}[f](s) = \int_0^\infty e^{-st} f(t)dt, \qquad \mathcal{L}[e^{-at}f](s) = \mathcal{L}[f](s+a),$$

$$\mathcal{L}[tf] = -\frac{d}{ds}\mathcal{L}[f], \qquad \mathcal{L}[u_a(t)f(t-a)](s) = e^{-as}\mathcal{L}[f](s),$$

$$\mathcal{L}[y''+by'+cy](s) = (s^2+bs+c)Y(s) - (s+b)y(0) - y'(0).$$

- 1. Consider y'' + 3y' 10y = g(t) with ICs y(0) = 1, y'(0) = 2.
- (a) Let $g = 84e^{-t}$. Find Y(s), apply partial fractions, and then find y(t).
- (b) Let $g = 49e^{2t}$. Find Y(s), apply partial fractions, and then find y(t).

2.

- (a) Find $\mathcal{L}[e^{-3t}(\sin 2t + \cos 2t)].$
- (b) Find $\mathcal{L}[t^2 e^{-2t}]$.
- (c) Find $\mathcal{L}[h]$, where h(t) = 1 for $1 \le t < 2$, h(t) = 2 for $2 \le t < 3$, and h(t) = 0 otherwise.

3.

(a) If
$$Y(s) = \frac{2s-3}{s^2+2s+10}$$
, what is $y(t)$?
(b) If $Y(s) = \frac{e^{-2s}}{s-2}$, what is $y(t)$?

- 4. Consider the equation $(1 + x^2)y'' 2y = 0$.
- (a) Find the recursion relation for the power series at x = 0 of its solutions.
- (b) Find the first three non-zero terms of each of its fundamental solutions.

5. Find the general solution of $2x^2y'' + 3xy' - y = 0$.

6. Suppose that $2x^2y'' + (3x - x^2)y' - y = 0$ has solution

$$y_r = x^r + a_{r+1}x^{r+1} + a_{r+2}x^{r+2} + \cdots$$

(a) What are the possible values of r?

- (b) What is the recursion relation for the a_n ? (It does not depend on r.)
- (c) For each possible value of r, compute a_{r+1} and a_{r+2} .

7. Suppose that $y'' - y\sqrt{1-2x} = 0$ has ICs y(0) = y'(0) = 1 and solution

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$

Find a_0 , a_1 , a_2 , and a_3 .

Extra Credit.

- (a) Find the general solution in Problem 6 in terms of an indefinite integral.
- (b) What can you say about the general solution of $x^3y'' y = 0$?