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Abstract. Lewis, Reiner, and Stanton conjectured a Hilbert series for a space of
invariants under an action of finite general linear groups using (q, t)-binomial coeffi-
cients. This work gives an analog in positive characteristic of theorems relating various
Catalan numbers to the representation theory of rational Cherednik algebras. They
consider a finite general linear group as a reflection group acting on the quotient of a
polynomial ring by iterated powers of the irrelevant ideal under the Frobenius map.
We prove a variant of their conjecture in the local case, when the group acting fixes a
reflecting hyperplane, over fields of prime order.

1. Introduction

In 2017, Lewis, Reiner and Stanton [9] conjectured a combinatorial formula for the
Hilbert series of a space of invariants under the action of the general linear group GLn(Fq)
over a finite field Fq in terms of (q, t)-binomial coefficients. This formula provides an
analogue for the q-Catalan and q-Fuss Catalan numbers that connect Hilbert series for
certain invariant spaces with the representation theory of rational Cherednik algebras
for Coxeter and complex reflection groups. Results in the theory of reflection groups
often follow from a local argument after considering the subgroup fixing one reflecting
hyperplane. We prove here a version of the conjecture in the local case. We expect this
local theory will extend to one for any modular reflection group, including GLn(Fq).

Lewis, Reiner, and Stanton consider GLn(Fq) acting on V = (Fq)n and the polynomial
ring S = S(V ∗) = Fq[x1, . . . , xn] by transformation of variables x1, . . . , xn in V ∗. They
consider the quotient of S by the m-th iterated Frobenius power of the irrelevant ideal,

m[qm] := (xq
m

1 , . . . , xq
m

n ) ,

which we call the Frobenius irrelevant ideal. Their conjecture gives the Hilbert series for

the GLn(Fq)-invariants in Fq[x1, . . . , xn]/(xq
m

1 , . . . , xq
m

n ) using (q, t)-binomial coefficients.
We consider subgroups of reflections about a single hyperplane H in V . These groups

are not cyclic in general, in contrast to groups over fields of characteristic 0. We take
the case when q is a prime p; some of our ideas generalize to arbitrary q. We explicitly
describe the space of G-invariants in S/m[pm] for any subgroup G ⊂ GLn(Fp) fixing a
hyperplane H in V pointwise. We give the Hilbert series in terms of the dimension of
the transvection root space. As a special case, we describe the invariants under the
pointwise stabilizer GLn(Fp)H in GLn(Fp) of any hyperplane H in V .
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Theorem 1.1. For any hyperplane H in V ,

Hilb
((
S�m[pm]

)GLn(Fp)H
, t
)

= ([pm−1]tp)n−1
[
m

1

]
p,t

+ tp
m−1([pm]t)

n−1
[
m

0

]
p,t

.

Recall the q-integer [m]q = 1+q+q2+ . . .+qm−1 and (q, t)-binomial coefficient (see [11])[
m

k

]
q,t

:=
k−1∏
i=0

1− tqm−qi

1− tqk−qi
.

We compare with the Lewis, Reiner, Stanton conjecture in Section 2 and give this Hilbert
series in terms of q-Fuss Catalan numbers. The conjecture implies that the dimension
over Fq of the GLn(Fq)-invariants in S/m[pm] counts the number of orbits in (Fqm)n

under the action of GLn(Fq), and that this dimension is
∑min(n,m)

k=0

[
m
k

]
q

(see [9, Section

7.1 and Theorem 6.16]). We prove an analogous statement in Section 9:

Corollary 1.2. For any hyperplane H in V = (Fp)n, the number of orbits in (Fpm)n

under the action of GLn(Fp)H is

dimFp
(S�m[pm]

)GLn(Fp)H = p(m−1)(n−1)
[
m

1

]
p

+ pm(n−1)
[
m

0

]
p

.

Example 1.3. Consider G acting on V = (F5)3 with dimFp(RootSpace(G) ∩ H) = 2.
Then G is generated by two transvections and a diagonalizable reflection. We may
assume (after a change-of-basis) that

G =
〈(

1 0 0
0 1 0
0 0 ω

)
,
(

1 0 1
0 1 0
0 0 1

)
,
(

1 0 0
0 1 1
0 0 1

)〉
for some e-th root-of-unity ω in F5. The m-th iterated irrelevant ideal in F5[x1, x2, x3]
is (x5

m

1 , x5
m

2 , x5
m

3 ) for m ≥ 1. We will see in Section 7 that

Hilb
((S�m[5m]

)G
, t
)

=
(1− tpm)2

(1− t5)2(1− te)
(
1− t5m−1 + t5

m−1(1− te)
(1− t5

1− t
)2)

.

Outline. In Section 2, we give motivation from the theory of rational Catalan combina-
torics, which relates rational Cherednik algebras with various kinds of Catalan numbers.
We recall some facts on modular reflection groups in Section 3. In Sections 4 to 7, we
mainly consider a subgroup G of GLn(Fp) fixing a hyperplane H with maximal transvec-
tion root space; more general results in Sections 6 and 8 will follow from this special
case. In Section 4, we give a Groebner basis for SG ∩m[pm], the invariants in the Frobe-
nius irrelevant ideal, and compute the Hilbert series for SG/(SG ∩ m[pm]) in Section 5.

We decompose (S/m[pm])G as the direct sum of SG/(SG ∩ m[pm]) and a complement

in Section 6. We give the Hilbert series for the G-invariants in S/m[pm] when G has
maximal root space in Section 7 and for general groups fixing a hyperplane in Section 8.
In Section 9, we show the Hilbert series for the full pointwise stabilizer GLn(Fp)H in
GLn(Fp) of a hyperplane H counts orbits. We give a bound on the Hilbert series for
GLn(Fp) in the conjecture of Lewis, Reiner, and Stanton in Section 10. Lastly, we give

a resolution directly for SG ∩m[pm] in the 2-dimensional case in Section 11.
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2. Motivation

We recall some incentive for studying the invariants of S/m[qm] from the theory
of Catalan combinatorics for Coxeter and complex reflection groups; see Armstrong,
Reiner, and Rhoades [1]; Berest, Etingof and Ginzburg [2]; Bessis and Reiner [3]; Gor-
don [5]; Gordon and Griffeth [6]; Krattenthaler and Müller [8]; and Stump [13].

Graded Parking Spaces and Rational Cherednik Algebras. The parking space
of an irreducible Weyl group gives an irreducible representation of the associated rational
Cherednik algebra. The q-Catalan number for the group records the Hilbert series for
the invariants in this space. More generally, for an irreducible Coxeter group W acting
on V = Cn with Coxeter number h, the graded parking space representation (see [1]) is
isomorphic to S/(θ1, . . . , θn) for some homogeneous polynomials θ1, . . . , θn in S of degree
h+1 with C-span{θ1, . . . , θn} isomorphic to the reflection representation V ∗. Recall that
the Coxeter number of a reflection group is the sum of the number of reflections and
the number of reflecting hyperplanes divided by n (see [6]). The W -invariants in the
parking space has Hilbert series given by the q-Catalan number for W :

Hilb
((S�(θ1, . . . , θn)

)W
, q
)

= Cat(W, q) =

n∏
i=1

1− qh+di
1− qdi

.

For a complex reflection group W , Gordon and Griffeth [6] connect the representation
theory of the associated rational Cherednik algebra to the m-th q-Fuss Catalan numbers,

Cat(m)(W, q) =
n∏
i=1

[di +mh]q
[di]q

=
n∏
i=1

1− qdi+mh

1− qdi
,

giving the Hilbert series of W -invariants in a space S/(θ1, . . . , θn), with each θi homo-
geneous of degree mh+ 1.

Lewis, Reiner, and Stanton Conjecture. For some Coxeter groups, the above ideal
(θ1, . . . , θn) takes a particularly nice form with θi = xh+1

i ; the graded parking space in

this case is just C[x1, ..., xn]/(xh+1
1 , . . . , xh+1

n ). Lewis, Reiner, and Stanton [9] ask what
ideal can play the role of (θ1, . . . , θn) for the modular reflection group GLn(Fq). They

consider the ideal (θ1, . . . , θn) = (xq
m

1 , . . . , xq
m

n ) = m[qm] for m ≥ 0 since θ1, . . . , θn span a

GLn(Fq)-stable subspace over Fq with the map xi 7→ xq
m

i defining a GLn(Fq)-equivariant

isomorphism (see [9]). The quotient S/m[qm] is (qm)n-dimensional, and Lewis, Reiner,
and Stanton give a conjecture for the Hilbert series of its GLn(Fq)-fixed subspace:

Conjecture 2.1 ([9]). The space of GLn(Fq)-invariants in S�m[qm] has Hilbert series

Hilb
((S�m[qm]

)GLn(Fq), t
)

=

min(n,m)∑
k=0

t(n−k)(q
m−qk)

[
m

k

]
q,t

=

min(n,m)∑
k=0

t(n−k)(q
m−qk) Hilb(SPk , t)

Hilb(SGLm(Fq), t)
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for Pk the maximal parabolic subgroup of GLm(Fq) stabilizing any Fq-subspace of (Fq)m
isomorphic to (Fq)k.

Compare with our Theorem 1.1, which is equivalent to the statement that

Hilb
((S�m[pm]

)GLn(Fp)H , t
)

=
Hilb(SGLn(Fp)H , t)

Hilb(SGLn(Fpm )H , t)
+

(tp
m−1 − tpm)

(1− tpm−1)
Hilb(S, t)

Hilb(SGLn(Fpm )H , t)
.

A curious reformulation. We mention a version of Theorem 1.1 in terms of q-Fuss
Catalan numbers that connects with Conjecture 2.1. For modular reflection groups,
the above definition of Coxeter number does not always give an integer, so we use an
alternate definition that agrees with the traditional one over fields of characteristic 0.
For any reflection group G acting on V with a polynomial ring of invariants SG =
F[f1, . . . , fn], define the

Coxeter number of G :=
deg J + degQ

n

for J = det{∂fi/∂xj}i,j=1,...,n in S, the determinant of the Jacobian derivative ma-
trix, and Q =

∏
H∈A lH , the polynomial in S defining the arrangement A of reflecting

hyperplanes for G. Note that deg J is not the number of reflections in G in general.
We write StabG(U) for the setwise stabilizer in any group G of a subspace U of V .

Then Theorem 1.1 is equivalent to the statement that, for any hyperplane H in V ,

(2.2) Hilb
((
S�m[pm]

)GLn(Fp)H
, t
)

=
∑
k=0,1

t(n−dimGk)(p
m−pk) Cat(ck)(Gk, t)

where ck = (pm − pk)/hk and Gk = (StabGLn(Fp)(Vk))|Vk with Coxeter number hk for
V0 = H and V1 = V . Here, G0 is the identity subgroup of GLn−1(Fp) regarded as a
trivial reflection group with degrees 1, . . . , 1 and Coxeter number h = 1 while G1 = G
has Coxeter number p− 1. Each Fuss parameter ck lies in N although Gk is reducible.

Although reformulation Eq. (2.2) is somewhat artificial, it agrees with a version of
the Lewis, Reiner, and Stanton conjecture if we allow for noninteger Fuss parameters.
Conjecture 2.1 is equivalent to the statement that

Hilb
((
S�m[pm]

)GLn(Fp)
, t
)

=

min{n,m}∑
k=0

t(n−dimGk)(p
m−pk) Catck(Gk, t)

where again ck = (pm− pk)/hk and Gk = (StabGLn(Fp)(Vk))|Vk = GLk(Fp) with Coxeter

number hk = pk−1 for Vk = (Fp)k ⊂ (Fp)n. Here, at least the groups Gk are irreducible.

3. Reflection groups and transvections

Recall that a reflection on V = Fn for any field F is a transformation s in GL(V )
whose fixed point space is a hyperplane H in V . A reflection group is a subgroup of
GL(V ) generated by reflections; we assume all reflection groups are finite. Suppose G
is a reflection group fixing a hyperplane H in V and choose some linear form l in V ∗

defining H, i.e., with Ker l = H. Every g in G defines a root vector αg in V satisfying

g(v) = v + l(v)αg for all v in V .
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We denote the collection of all root vectors by RootSpace(G). In the nonmodular setting,
when the characteristic p is relatively prime to |G|, the group G is cyclic. In this case,
every group element is semisimple, and one can choose a G-invariant inner product
so that any root vector for H is perpendicular to H. In the modular setting, when
p = char(F) divides |G|, the root vector of a reflection g may lie in H itself; this occurs
exactly when g is not semisimple. Such reflections are called transvections and they have
order p = char(F).

The transvections in G form a normal subgroup K, the kernel of the determinant
character det : G→ F×. The group G is generated by K and some semisimple element
gn of maximal order e = |G/K|, and G is isomorphic to the semi-direct product of K
and the cyclic subgroup 〈gn〉 of semisimple reflections:

G ∼= K o Z/eZ .
Now assume F = Fp. The corresponding transvection root space RootSpace(G) ∩ H

is an Fp-vector space (see [7]), and its dimension,

` = dimFp(RootSpace(G) ∩H) ,

is the minimal number of transvections needed to generate G: there are transvections
g1, . . . , g` with G = 〈g1, . . . , g`, gn〉 and |G| = e · p`.

After conjugation. We may choose a basis v1, . . . , vn of V with dual basis x1, . . . , xn
of V ∗ so that v1, . . . , vn−1 span the hyperplane H = Ker (xn). Then gn fixes x1, . . . , xn−1
and gn(xn) = ω−1xn for ω a primitive e-th root-of-unity in Fp. We furthermore refine the
basis so that each transvection gk fixes x1, . . . , xk−1, xk+1, . . . , xn and gk(xk) = xk − xn:

gn =

( 1 ... 0 0
...

. . .
...

0 ... 1 0
0 ... 0 ω

)
and, for 1 ≤ k ≤ `, gk :=


1 ··· ··· 0
...

. . .
...

0 ··· 1 0 0 ··· 0
0 ··· 0 1 0 ··· 1 ←kth row
0 ··· 0 0 1 ··· 0
...

. . .
...

0 ··· ··· 1

 .

Example 3.1. When n = 3, p = 5, and ` = 1, G acting on V = (F5)3 is generated
by one transvection and possibly an additional semisimple reflection. We may assume
(after a change-of-basis) that for some e-th root-of-unity ω in F5

G =
〈
g3 =

(
1 0 0
0 1 0
0 0 ω

)
, g1 =

(
1 0 1
0 1 0
0 0 1

)〉
.

Basic Invariants. The ring of invariant polynomials SG is itself a polynomial ring,
SG = Fp[f1, . . . , fn] with homogeneous generators

f1 = xp1 − x1x
p−1
n , . . . , f` = xp` − x`x

p−1
n , f`+1 = x`+1, . . . , fn−1 = xn−1, fn = xen

and
Hilb(SG, t) =

1

(1− tp)` (1− t)n−`−1 (1− te)
.

Example 3.2. For G =
〈(

1 0 0
0 1 0
0 0 ω

)
,
(

1 0 1
0 1 0
0 0 1

)
,
(

1 0 0
0 1 1
0 0 1

)〉
⊂ GL3(F5), the ring SG is gener-

ated by

f1 = x51 − x1x43, f2 = x52 − x2x43, and f3 = xe3 as an F5-algebra.
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Here, m[pm] = (x5
m

1 , x5
m

2 , x5
m

3 ), and we will compute the Hilbert series of(S�m[pm]
)G

=
(
F5[x1, x2, x3]�(x5

m

1 , x5
m

2 , x5
m

3 )

)G
for any fixed m ≥ 1 .

4. Describing the invariants in the Froebenius irrelevant ideal

We begin by finding the invariants in the Frobenius irrelevant ideal itself, describing
SG∩ m[pm]. We assume G is a subgroup of GLn(Fp) fixing one hyperplane H throughout
this section. The general case will follow from the special case when G has maximal
transvection root space, so we assume ` = n − 1. Without loss of generality, we may
take a basis x1, . . . , xn for V ∗ so that H = Kerxn and G acts as in Section 3.

Monomial orderings. We consider S as a graded ring with respect to the usual poly-
nomial degree with deg xi = 1 for all i. The Frobenius irrelevant ideal m[pm] is then
a homogeneous ideal giving a graded quotient S/m[pm]. We use compatible monomial
orderings on the two polynomial rings S and SG. On S = Fp[x1, . . . , xn], we take the
graded lexicographical ordering with x1 > x2 > · · · > xn. We take the inherited graded
lexicographical ordering on SG = Fp[f1, . . . , fn], i.e., the grading with deg(fn) = e < p
and deg(fi) = p for i < n and ordering f1 > f2 > · · · > fn. Then for any polynomials
f and f ′ in SG, f < f ′ in the monomial ordering on SG if and only if f < f ′ in the
monomial ordering on S. We use the notation LMS(f) and LMSG(f) for the leading
monomials of a polynomial f with respect the ordering on S and SG, respectively. Then

(4.1) LMS

(
LMSG(f)

)
= LMS(f).

We will frequently use the fact that, for any nonnegative exponents ai,

(4.2) fi x
a1
1 . . . x

an−1

n−1 x
pm−1
n ≡ xa11 . . . x

ai−1

i−1 x
p+ai
i x

ai+1

i+1 . . . x
an−1

n−1 x
pm−1
n mod m[pm] .

Generators for invariants in the Frobenius irrelevant ideal. We will show that
the following polynomials give a Groebner basis for SG ∩ m[pm] when G has maximal
transvection root space.

Definition 4.3. Define polynomials in SG = Fp[f1, . . . , fn] for 1 ≤ a ≤ b < n by

h0 = f1+e
−1(pm−1)

n , h1,a =

m−1∑
k=0

f1+e
−1(pm−pm−k)

n fp
m−k−1

a , and h2,a,b = fp
m−1

a fp
m−1

b .

Example 4.4. For our archetype example G =
〈(

1 0 0
0 1 0
0 0 ω

)
,
(

1 0 1
0 1 0
0 0 1

)
,
(

1 0 0
0 1 1
0 0 1

)〉
,

h0 = f
1+e−1(5m−1)
3 ,

h1,1 =

m−1∑
k=0

f
1+e−1(5m−5m−k)
3 f5

m−k−1

1 , h1,2 =

m−1∑
k=0

f
1+e−1(5m−5m−k)
3 f5

m−k−1

2 ,

h2,1,1 = f
2(5m−1)
1 , h2,1,2 = f5

m−1

1 f5
m−1

2 , and h2,2,2 = f
2(5m−1)
2 .

The next lemma verifies that these polynomials lie in the Frobenius irrelevant ideal.

Lemma 4.5. For G with maximal transvection root space, {h0, h1,a, h2,a,b}⊂ SG∩m[pm].
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Proof. Simple computation confirms that

h0 = xp
m+e−1
n ,

h1,a = xp
m

a xen − xaxp
m+e−1
n , and

h2,a,b = xp
m

a xp
m

b − x
pm−1

a xp
m

b x(p−1)p
m−1

n − xpma xp
m−1

b x(p−1)p
m−1

n + xp
m−1

a xp
m−1

b x2(p−1)p
m−1

n .

�

The next lemma is key to characterizing elements of SG ∩ m[pm]; it relies on an
inductive argument using Lucas’ Theorem.

Lemma 4.6. Suppose G has maximal transvection root space. Let f ∈ SG ∩m[pm] and
write f as a polynomial in the variables f1, . . . , fn, say homogeneous. Then LMSG(f) is
divisible by fn or some h2,a,b with 1 ≤ a ≤ b < n.

Proof. Suppose no h2,a,b divides LMSG(f) nor fn. Then

LMSG(f) = f c11 f
c2
2 · · · f

cn−1

n−1

for some ci < 2pm−1 (as no h2,a,a divides) with all but possibly one exponent satisfying
ci < pm−1 (as no h2,a,b divides for a 6= b). Observe first that not all ci < pm−1.
Otherwise, by the binomial theorem and Eq. (4.1),

LMS(f) = LMS(LMSG(f)) = xc1p1 xc2p2 · · ·x
cn−1p
n−1

would not lie in the monomial ideal m[pm], contradicting the fact that f does. Hence
there is a unique index j with pm−1 ≤ cj < 2pm−1. Without loss of generality, say j = 1,
so that pm−1 ≤ c1 < 2pm−1 and ci < pm−1 for 1 < i < n. Define h by

h = f · f2p
m−1−c1−1

1 fp
m−1−c2−1

2 fp
m−1−c3−1

3 · · · fp
m−1−cn−1−1
n−1 .

We will produce a monomial

xα = xp
m−p+1

1 xp
m−p

2 xp
m−p

3 · · ·xp
m−p
n−1 xp

m−1
n

of h in the variables x1, . . . , xn which does not lie in m[pm]. This will imply that h itself
does not lie in m[pm], contradicting the fact that h is a multiple of f .

To this end, set L = LMSG(h), so that, by construction,

L = LMSG(h) = f2p
m−1−1

1 fp
m−1−1

2 · · · fp
m−1−1
n−1 .

We write L as a polynomial in the variables x1, . . . , xn using the binomial theorem.
Direct calculation in S/m[pm] confirms that

L+ m[pm] = ± xα + m[pm]

as Lucas’ theorem on binomial coefficients (see [10] or [12, Exercise 1.6(a)]) implies that(
2pm−1 − 1∑m−1

i=0 pi

)
=

{
1 for m = 1, 2,∏m−2
i=0

(
p−1
1

)
= (−1)m−1 for m > 2 .

Thus, the monomial xα appears with nonzero coefficient in L and does not lie in m[pm].
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We now argue that xα appears with nonzero coefficient in h itself (i.e., does not cancel
with other terms). Consider the coefficient cα(M) of xα in some other monomial

M = f
c′1
1 f

c′2
2 · · · f

c′n
n < L

of h after expanding M in the variables x1, . . . , xn. Suppose cα(M) 6= 0.
We first establish that M has smaller degree in f1 than L but larger degree in fn.

Indeed, note that pm−1 ≤ c′1, else degx1(M) < degx1(xα) and cα(M) = 0. Now fix

1 < i < n and consider c′i. Note that c′i ≥ pm−1 − 1 else cα(M) = 0 as fk ∈ Fp[xk, xn]

for all k. And c′i ≤ pm−1 − 1 else h2,1,i divides M and cα(M) = 0 as M ∈ m[pm]. Thus
c′i = pm−1 − 1 and degfi(M) = degfi(L) for 1 < i < n. But degSM = degS L, with
M < L. Thus M has smaller degree in f1 but larger degree in fn than L, i.e.,

• pm−1 ≤ c′1 < 2pm−1 − 1, and
• c′i = pm−1 − 1 for 1 < i < n, and
• c′n > 0.

We assume m ≥ 2 since if m = 1, then c′1 = 0 and degx1(M) = 0, forcing cα(M) = 0.
We examine the contribution to M from f1. Set d = c′1. Then as cα 6= 0 and

fd1 = (xp1 − x1x
p−1
n )d =

d∑
i=0

(
d

i

)
x
dp−(p−1)i
1 x(p−1)in ,

there is some index i with
(
d
i

)
6= 0 and dp− (p− 1)i = pm − p+ 1. Hence i ≡ 1 mod p.

Since d < 2pm−1 − 1 by assumption,

(4.7) d = pm−1 + (p− 1)a and i = 1 + pa for some 0 ≤ a <
m−2∑
k=0

pk .

We show instead that
∑m−2

k=0 p
k ≤ a by considering the base p expansions of a and d:

a =

m−2∑
k=0

ak p
k and d =

m−1∑
k=0

dk p
k for some 0 ≤ ak, dk < p.

We compare the base-p coefficients dk and ak using the key point that
(
d
i

)
is nonzero:

Lucas’ Theorem [10] implies that

0 6=
(
d

i

)
=

(
d0
1

)m−1∏
k=1

(
dk
ak−1

)
as i = 1 +

m−1∑
k=1

ak−1 p
k ;

since no factor in the product vanishes, we conclude that d0 ≥ 1 and each ak−1 ≤ dk.
Eq. (4.7) then provides direct comparison of dk and ak,

(4.8)

m−1∑
k=0

dk p
k = d = pm−1 − a0 +

m−2∑
k=1

(ak−1 − ak)pk+1.

We now regroup base p as needed and show inductively that 0 < a0 ≤ a1 ≤ . . . ≤ am−2.
We first consider a0. Since 1 ≤ d0, Eq. (4.8) implies that d0 = p − a0 and a0 6= 0.

Next observe that a0 ≤ a1 since a0 ≤ d1, and Eq. (4.8) implies that

d1 = p+ a0 − a1 − 1 when a0 ≤ a1 whereas d1 = a0 − a1 − 1 when a1 < a0.
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Similarly, a1 ≤ a2 since a1 ≤ d2, and Eq. (4.8) implies that

d2 = p+ a1 − a2 − 1 when a1 ≤ a2 whereas d2 = a1 − a2 − 1 when a2 < a1.

We iterate this argument and conclude that 0 < a0 ≤ a1 ≤ . . . ≤ am−2. But this

contradicts Eq. (4.7), so
(
d
i

)
= 0 and thus cα(M) = 0. �

We now show that the collection of h0, h1,a, h2,a,b is a Groebner basis.

Proposition 4.9. If G has maximal transvection root space, then a Groebner basis for
the ideal SG ∩m[pm] of SG is

G = {h0, h1,a, h2,a,b : 1 ≤ a ≤ b < n} .

Proof. Suppose f in SG ∩ m[pm] is homogeneous in the variables f1, . . . , fn. Suppose
neither h0 = LMSG(h0) nor h2,a,b = LMSG(h2,a,b) for 1 ≤ a ≤ b < n divides LMSG(f).
We show LMSG(h1,j) divides LMSG(f) for some 1 ≤ j < n. We write

LMSG(f) = f c11 f
c2
2 · · · f

cn
n

for some cn < degfn(h0) = 1 + (pm − 1)/e and some c1, . . . , cn−1. But f and hence

LMS(f) lies in m[pm], so pm−1 ≤ cj for some index j < n since

LMS(f) = LMS

(
LMSG(f)

)
= xpc11 xpc22 . . . x

pcn−1

n−1 xecnn .

Then fp
m−1

j divides LMSG(f). Lemma 4.6 implies that LMSG(f) is also divisible by fn,

hence by LMSG(h1,j) = fp
m−1

j fn as well. As G ⊂ SG ∩ m[pm] by Lemma 4.5, G is a

Groebner basis for SG ∩m[pm].
�

Example 4.10. For G =
〈(

1 0 0
0 1 0
0 0 ω

)
,
(

1 0 1
0 1 0
0 0 1

)
,
(

1 0 0
0 1 1
0 0 1

)〉
, the collection of polynomials

h0 = f
1+e−1(5m−1)
3 , h1,1 =

m−1∑
k=0

f
1+e−1(5m−5m−k)
3 f5

m−k−1

1 , h2,2,2 = f
2(5m−1)
2 ,

h1,2 =

m−1∑
k=0

f
1+e−1(5m−5m−k)
3 f5

m−k−1

2 , h2,1,1 = f
2(5m−1)
1 , and h2,1,2 = f5

m−1

1 f5
m−1

2

form a Groebner basis for SG ∩m[5m] as an ideal of SG.

5. Hilbert Series of invariants in the Frobenius Irrelevant Ideal

Again, we assume G is a subgroup of GLn(Fp) fixing one hyperplane H and set e
to be the maximal order of a semisimple element of G. We consider the case when
G has maximal transvection root space, i.e., the case when G is generated by n − 1
transvections together possibly with a semisimple reflection of order e.

Proposition 5.1. Suppose G has maximal transvection root space. Then

Hilb
(
SG + m[pm]

�m[pm], t
)

=
(

1− tpm

1− tp
)n−1 (1− tpm+e−1 + (n− 1) tp

m
(1− te)

1− te
)
.
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Proof. We replace the ideal SG ∩ m[pm] by its initial ideal with respect to the graded
lexicographical order on Fp[x1, . . . , xn] with x1 > · · · > xn, since (see, for example, [4])

Hilb
(
SG + m[pm]

�m[pm], t
)

= Hilb
(
SG�(SG ∩m[pm]) , t

)
= Hilb

(
SG�in(SG ∩m[pm]) , t

)
.

We compute the Hilbert series recursively using short exact sequences. By Proposi-
tion 4.9, G is a Groebner basis for SG ∩ m[pm], and we enumerate the various elements
h0, h1,a, and h2,a,b in G as h1, h2, h3, . . . , hn−1+(n2)

by setting

hk = h1,k for 1 ≤ k < n and hna+b−(a+1
2 ) = h2,a,b for 1 ≤ a ≤ b < n .

Define Mi = LMSG(hi) and

I0 =
(
M0

)
, Ii =

(
Mj : 0 ≤ j ≤ i

)
and Ji =

(
Mj/ gcd(Mj ,Mi+1) : 0 ≤ j ≤ i

)
for 0 ≤ i ≤ n − 1 +

(
n
2

)
with Mn+(n2)

arbitrarily set to 1 for ease with notation. Note

that In−1+(n2)
= in(SG ∩m[pm]). This gives the short exact sequence (for each i)

(5.2) 0 −→
(SG�Ji)[− deg(Mi+1)

]
−→ SG�Ii −→

SG�Ii+1
−→ 0 .

Each ideal Ii is uniquely determined by some polynomial hi of the form h0, h1,a, or
h2,a,b, and we revert to more suggestive notation for the next computations, defining

I0 = I0, I1,k = Ik, I
2,a,b = Ina+b−(a+1

2 ) for 1 ≤ k < n, 1 ≤ a ≤ b < n ;

J0 = J0, J1,k = Jk, J
2,a,b = Jna+b−(a+1

2 ) for 1 ≤ k < n, 1 ≤ a ≤ b < n ,

so that the ideals I1, I2, . . . , In−1+(n2)
merely enumerate the ideals I0, I1,a, I2,a,b for ease

with induction, with the last ideal in our sequence just

I2,n−1,n−1 = In−1+(n2)
= in(SG ∩m[pm]) .

To compute the Hilbert series for each SG/Ji, we first give minimal generating sets
for each ideal Ji,

J0 =
(
f
e−1(pm−1)
n

)
J1,a =

(
f
e−1(pm−1)
n , fp

m−1

j : 1 ≤ j ≤ a
)

for 1 ≤ a ≤ n− 2

J1,n−1 = (fn)

J2,a,b =
(
fn, f

pm−1

j : 1 ≤ j ≤ b
)

for 1 ≤ a ≤ b ≤ n− 2

J2,a,n−1 =
(
fn, f

pm−1

j : 1 ≤ j ≤ a
)

for 1 ≤ a ≤ n− 2 ,

and then use the fact that the Hilbert series are additive over short exact sequences of
the form (for 1 ≤ c ≤ n− 1)

0 −→ (fdn) −→ SG −→ SG�(fdn) −→ 0 and

0 −→ (fp
m−1

c ) −→ SG�
(fdn, f

pm−1

i : 1 ≤ i ≤ c− 1)
−→ SG�

(fdn, f
pm−1

i : 1 ≤ i ≤ c) −→ 0 .
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We conclude that
(5.3)

Hilb
(
SG�J0, t

)
=

1− tpm−1

(1− te)(1− tp)n−1
,

Hilb
(
SG�J1,a, t

)
=

(1− tpm)a(1− tpm−1)
(1− te)(1− tp)n−1

for 1 ≤ a ≤ n− 2 ,

Hilb
(
SG�J1,n−1, t

)
=

1− te

(1− te)(1− tp)n−1
,

Hilb
(
SG�J2,a,b, t

)
=

(1− tpm)b(1− te)
(1− te)(1− tp)n−1

for 1 ≤ a ≤ b ≤ n− 2 and,

Hilb
(
SG�J2,a,n−1, t

)
=

(1− tpm)a(1− te)
(1− te)(1− tp)n−1

for 1 ≤ a ≤ n− 2 .

Then as

(5.4) Hilb
(
SG�I0, t

)
=

1− tpm+e−1

(1− te)(1− tp)n−1
,

Equations (5.2) to (5.4) imply that Hilb
(
SG/in(SG ∩m[pm]) , t

)
is

1− tpm+e−1

(1− te)(1− tp)n−1︸ ︷︷ ︸
I0

− tpm+e 1− tpm−1

(1− te)(1− tp)n−1︸ ︷︷ ︸
J0

− tpm+e
n−2∑
a=1

(1− tpm)a(1− tpm−1)
(1− te)(1− tp)n−1︸ ︷︷ ︸
J1,a

− t2pm 1− te

(1− te)(1− tp)n−1︸ ︷︷ ︸
J1,n−1

− t2pm
n−2∑
b=1

b∑
a=1

(1− tpm)b(1− te)
(1− te)(1− tp)n−1︸ ︷︷ ︸
J2,a,b

− t2pm
n−2∑
a=1

(1− tpm)a(1− te)
(1− te)(1− tp)n−1︸ ︷︷ ︸
J2,a,n−1

.

We combine summations to express Hilb
(
SG/in(SG ∩m[pm]) , t

)
as

1− tpm+e−1

(1− te)(1− tp)n−1
− tpm+e

n−2∑
a=0

(1− tpm)a(1− tpm−1)
(1− te)(1− tp)n−1

− t2pm(1− te)
n−2∑
b=1

b∑
a=1

(1− tpm)b

(1− te)(1− tp)n−1
− t2pm

n−2∑
a=0

(1− tpm)a(1− te)
(1− te)(1− tp)n−1

,

which simplifies (using elementary series formulas) to

1− tpm+e−1

(1− te)(1− tp)n−1
− tpm+e

(
1− (1− tpm)n−1

)
(1− tpm−1)

tpm(1− te)(1− tp)n−1

− t2pm(1− te)
n−2∑
b=1

b(1− tpm)b

(1− te)(1− tp)n−1
− t2pm

(
1− (1− tpm)n−1

)
(1− te)

tpm(1− te)(1− tp)n−1
.

We use the fact that
n−2∑
b=1

b (1− tpm)b =
−(1− tpm)((n− 1)(1− tpm)n−2 tp

m
+ 1− (1− tpm)n−1)

t2pm
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to rewrite this last expression as

Hilb
(
SG�in(SG ∩m[pm]) , t

)
=

(1− tpm)n−1
(
1− tpm+e−1 + (n− 1)tp

m
(1− te)

)
(1− te)(1− tp)n−1

.

�

Example 5.5. For G =
〈(

1 0 0
0 1 0
0 0 ω

)
,
(

1 0 1
0 1 0
0 0 1

)
,
(

1 0 0
0 1 1
0 0 1

)〉
, Proposition 5.1 implies that

Hilb
(

(SG + m[5m])�m[5m], t
)

=
(1− t5m)2

(
1− t5m+e−1 + 2t5

m
(1− te)

)
(1− te)(1− t5)2

.

6. Decomposition of the invariant space

We use the description of SG ∩ m[pm] from the last two sections to give a direct
sum decomposition of (S/m[pm])G in this section. Again, we consider a subgroup G of
GLn(Fp) fixing a hyperplane. Without loss of generality, we use the basis x1, . . . , xn of

V ∗ as in Section 3 and basic invariants f1, . . . , fn for G. We show that (S/m[pm])G is
the direct sum of subspaces

AG = (SG + m[pm])�m[pm] and

BG = Fp[f1, . . . , fn−1]-span{xa11 . . . xa`` x
pm−1
n + m[pm] : 0 ≤ ai < p,

∑̀
i=1

ai ≥ 2}.

Recall that ` is the minimal number of transvections needed to generate G together
possibly with some semisimple reflection of order e; we set e = 1 if no group elements
in G are diagonalizable.

Remark 6.1. In defining the subspace BG, we require
∑`

i=1 ai ≥ 2 to avoid nontrivial

intersection with AG; see Proposition 6.5. Otherwise BG would contain xp
m−1
n + m[pm]

and xix
pm−1
n + m[pm], for example, which lie in AG for i < `.

We first describe the leading monomial in (S/m[pm])G using the standard graded
lexicographical order on S = Fp[x1, . . . , xn] with x1 > · · · > xn.

Lemma 6.2. Assume G has maximal transvection root space. Suppose f +m[pm] lies in
(S/m[pm])G with f homogeneous in x1, . . . , xn. Then LMS(f) lies in

m[pm] or Fp[x1, . . . , xn−1, fe
−1(pm−1)
n ] or Fp[xp1, . . . , x

p
n−1, fn] .

Proof. Say M = LMS(f) does not lie in m[pm] or in Fp[x1, . . . , xn−1, f
e−1(pm−1)
n ]. Then

M = xb11 · · ·x
bk
k · · ·x

bn−1

n−1 x
bn
n for some b1, . . . , bn−1 < pm and bn < pm − 1 .

We use the generators g1, . . . , gn of G from Section 3. Since f is G-invariant modulo
m[pm], the difference gnf − f lies in m[pm] and the low degree of each xi forces f itself to
be invariant under gn; hence bn is divisible by e.

Suppose there is some exponent bk which is not divisible by p with k < n. Consider
g = g−1k acting on M = LMS(f). Then g ·M −M is

xb11 · · ·x
bk−1

k−1
(
(xk + xn)bk − xbkk

)
x
bk+1

k+1 · · ·x
bn
n
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with leading monomial

(6.3) LMS(gM −M) = xb11 · · ·x
bk−1

k−1 (bk x
bk−1
k )x

bk+1

k+1 x
bk+2

k+2 · · ·x
bn−1

n−1 x
bn+1
n

as bk 6= 0 in Fp. Notice that the leading monomial of gM −M is the leading monomial
of gf − f as M is the leading monomial of f and g fixes x1, . . . , xk−1, xk+1, . . . , xn.

Since f is invariant modulo m[pm], the difference gf−f and thus its leading monomial
(6.3) lies in m[pm]. But this is impossible as bn < pm − 1 and b1, . . . , bn−1 < pm by our
assumptions. Thus every exponent bk for k < n must be divisible by p. �

We use Lemma 6.2 to decompose the invariants of the quotient space.

Proposition 6.4. For G with maximal transvection root space,
(S�m[pm]

)G
= AG+BG.

Proof. By construction, AG ⊆ (S/m[pm])G. To show BG ⊆ (S/m[pm])G, consider

M = xa11 . . . x
an−1

n−1 x
pm−1
n with M + m[pm] ∈ BG.

We consider the generators g1, . . . , gn of G from Section 3; for k < n,

g−1k (M) + m[pm] = xa11 . . . x
ak−1

k−1 (xk + xn)akx
ak+1

k+1 . . . x
an−1

n−1 x
pm−1
n + m[pm]

= xa11 . . . x
an−1

n−1 x
pm−1
n + m[pm] = M + m[pm],

since the binomial theorem implies that all but the initial term lies in m[pm]. In addition,
e divides pm−1, so gn fixes M . Hence BG is G-invariant and thus AG+BG ⊆ (S/m[pm])G.

To show the reverse containment, we first argue that any monomial M in the vari-
ables x1, . . . , xn with degxn(M) = pm − 1 represents a coset of m[pm] either in AG or
in BG. Both AG and BG are closed under multiplication by f1, . . . , fn−1, so we may
assume without loss of generality that degxi(M) < p for i < n by Eq. (4.2). Let

k =
∑n−1

i=1 degxi(M) mod p . If k ≥ 2, then M +m[pm] lies in BG by definition. If k = 0,

then M = xp
m−1
n = f

e−1(pm−1)
n and M + m[pm] lies in AG. If k = 1, then M + m[pm] lies

in AG as well since

−xi xp
m−1
n ≡

m−1∑
j=0

fe
−1(pm−pj)
n fp

m−1−j

i mod m[pm] for i < n.

Hence M + m[pm] lies in either AG or BG.
If the reverse containment fails, we may choose some f + m[pm] in (S/m[pm])G but

not in AG + BG with f homogeneous in x1, . . . , xn and LMS(f) minimal. Note that

degxi(LMS(f)) < pm for all i. By the minimality assumption, LMS(f) +m[pm] does not
lie in AG or BG, so by the argument in the last paragraph, degxn(LMS(f)) < pm − 1.
By Lemma 6.2, the monomial LMS(f) lies in Fp[xp1, . . . , x

p
n−1, fn], so

LMS(f) = xpc11 xpc22 · · ·x
pc2
n−1 x

ecn
n for some ci .

Define h by

h = αf c11 f
c2
2 · · · f

cn−1

n−1 f cnn , for α the leading coefficient of f.

Then f − h+ m[pm] lies in (S/m[pm])G since h+ m[pm] lies in AG, and, by construction,
LMS(h) = LMS(f) , implying that LMS(f − h) < LMS(f). The minimality assumption
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then implies that f − h must lie in AG +BG. However, AG +BG contains h already, so
must contain f as well, contradicting our choice of f . Thus (S/m[pm])G = AG +BG. �

Proposition 6.5. Suppose the transvection root space of G is maximal. Then(S�m[pm]
)G

= AG ⊕BG .

Proof. By Proposition 6.4, we need only show AG ∩ BG is trivial. If m ≤ 1, a simple
degree comparison shows AG ∩ BG = {0}, hence we assume m ≥ 2. Suppose AG ∩ BG
is non-trivial, say some f in SG and h+ m[pm] in BG satisfy

0 6= f + m[pm] = h+ m[pm] ∈ AG ∩BG .
We multiply f − h by fn = xen so that (f − h)fn lies in m[pm] fn. We will show that ffn
and hfn have no monomials in the variables x1, . . . , xn in common; this will force hfn
to lie in m[pm]fn, contradicting the fact that h does not lie in m[pm].

Fix some M in Xf ∩Xh for

Xf the set of monomials in x1, . . . , xn of ffn, and

Xh the set of monomials in x1, . . . , xn of hfn .

Since h lies in the ideal (xp
m−1
n ) and e ≥ 1, the ideal m[pm] contains hfn and thus

also ffn = (f − h)fn + hfn. However, ffn also lies in SG, so ffn lies in SG ∩ m[pm].
Proposition 4.9 then implies that M is a monomial of some SG-multiple of h0, h1,a, or
h2,a,b for some 1 ≤ a ≤ b < n (see Definition 4.3) and we use Lemma 4.5 to expand in

the variables x1, . . . , xn. Since h is not in m[pm] and M lies in Xh, Eq. (4.2) implies that

degxn(M) = pm + e− 1 and(6.6)

degxi(M) = bi p+ ai for some bi < pm−1, ai < p, with
n−1∑
i=1

ai ≥ 2 .(6.7)

First, suppose M is a monomial of some polynomial in SG h0. For i < n, Lemma 4.5
and the binomial theorem imply that

degxn(M) = x
pm+e−1+cn+(p−1)

∑n−1
i=1 ji

n for some cn ∈ N , and

degxi(M) = pci − (p− 1)ji = (ci − ji)p+ ji for some ci ∈ N and 0 ≤ ji ≤ ci .
But Eq. (6.6) implies that ji = 0 for all i < n and cn = 0. Then p must divide degxi(M)
for each 1 ≤ i ≤ n, contradicting Eq. (6.7).

Second, suppose that M is a monomial of some polynomial in SG h1,a for some a < n.
Without loss of generality, say a = 1. Then, for 1 < i < n,

degxi(M) = pci − (p− 1)ji for some ci ∈ N and 0 ≤ ji ≤ ci .
Furthermore, by Lemma 4.5,

degx1(M) = pm + pc1 − (p− 1)j1 or degx1(M) = 1 + pc1 − (p− 1)j1

for some c1 ∈ N and 1 ≤ j1 ≤ c1. But Eq. (6.7) implies the latter case holds, and thus

degxn(M) = pm + e− 1 + cn + (p− 1)
n−1∑
i=1

ji for some cn ∈ N .
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Again, Eq. (6.6) implies ji = 0 for all 1 ≤ i < n and cn = 0. However, this forces p to
divide degxi(M) for 2 ≤ i < n and degx1(M) = 1 + pc1, contradicting Eq. (6.7).

Third, suppose that M is a monomial of some polynomial in SG h2,a,b for some pair
a, b with 1 ≤ a ≤ b < n. Eq. (6.7) implies that the degree of xa or of xb in each monomial

of h2,a,b is too high to contribute to M except the last monomial xp
m−1

a xp
m−1

b x
2(p−1)pm−1

n ,

so we assume M is an SG-multiple of that monomial. Since m ≥ 2,

degxn(M) = 2(p− 1)pm−1 = pm + (p− 2)pm−1 ≥ pm + p > pm + e− 1 ,

contradicting Eq. (6.6). This completes the proof.
�

Example 6.8. For G =
〈(

1 0 0
0 1 0
0 0 ω

)
,
(

1 0 1
0 1 0
0 0 1

)
,
(

1 0 0
0 1 1
0 0 1

)〉
, Proposition 6.5 implies that the

space (S/m[5m])G decomposes as

(SG + m[5m])�m[5m] ⊕ F5[f1, f2]-span{xa11 x
a2
2 x

5m−1
3 + m[5m] : ai < p, a1 + a2 ≥ 2} .

In the next result, we do not assume the transvection root space is maximal.

Corollary 6.9. For any group G ⊂ GLn(Fp) fixing a hyperplane,(S�m[pm]
)G

= AG ⊕BG .

Proof. We decompose the vector space V to separate out the trivial action: set

V1 = C-span{v1, . . . , v`, vn} and V2 = C-span{v`+1, . . . , vn−1} ,

and set S1 = S(V ∗1 ) = Fp[x1, . . . , x`, xn] and S2 = S(V ∗2 ) = Fp[x`+1, . . . , xn−1]. Like-

wise, set m
[pm]
1 = (xp

m

1 , . . . , xp
m

` , xp
m

n ) and m
[pm]
2 = (xp

m

`+1, . . . , x
pm

n−1) . Then G is the

direct sum G = G1 ⊕ G2 for Gi = G|Vi and m[pm] = (m
[pm]
1 ,m

[pm]
2 ). By Propo-

sition 6.5, (S1/m
[pm]
1 )G1 = AG1 ⊕ BG1 . Since G2 acts trivially on V2, we may set

AG2 = (Fp[vl+1, . . . , vn−1] + m
[pm]
2 )/m

[pm]
2 and BG2 = {0}. The graded isomorphism

S ∼= S1 ⊗Fp S2 induces a graded isomorphism

S�m[pm] ∼= S1�
m

[pm]
1

⊗Fp S2�
m

[pm]
2

and induces graded vector space isomorphisms(
S�m[pm]

)G ∼= (
S1�

m
[pm]
1

)G1

⊗Fp
(
S2�

m
[pm]
2

)G2 ∼= (AG1 ⊕BG1)⊗Fp AG2
∼= AG ⊕BG .

The result follows since AG +BG ⊂ (S/m[pm])G. �

7. Hilbert Series for maximal transvection root spaces

Again, we assume throughout this section that G is a subgroup of GLn(Fp) fixing a
hyperplane H and e is the maximal order of a semisimple element of G. We assume
the root space of G is maximal to avoid excessive notation arising from a trivial action
of G on extra variables. By Proposition 6.5, (S/m[pm])G is a direct sum AG ⊕ BG with
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invariant subspace AG described in Sections 4 and 5. For ease with notation, we fix a
basis of V as in Section 3 and describe here

BG = Fp[f1, . . . , fn−1]-span{xa11 . . . x
an−1

n−1 x
pm−1
n + m[pm] : 0 ≤ ai < p,

n−1∑
i=1

ai ≥ 2} .

Lemma 7.1. Suppose the transvection root space of G is maximal. Then

Hilb(BG, t) = tp
m−1

((
1− tp

1− t

)n−1
− (n− 1)t− 1

)(
1− tpm

1− tp
)n−1

.

Proof. Observe that BG = Fp[f1, . . . , fn−1]-span C ∼= Fp[f1, . . . , fn−1]⊗Fp C as a graded
vector space by Eq. (4.2), where

C = Fp-span{xa11 . . . x
an−1

n−1 x
pm−1
n + m[pm] : 0 ≤ ai < p, a1 + . . .+ an−1 ≥ 2} .

Since deg fi = p for i < n,

Hilb(BG, t) =
(

1− tpm

1− tp
)n−1

· Hilb(C, t)

=
(

1− tpm

1− tp
)n−1

tp
m−1

((
1− tp

1− t

)n−1
− (n− 1)t− 1

)
,

with subtracted terms arising from the restriction a1 + . . .+ an−1 ≥ 2. �

Theorem 7.2. Suppose the transvection root space of G is maximal. Then

Hilb
((S�m[pm]

)G
, t
)

=
(

1− tpm

1− tp
)n−1(1− tpm−1

1− te
)

+ tp
m−1

(
1− tpm

1− t

)n−1
.

Proof. By Proposition 6.5, (S/m[pm])G = AG⊕BG, and the theorem follows from adding
the Hilbert series for AG and BG given in Lemmas 5.1 and 7.1 and simplifying. �

Example 7.3. For our archetype example, G =
〈(

1 0 0
0 1 0
0 0 ω

)
,
(

1 0 1
0 1 0
0 0 1

)
,
(

1 0 0
0 1 1
0 0 1

)〉
,

BG = F5[f1, f2]-span{xa11 x
a2
2 x

5m−1
3 + m[5m] : ai < p, a1 + a2 ≥ 2}

and Lemma 7.1 implies that

Hilb(BG, t) = t5
m−1

((
1− t5

1− t

)2
− 2t− 1

)(
1− t5m

1− t5
)2
.

By Theorem 7.2, the Hilbert series of (S/m[5m])G is(
1− t5m

1− t5
)2(1− t5m−1

1− te
)

+ t5
m−1

(
1− t5m

1− t

)2
.

We record an alternate expression for the Hilbert series in Theorem 7.2:

Corollary 7.4. Suppose the transvection root space of G is maximal. Then

Hilb
((S�m[pm]

)G
, t
)

= Hilb(SG, t)(1− tpm)n−1
(

1− tpm−1+ (1− te)tpm−1
(

1− tp

1− t

)n−1)
=
(

1− tpm

1− tp
)n−1((1− tpm−1

1− te
)

+ tp
m−1

(
1− tp

1− t

)n−1)
.
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8. Hilbert Series for arbitrary group fixing a hyperplane

Again, we assume G is a subgroup of GLn(Fp) fixing a hyperplane H and set ` =
dimFp(RootSpace(G))∩H, the dimension of the transvection root space of G, and e the
maximal order of a semisimple element of G.

Theorem 8.1. Suppose G is a subgroup of GLn(Fp) fixing a hyperplane. Then

Hilb
((S�m[pm]

)G
, t
)

=
(

1− tpm

1− t

)n−`−1 (1− tpm

1− tp
)` ((1− tpm−1

1− te
)

+ tp
m−1

(
1− tp

1− t

)`)
=
(

1− tpm

1− t

)n−`−1(1− tpm

1− tp
)`(1− tpm−1

1− te
)

+ tp
m−1

(
1− tpm

1− t

)n−1
= Hilb(SG, t) (1− tpm)n−1

(
(1− tpm−1) + tp

m−1(1− te)
(

1− tp

1− t

)`)
.

Proof. We write G = G1⊕G2, S = S1⊗Fp S2, and m[pm] = (m
[pm]
1 ,m

[pm]
2 ) as in the proof

of Corollary 6.9 and use the graded isomorphism(
S�m[pm]

)G ∼=
(
S1�

m
[pm]
1

)G1

⊗Fp
(
S2�

m
[pm]
2

)G2

.

Since G2 acts trivially on V2 of dimension n− `− 1,

Hilb
((S�

m
[pm]
2

)G2 , t
)

=
(

1− tpm

1− t

)n−`−1
.

Since G1 has maximal transvection root space in V1, Corollary 7.4 implies that

Hilb
((S�

m
[pm]
2

)G1 , t
)

=
(

1− tpm

1− t

)n−`−1 (1− tpm

1− tp
)` ((1− tpm−1

1− te
)

+ tp
m−1

(
1− tp

1− t

)`)
.

The theorem then follows from taking the product of the two Hilbert series above. �

Example 8.2. Say G =
〈(

1 0 0
0 1 0
0 0 ω

)
,
(

1 0 1
0 1 0
0 0 1

)〉
, a group without maximal transvection

root space, acting on V = (F5)3 for an e-th root-of-unity ω in F5. Theorem 8.1 implies

Hilb
((S�m[5m]

)G
, t
)

=
(

1− t5m

1− t

) (
1− t5m

1− t5
) ((

1− t5m−1

1− te
)

+ t5
m−1

(
1− t5

1− t

))
.

We take the limit as t approaches 1 in Theorem 8.1 to obtain the dimension:

Corollary 8.3. Suppose G is a subgroup of GLn(Fp) fixing a hyperplane. The dimension

of (S/m[pm])G as an Fp-vector space is

dimFp
(S�m[pm]

)G
= pm(n−1) + pm(n−1)−`

(
pm − 1

e

)
.

Remark 8.4. Note that the Hilbert series in Theorem 8.1 agrees with the series we
expect in the nonmodular case. Indeed, when all the reflections in G are semisimple,
` = 0, and the theorem implies that

Hilb
((S�m[pm]

)G
, t
)

=
(1− tpm)n−1(1− tpm+e−1)

(1− t)n−1(1− te)
.

The basic invariants have degrees 1, . . . , 1, e in this case and the series above describes(
S�m[pm]

)G
= Fp[x1, x2, . . . , xn−1, xen]�(xp

m

1 , . . . , xp
m

n ) .
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Compare with [9, Example 1.4].

Remark 8.5. At the other end of the extreme, consider the case when G contains no
semisimple elements. In this case, e = 1 and ` is just the minimum number of generators
of G. Theorem 8.1 implies that

Hilb
((S�m[pm]

)G
, t
)

=
(1− tpm)n−1(1− tpm−1)

(1− tp)`(1− t)n−`
+ tp

m−1
(

1− tpm

1− t

)n−1
.

9. Full pointwise stabilizer in the general linear group

In this section, we consider the full pointwise stabilizer GLn(Fp)H in GLn(Fp) of an
arbitrary hyperplane H in V = (Fp)n. For any H, the group GLn(Fp)H is generated
by ` = n − 1 transvections together with a semisimple reflection of order e = p − 1, so
Theorem 8.1 gives Theorem 1.1 as a corollary, restated here with additional expressions:

Corollary 9.1. Let H be any hyperplane in V = Fnp and set G = GLn(Fp)H . Then

Hilb
((S�m[pm]

)G
, t
)

=
(

1− tpm

1− tp
)n−1(1− tpm−1

1− tp−1
+ tp

m−1
(

1− tp

1− t

)n−1)
= Hilb(SG, t)(1− tpm)n−1

(
1− tpm−1 + (1− tp−1)tpm−1

(
1− tp

1− t

)n−1)
= [pm−1]n−1tp

[
m

1

]
p,t

+ tp
m−1[pm]n−1t

[
m

0

]
p,t

.

Orbits and the dimension of the invariant space. The conjecture of Lewis, Reiner,
and Stanton [9] giving the Hilbert series for the GLn(Fq)-invariants in S/m[qm] specializes
to a conjecture for the dimension of the invariants as an Fq-vector space. They show
this specialization gives the number of orbits for GLn(Fq) acting on the vector space
V ′ = (Fqm)n, see [9, Section 7.1 and Theorem 6.16].

Our Corollary 8.3 gives the dimension of the G-invariants in S/m[pm] over Fp for any
group G fixing a hyperplane. Below we prove that this integer gives the number of
orbits for G as a subgroup of GLn(Fp) acting on on the vector space V ′ = (Fpm)n (with
canonical coordinate-wise action induced from the embedding Fp ⊂ Fpm). This result
thus proves a special case of the conjecture of Lewis, Staton, and Reiner, namely, the
dimension of G-invariants in S/m[qm] over Fq counts G-orbits in (Fqm)n.

In the next corollary, ` = dimFp(RootSpace(G)) ∩ H as usual with e the maximal
order of a semisimple element of G.

Corollary 9.2. Suppose G ≤ GLn(Fp) is a reflection group fixing a hyperplane H in
V = (Fp)n. The number of orbits of points in V ′ = (Fpm)n under the action of G is

equal to the dimension over Fp of the G-invariants in S/m[pm]:

dimFp
(S�m[pm]

)G
= pm(n−1) + pm(n−1)−`

(
pm − 1

e

)
= # orbits of G on (Fpm)n .

Proof. Corollary 8.3 records the dimension; we count orbits here. Let H ′ be the image of
H under the coordinate-wise embedding V ↪→ V ′. Choose a basis x1, . . . , xn of (V ′)∗ dual
to the standard coordinate basis as in Section 3 with H ′ = Kerxn in V ′. The number of
points with orbit size 1 is the number of points on the hyperplane H ′, namely, (pm)n−1.
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Two points v and u lying in the complement (H ′)c of H ′ in V ′ lie in the same G-orbit if
and only if xi(v) = xi(u) for i ≤ ` and xn(u) lies in Fpx1(v) + · · ·+ Fpx`(v) + 〈ω〉xn(v)

for ω a primitive e-th root-of-unity in Fp. Thus a fixed v in (H ′)c has orbit size p`e
whereas |(H ′)c| = (pm)n−1(pm − 1) and

# of orbits in (H ′)c =
|(H ′)c|

size of an orbit in (H ′)c
= pm(n−1)−` (p− 1

e
) .

The total number of orbits for GLn(Fp)H acting on Fpm is then

# of orbits = (# orbits on H ′) + (# orbits on (H ′)c)

= pm(n−1) + pm(n−1)−` (pm − 1

e

)
.

�

We take e = p − 1 and ` = n − 1 in Corollary 9.2 to count orbits under the full
pointwise stabilizer subgroup of an arbitrary hyperplane, obtaining Corollary 1.2.

Corollary 9.3. The number of orbits of points in (Fpm)n under the action of the full
pointwise stabilizer G = (GLn(Fp))H in GLn(Fp) of a hyperplane H in (Fp)n is

dimFp

(
S�m[pm]

)G
= pm(n−1) + p(m−1)(n−1)

(
pm − 1

p− 1

)
= pm(n−1)

[
m

0

]
p

+ p(m−1)(n−1)
[
m

1

]
p

.

10. Lewis, Reiner, and Stanton conjecture

We use our results in previous sections to bound the exponents of x1, . . . , xn in any
invariant of S/m[pm] under the full general linear group GLn(Fp).

Proposition 10.1. Say f + m[pm] ∈ (S/m[pm])GLn(Fp). For any monomial M /∈ m[pm]

in x1, . . . , xn of f , either M = xp
m−1

1 xp
m−1

2 · · ·xp
m−1
n or degxi(M) ≤ pm − p for all i.

Proof. We may assume f is homogeneous in x1, . . . , xn with no monomials lying in m[pm].
By Lemma 6.2 with e = p− 1 and hyperplane H = Kerxn with ordering x1 > · · · > xn,

LM(f) ∈ Fp[x1, . . . , xn−1, xp
m−1
n ] or LM(f) ∈ Fp[xp1, . . . , x

p
n−1, x

p−1
n ] .

First suppose degxn(LM(f)) = pm − 1. The element f + m[pm], and hence f itself, is
invariant under the action of the symmetric group Sn permuting the variables as a

subgroup of GLn(Fp). This forces LM(f) = xp
m−1

1 · · ·xp
m−1
n = f , as f is homogeneous.

Now assume degxn(LM(f)) 6= pm − 1, so that p divides degx1(LM(f)). Since f is
invariant under the diagonal reflection with x1 7→ ωx1 for ω a primitive (p− 1)-th root-
of-unity, (p − 1) also divides degx1(LM(f)). Therefore, p(p − 1) divides degx1(LM(f))
and degx1(LM(f)) ≤ pm − p. Then degx1(M) ≤ pm − p for any monomial M of f . As
f is Sn-invariant, degxi(M) ≤ pm − p for all i as well. �

The previous proposition gives a bound on coefficients of the Hilbert series. Let HF
be the Hilbert function, HF(M, i) = dimFMi, for any Z-graded vector space M =

⊕
Mi.
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Corollary 10.2. We give a bound on the Hilbert function of GLn(Fp)-invariants:

HF
((S�m[pm]

)GLn(Fp), n(pm − 1)
)

= 1 and

HF
((S�m[pm]

)GLn(Fp), i
)
≤ HF

(
S�(xp

m−p+1
1 , . . . , xp

m−p+1
n ), i

)
for i 6= n(pm − 1) .

11. Two dimensional vector spaces

We now consider the 2-dimensional case and take a group G of GL2(Fp) fixing a hy-

perplane (line) of V = (Fp)2 pointwise. Here, m[pm] := (xp
m

1 , xp
m

2 ). We give a resolution

of SG ∩m[pm] directly using syzygies, providing an alternate direct computation for the
Hilbert series of AG = (SG + m[pm])/m[pm]. For any graded module M , we write M [i]
for the graded module with degrees shifted down by i so that M [i]d = Mi+d.

Nonmodular Setting. If G contains no transvections, then SG ∩ m[pm] is generated

by h = fp
m

1 and h′ = f
1+e−1(pm−1)
2 and we obtain an easy resolution for SG ∩m[pm],

0 −→ F1
[τ ]−−−→ F0

[h h′]−−−−→ SG ∩m[pm] −→ 0 ,

where F1 = SG[−(2pm + e − 1)] and F0 = SG[−pm] ⊕ SG[−(pm + e − 1)] with relation

τ = f
1+e−1(pm−1)
2 h− fp

m

1 h′. This gives Hilbert series

Hilb(SG ∩m[pm], t) =
tp

m
+ tp

m+e−1 − t2pm+e−1

(1− te)(1− t)
= Hilb(SG, t)(tp

m
+ tp

m+e−1 − t2pm+e−1) .

Modular setting. Suppose now that G contains a transvection. After conjugation,
G = 〈( 1 0

0 ω ), ( 1 1
0 1 )〉 for some root-of-unity ω ∈ Fp of order e ≥ 1. Here,

SG = Fp[x1, x2]G = Fp[f1, f2] for f1 = xp1 − x1x
p−1
2 and f2 = xe2 .

The Groebner basis

h0 = f
1+e−1(pm−1)
2 , h1 =

m−1∑
k=0

f
1+e−1(pm−pm−k)
2 fp

m−k−1

1 , h2 = f2p
m−1

1

(see Definition 4.3) of the ideal SG ∩ m[pm] in the polynomial ring SG is small enough

to directly provide a manageable resolution of SG/SG ∩m[pm], which we record below.

Proposition 11.1. For G a subgroup of GL2(Fp) containing a transvection, a graded

free resolution of the SG-module SG ∩m[pm] is

0 −→ F1
[τ0,1 τ1,2]−−−−−−−→ F0

[h0 h1 h2]−−−−−−−−→ SG ∩m[pm] −→ 0

for

F0 = SG
[
− (pm + e− 1)

]
⊕ SG

[
− (pm + e)

]
⊕ SG[−2pm], and

F1 = SG
[
− (2pm + e)

]
⊕ SG

[
− (2pm + e− 1)

]
.



INVARIANTS OF POLYNOMIALS MOD FROBENIUS POWERS 21

Proof. Buchberger’s algorithm gives generators for the first syzygy-module in (SG)3 for

SG ∩m[pm] = (h0, h1, h2), namely,

τ0,1 = (−fp
m−1

1 −
m−1∑
k=1

fp
m−k−1

1 f
e−1(pm−pk)
2 , f

e−1(pm−1)
2 , 0)

τ0,2 = (f2p
m−1

1 , 0, −f1+e
−1(pm−1)

2 ), and

τ1,2 = (−
m−1∑
j,k=1

fp
m−j−1+pm−k−1

1 f
e−1(pm−pk−pj+1)
2 , −fp

m−1

1 +
m−1∑
k=1

fp
m−k−1

1 f
e−1(pm−pk)
2 , f2) .

But τ0,2 is redundant as

τ0,2 =
(m−1∑
k=1

fp
m−k−1

1 f
e−1(pm−pk)
2 τ0,1 − fp

m−1

1

)
τ0,1 − fe

−1(pm−pk)
2 τ1,2 ,

and the first syzygy-module is generated over SG by just τ1,2 and τ0,1. As these are
linearly independent over SG, the second syzygy-module is trivial, and the result follows.

�

This gives an easy proof of Proposition 5.1 in the modular 2-dimensional setting:

Corollary 11.2. For G a subgroup of GL2(Fp) fixing a hyperplane in V = (Fp)2 and
containing a transvection,

Hilb
(

(SG + m[pm])�m[pm], t
)

= Hilb(SG, t)(1− tpm)(1 + tp
m − tpm+e−1 − tpm+e) .

Proof. By Proposition 11.1, the Hilbert series for SG ∩ m[pm] is just the series for F1

subtracted from that for F0. The proposition then follows from using the exact sequence

0 −→ SG ∩m[pm] −→ SG −→ SG�(SG ∩m[pm])
∼= (SG + m[pm])�m[pm] −→ 0.

�
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