INVARIANTS OF POLYNOMIALS MOD FROBENIUS POWERS

C. DRESCHER AND A. V. SHEPLER

ABSTRACT. Lewis, Reiner, and Stanton conjectured a Hilbert series for a space of
invariants under an action of finite general linear groups using (g, t)-binomial coeffi-
cients. This work gives an analog in positive characteristic of theorems relating various
Catalan numbers to the representation theory of rational Cherednik algebras. They
consider a finite general linear group as a reflection group acting on the quotient of a
polynomial ring by iterated powers of the irrelevant ideal under the Frobenius map.
We prove a variant of their conjecture in the local case, when the group acting fixes a
reflecting hyperplane, over fields of prime order.

1. INTRODUCTION

In 2017, Lewis, Reiner and Stanton [9] conjectured a combinatorial formula for the
Hilbert series of a space of invariants under the action of the general linear group GL,, (F)
over a finite field I, in terms of (g,t)-binomial coefficients. This formula provides an
analogue for the g-Catalan and g-Fuss Catalan numbers that connect Hilbert series for
certain invariant spaces with the representation theory of rational Cherednik algebras
for Coxeter and complex reflection groups. Results in the theory of reflection groups
often follow from a local argument after considering the subgroup fixing one reflecting
hyperplane. We prove here a version of the conjecture in the local case. We expect this
local theory will extend to one for any modular reflection group, including GL,,(IFy).

Lewis, Reiner, and Stanton consider GL, (IF,) acting on V' = (F,)" and the polynomial
ring S = S(V*) = Fy[z1, ..., xy,] by transformation of variables z1,...,z, in V*. They
consider the quotient of S by the m-th iterated Frobenius power of the irrelevant ideal,

ml?" = (297 2l

which we call the Frobenius irrelevant ideal. Their conjecture gives the Hilbert series for
the GLy, (Fy)-invariants in Fy[x, . .. ,:rn]/(x({m, ...,#%") using (g, t)-binomial coefficients.

We consider subgroups of reflections about a single hyperplane H in V. These groups
are not cyclic in general, in contrast to groups over fields of characteristic 0. We take
the case when ¢ is a prime p; some of our ideas generalize to arbitrary q. We explicitly
describe the space of G-invariants in S/mlP™! for any subgroup G' € GL,(F,) fixing a
hyperplane H in V pointwise. We give the Hilbert series in terms of the dimension of
the transvection root space. As a special case, we describe the invariants under the
pointwise stabilizer GLy,(F,) g in GL,,(F,) of any hyperplane H in V.
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Theorem 1.1. For any hyperplane H in V,
. S m GLn (Fp) gy _ m—1 n—1|M pm—1/1, my yn—1 [T
Hilb ((%/00m1) ) = e | I s Dl 1Y

Recall the g-integer [m], = 1+q+¢*+...+¢™ ! and (g, t)-binomial coefficient (see [11])

m k—1 1 t 7717qi
= T g "
[’fL,t E) 1 —td"
We compare with the Lewis, Reiner, Stanton conjecture in Section 2 and give this Hilbert
series in terms of ¢-Fuss Catalan numbers. The conjecture implies that the dimension
over F, of the GL,(F,)-invariants in S/mlP"] counts the number of orbits in (Fym)"

min(n,m)

under the action of GL,(FF,;), and that this dimension is ), [T]ﬂq (see [9, Section

7.1 and Theorem 6.16]). We prove an analogous statement in Section 9:

Corollary 1.2. For any hyperplane H in V = (F,)", the number of orbits in (Fpm)"
under the action of GLy(Fp) g is

; S/ o \ClnFp)y  _  (m—1)(n-1) | m(n—1) |1
dimg, (%) " =p N o
P P
Example 1.3. Consider G acting on V = (F5)? with dimg, (RootSpace(G) N H) = 2.
Then G is generated by two transvections and a diagonalizable reflection. We may
assume (after a change-of-basis) that

100 101 100
G=((lo10]),{010]),(011
00w 001 001

for some e-th root-of-unity w in F5. The m-th iterated irrelevant ideal in F5[z1, x2, z3]
is (23", 23", 25") for m > 1. We will see in Section 7 that

, 1—tP")2 m_ m_ 1—15\2

i (o) ) = oy (= =G

Outline. In Section 2, we give motivation from the theory of rational Catalan combina-
torics, which relates rational Cherednik algebras with various kinds of Catalan numbers.
We recall some facts on modular reflection groups in Section 3. In Sections 4 to 7, we
mainly consider a subgroup G of GL,,(F,) fixing a hyperplane H with maximal transvec-
tion root space; more general results in Sections 6 and 8 will follow from this special
case. In Section 4, we give a Groebner basis for S N mlP™] the invariants in the Frobe-
nius irrelevant ideal, and compute the Hilbert series for S¢/(S¢ N mlP™]) in Section 5.
We decompose (S/mP"1)¢ as the direct sum of S¢/(S¢ N mP™) and a complement
in Section 6. We give the Hilbert series for the G-invariants in S/mP™] when G has
maximal root space in Section 7 and for general groups fixing a hyperplane in Section 8.
In Section 9, we show the Hilbert series for the full pointwise stabilizer GLy,(Fp)y in
GL,,(Fp) of a hyperplane H counts orbits. We give a bound on the Hilbert series for
GL,,(F,) in the conjecture of Lewis, Reiner, and Stanton in Section 10. Lastly, we give

a resolution directly for S N mP™! in the 2-dimensional case in Section 11.
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2. MOTIVATION

We recall some incentive for studying the invariants of S/m[qm] from the theory
of Catalan combinatorics for Coxeter and complex reflection groups; see Armstrong,
Reiner, and Rhoades [1]; Berest, Etingof and Ginzburg [2]; Bessis and Reiner [3]; Gor-
don [5]; Gordon and Griffeth [6]; Krattenthaler and Miiller [8]; and Stump [13].

Graded Parking Spaces and Rational Cherednik Algebras. The parking space
of an irreducible Weyl group gives an irreducible representation of the associated rational
Cherednik algebra. The ¢-Catalan number for the group records the Hilbert series for
the invariants in this space. More generally, for an irreducible Coxeter group W acting
on V = C" with Coxeter number h, the graded parking space representation (see [1]) is
isomorphic to S/(61, ..., 0),) for some homogeneous polynomials 61, ..., 6, in S of degree
h+1 with C-span{#6,...,0,} isomorphic to the reflection representation V*. Recall that
the Coxeter number of a reflection group is the sum of the number of reflections and
the number of reflecting hyperplanes divided by n (see [6]). The W-invariants in the
parking space has Hilbert series given by the g-Catalan number for W

n
. S w _ _ 1— thrdi
Hﬂb(( 61,...,600)) Q) = Cat(W,q) Hll_qdi :
1=
For a complex reflection group W, Gordon and Griffeth [6] connect the representation
theory of the associated rational Cherednik algebra to the m-th ¢-Fuss Catalan numbers,

d;+mh

n
(m [d; + mh], _ 1—qg%
Cat™ (W, q) = H S Hllqdf
1=

)

giving the Hilbert series of W-invariants in a space S/(01,...,6,), with each 6; homo-
geneous of degree mh + 1.

Lewis, Reiner, and Stanton Conjecture. For some Coxeter groups, the above ideal
(01,...,0,) takes a particularly nice form with 6; = m?“; the graded parking space in
this case is just Clzy, ..., x,] /("1 ... 2l*1). Lewis, Reiner, and Stanton [9] ask what
ideal can play the role of (61,...,0,) for the modular reflection group GL,(F;). They
consider the ideal (61, ...,0,) = (x‘fm, 28" =ml?™ for m > 0 since 61, . . . , 6, span a
GL,,(F,)-stable subspace over F, with the map z; — x?m defining a GL,, (FF,)-equivariant
isomorphism (see [9]). The quotient S/ml¢"] is (¢™)"-dimensional, and Lewis, Reiner,
and Stanton give a conjecture for the Hilbert series of its GL,,(IF,)-fixed subspace:

Conjecture 2.1 ([9]). The space of GL,(FF,)-invariants in S/m[qm] has Hilbert series

)
. GL,, Fq n— m__ kY | TN
H1lb<(5/ igmy) o) t) = ) Rt >[k]

= fn—k)(qm—q*)__Hilb(S™, 1)
Hilb(SGLmEFa) ¢)

q?t
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for Py, the maximal parabolic subgroup of GL,,(F,) stabilizing any F,-subspace of (Fq)™

isomorphic to (F,)*.

Compare with our Theorem 1.1, which is equivalent to the statement that

. S, . \GLn(Fp)y ) _ Hilb(SCGEnEr)a ) ("=t — ™) Hilb(S, t)
Hilb (( Yl ) s ) = Hilb(SCLnEmrr g (1— " =1) Hilb(SCEnEm)n gy’

A curious reformulation. We mention a version of Theorem 1.1 in terms of ¢-Fuss
Catalan numbers that connects with Conjecture 2.1. For modular reflection groups,
the above definition of Coxeter number does not always give an integer, so we use an
alternate definition that agrees with the traditional one over fields of characteristic 0.

For any reflection group G acting on V with a polynomial ring of invariants S¢ =
Flfi,..., fn], define the

Cozeter number of G = 387 T4 @
n

for J = det{0f;/0x;}ij=1,.n in S, the determinant of the Jacobian derivative ma-
trix, and @ = [ lm, the polynomial in S defining the arrangement A of reflecting
hyperplanes for G. Note that deg J is not the number of reflections in GG in general.
We write Stabg(U) for the setwise stabilizer in any group G of a subspace U of V.
Then Theorem 1.1 is equivalent to the statement that, for any hyperplane H in V|

(2.2) Hilb ((S/m[pm})GLn(Fp)H, t) = Z ¢(n—dim Gy)(p™ —p") Cat() (G, 1)

)

where ¢, = (p™ — p¥)/hy and Gy = (Stabgr,, (r,)(Vk))|v, with Coxeter number hy for
Vo = H and Vi = V. Here, Gy is the identity subgroup of GL,_1(F,) regarded as a
trivial reflection group with degrees 1,...,1 and Coxeter number h = 1 while G; = G
has Coxeter number p — 1. Each Fuss parameter ¢ lies in N although G}, is reducible.

Although reformulation Eq. (2.2) is somewhat artificial, it agrees with a version of
the Lewis, Reiner, and Stanton conjecture if we allow for noninteger Fuss parameters.
Conjecture 2.1 is equivalent to the statement that

min{n,m}
GL, (Fp) . m
Hilb ((S/m[pm]> P 7 t) _ Z H(n—dim Gy)(p —p*) Cat (Gy, t)
k=0
where again ¢ = (p™ — p¥)/hi, and G = (Stabar, r,) (Vk))lv, = GLg(F;,) with Coxeter
number hy = p* —1 for Vj, = (F,)¥ C (F,)". Here, at least the groups G}, are irreducible.

3. REFLECTION GROUPS AND TRANSVECTIONS

Recall that a reflection on V' = F" for any field F is a transformation s in GL(V')
whose fixed point space is a hyperplane H in V. A reflection group is a subgroup of
GL(V') generated by reflections; we assume all reflection groups are finite. Suppose G
is a reflection group fixing a hyperplane H in V and choose some linear form [ in V*
defining H, i.e., with Ker! = H. Every g in G defines a root vector oy in V satisfying

g(v) =v+1l(v)ay, forallvinV.
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We denote the collection of all root vectors by RootSpace(G). In the nonmodular setting,
when the characteristic p is relatively prime to |G|, the group G is cyclic. In this case,
every group element is semisimple, and one can choose a G-invariant inner product
so that any root vector for H is perpendicular to H. In the modular setting, when
p = char(IF) divides |G|, the root vector of a reflection g may lie in H itself; this occurs
exactly when g is not semisimple. Such reflections are called transvections and they have
order p = char(F).

The transvections in G form a normal subgroup K, the kernel of the determinant
character det : G — F*. The group G is generated by K and some semisimple element
gn of maximal order e = |G/K|, and G is isomorphic to the semi-direct product of K
and the cyclic subgroup (g,,) of semisimple reflections:

G=K xZ/eZ.
Now assume F = F,,. The corresponding transvection root space RootSpace(G) N H
is an [F,-vector space (see [7]), and its dimension,
¢ = dimg, (RootSpace(G) N H),
is the minimal number of transvections needed to generate GG: there are transvections
915,90 with G = (g1,...,gs, gn) and |G| = e p".

After conjugation. We may choose a basis v1,...,v, of V with dual basis x1,...,x,
of V* so that vy, ..., v,—1 span the hyperplane H = Ker (x,,). Then g, fixes x1,..., 2,1
and g, (2,) = w™ 'z, for w a primitive e-th root-of-unity in F,. We furthermore refine the

basis so that each transvection gy fixes z1,...,ZTp_1, ki1, .., Tn and gx(xg) = Tk — Ty:

1 -0

1..00 : :

.. ) 0 100 0

gn=1:". and, for 1 <k </{, gr:=] 0 010 1| k™t row.

0..10 0 001 0

0 .. 0w
0 - 1

Example 3.1. When n = 3, p = 5, and £ = 1, G acting on V = (F5)? is generated
by one transvection and possibly an additional semisimple reflection. We may assume
(after a change-of-basis) that for some e-th root-of-unity w in Fj

100 101
G=(g=(410). o= (310))-

Basic Invariants. The ring of invariant polynomials S€ is itself a polynomial ring,

S¢ = Fylfi,- .., fn] with homogeneous generators
—1 —1
flzle)—xliﬂg a"'aff:xg_xelig ) fﬂ—i-l:fé—l—lw--,fnfl:fnfla fn:xi
and .
Hilb(SY, t) =

(
Example 3.2. For G = <<(1] 7 8), ((1)(1)(1)>, ((1)(1)(1)>> C GL3(F5), the ring S¢ is gener-
00w 001 001
ated by

1= x? - xlxg, fo= :c‘;’ - $2:c§, and fs =5 as an Fs-algebra.
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Here, mlP™l = (:L“i’m,:vgm,xgm), and we will compute the Hilbert series of

Ie G

4. DESCRIBING THE INVARIANTS IN THE FROEBENIUS IRRELEVANT IDEAL

We begin by finding the invariants in the Frobenius irrelevant ideal itself, describing
SENmlP"]. We assume G is a subgroup of GL,,(F,) fixing one hyperplane H throughout
this section. The general case will follow from the special case when G has maximal
transvection root space, so we assume £ = n — 1. Without loss of generality, we may
take a basis x1,...,x, for V* so that H = Ker x,, and G acts as in Section 3.

Monomial orderings. We consider S as a graded ring with respect to the usual poly-
nomial degree with degz; = 1 for all i. The Frobenius irrelevant ideal mP™! is then
a homogeneous ideal giving a graded quotient S /m[pm]. We use compatible monomial
orderings on the two polynomial rings S and S¢. On S = F,[z1,...,2,], we take the
graded lexicographical ordering with 1 > z9 > .-+ > z,,. We take the inherited graded
lexicographical ordering on S¢ = F,[f1,..., fu], i.e., the grading with deg(f,) =e < p
and deg(f;) = p for i < n and ordering f; > fo > --- > f,. Then for any polynomials
fand f in S¢, f < f’ in the monomial ordering on S¢ if and only if f < f’ in the
monomial ordering on S. We use the notation LMg(f) and LMgc(f) for the leading
monomials of a polynomial f with respect the ordering on S and S, respectively. Then

(4.1) LMg(LMge(f)) = LMs(f).

We will frequently use the fact that, for any nonnegative exponents a;,

( ) f an ll,p -1 _ ai—1,_pta;, Qi1 an—1 _pm—1
i L .

[p™]
x," 7 xb = of . ox el Ml mod mt 1,

Generators for invariants in the Frobenius irrelevant ideal. We will show that
the following polynomials give a Groebner basis for S¢ N m/P™) when G has maximal
transvection root space.

Definition 4.3. Define polynomials in S¢ = Fplfis..., fn] for1<a<b<mn by

—1

m—1
. 1+ —1 m__1 . 1+ -1 m_, . m—k m—k—1 . m—1 p'm
ho=f ¢ T g = Y TN S and hyap = f1T S
k=0

100 101 100
Example 4.4. For our archetype example G = <(0 1 0), (0 10), (0 1 1>>,
00w 001 001

ho = f. T4e~1(5m—1)

)

m—1
l4+e~t(5m—5m=k) .gm—k-1 1+e Lem—pm=k) gm—k-1
hi1 = g fs ( ) 1 , hig= E ) 9 ;

5m 1) 5m 1
ho11 = f1 , hepo= 7 , and hgg2 = fz

The next lemma verifies that these polynomials lie in the Frobenius irrelevant ideal.

5m 1)

Lemma 4.5. For G with maximal transvection root space, {ho, h1,a, 2.4} C SENmlr™,
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Proof. Simple computation confirms that
ho = 2P temt,

_ p"e p"+e—1
hia=2b x, — x.2) ,

and

1

P (p=1)p Tt ™ T (=) T 2(p= 1)
Ty, Ty — Ty Ty Ty +x, T Ty .

— " me
hoap =ah x, —ab
(]

The next lemma is key to characterizing elements of S N mP™l; it relies on an
inductive argument using Lucas’ Theorem.

Lemma 4.6. Suppose G has mazimal transvection root space. Let f € S¢ NmlP™! and
write f as a polynomial in the variables fi,..., fn, say homogeneous. Then LMga (f) is
divisible by f,, or some haqp with 1 <a < b <n.

Proof. Suppose no hg 4 divides LMge (f) nor f,. Then
LMge(f) = fi*f3> - fod!

for some ¢; < 2p™~! (as no hg 4 q divides) with all but possibly one exponent satisfying
c; < p™ ! (as no haqp divides for a # b). Observe first that not all ¢; < pmL
Otherwise, by the binomial theorem and Eq. (4.1),

LMs(f) = LMs(LMgq(f)) = x7"Pag?? - a7

n—

would not lie in the monomial ideal mP"] contradicting the fact that f does. Hence
there is a unique index j with p™~1 < cj < 2p™~1. Without loss of generality, say j = 1,
so that p" ! <¢; < 2p™ ! and ¢; < p™~! for 1 < i < n. Define h by

N

We will produce a monomial

m—1

—cz—lfgm’l—cg—l . pmlflfcn_lfl
— .

v = o P g P PP g
of h in the variables z1, ..., z, which does not lie in m?"]. This will imply that A itself

does not lie in mP™), contradicting the fact that A is a multiple of f.
To this end, set L = LMgq (h), so that, by construction,

m—1__ m—1__ m—1_
L= IMga(h) = 2L
We write L as a polynomial in the variables z1,...,z, using the binomial theorem.

Direct calculation in S/mlP™! confirms that
L+mlP"l =+ 2, + mP"]

as Lucas’ theorem on binomial coefficients (see [10] or [12, Exercise 1.6(a)]) implies that

<2pm—1 1>_ 1 for m =1,2,
Yio'r ) R () = (~1)mt form > 2.

Thus, the monomial z, appears with nonzero coefficient in L and does not lie in mP™].
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We now argue that x, appears with nonzero coefficient in A itself (i.e., does not cancel
with other terms). Consider the coefficient ¢, (M) of x,, in some other monomial

M= [ fio < L
of h after expanding M in the variables xy, ..., x,. Suppose c4(M) # 0.

We first establish that M has smaller degree in f; than L but larger degree in f,.
Indeed, note that p™~' < ¢}, else deg,, (M) < deg,, (z4) and co(M) = 0. Now fix
1 < i < n and consider ¢;. Note that ¢, > p™ ! — 1 else co(M) = 0 as fi € Fp[zy, zy]
for all k. And ¢, < p™~! — 1 else hg 1 ; divides M and co(M) = 0 as M € mlP"]. Thus
¢; = p™ ' =1 and degy, (M) = degy,(L) for 1 < i < n. But degg M = degg L, with
M < L. Thus M has smaller degree in f; but larger degree in f, than L, i.e.,

° pm_1 < c’l < me_l — 1, and

o cdi=pm !l —1forl<i<n,and

e, >0.
We assume m > 2 since if m = 1, then ca = 0 and deg,, (M) = 0, forcing ¢, (M) = 0.
We examine the contribution to M from f;. Set d = ¢}. Then as ¢, # 0 and

d
— A\ dp—(p—1)i_(p—1)i
i = @ = =3 (§) a0 Vagey,
i=0

there is some index i with (f) #0and dp— (p—1)i=p™ —p+1. Hencei =1 mod p.
Since d < 2p™~! — 1 by assumption,

m—2
(4.7) d=p™" 4+ (p—1a and i=1+pa forsome 0<a< Zpk.

k=0

We show instead that 221:702 p* < a by considering the base p expansions of a and d:

m—2 m—1
a:Zakpk and d:depk for some 0 < ag, dp < p.
k=0 k=0

We compare the base-p coefficients di and aj using the key point that (f) is nonzero:
Lucas’ Theorem [10] implies that

d d m—1 d m—1
_ 0 k . k.
o# (D=(TT(L) wimreF o

since no factor in the product vanishes, we conclude that dy > 1 and each ajp_1 < dj.
Eq. (4.7) then provides direct comparison of dj and ay,

m—1 m—2
(4.8) Z dep* = d = p™ !t —ag+ Z(ak,l — ag)p* Tt
k=0 k=1

We now regroup base p as needed and show inductively that 0 < ag < a; < ... < am—o.
We first consider ag. Since 1 < dy, Eq. (4.8) implies that dy = p — ag and ag # 0.
Next observe that ag < ap since ag < dy, and Eq. (4.8) implies that

di=p+ag—a; —1 when ayg < a; whereas d; =ag—a; —1 when a; < ag.
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Similarly, a1 < a9 since a1 < dg, and Eq. (4.8) implies that

do=p-+ai —az—1when a; <ae whereas do =a; —ao — 1 when as < a;.
We iterate this argument and conclude that 0 < ag < a1 < ... < a;,_o. But this
contradicts Eq. (4.7), so (‘f) = 0 and thus ¢, (M) = 0. O

We now show that the collection of hg, hi 4, ho4p is a Groebner basis.

Proposition 4.9. If G has mazimal transvection root space, then a Groebner basis for
the ideal SG NmlP"] of SC is

G = {h(), h17a, hg}a’b 1<a<b< n}
Proof. Suppose f in S N mlP™ is homogeneous in the variables fi,..., f,. Suppose

neither hg = LMga (ho) nor hg qp = LMga (haqp) for 1 < a < b < n divides LMgc (f).
We show LMgc (hy,;) divides LMge(f) for some 1 < j < n. We write

LMge(f) = fi' f5* -+ "
for some ¢, < degy, (ho) = 1+ (p™ — 1)/e and some ci,...,c,—1. But f and hence
LMg(f) lies in mP"], so p™~1 < ¢; for some index j < n since

LMS(f) = LMg (LMSG (f)) = wzloq :CZQJCQ R a?ﬁill_lef" .

Then ff.’ " divides LM gc(f). Lemma 4.6 implies that LMgc (f) is also divisible by fi,,
hence by LMgc(h1;) = f;-’m_lfn as well. As 4 c S NnmlP"! by Lemma 4.5, ¢ is a
Groebner basis for S N mlP™.

O
100 101 100 . .
Example 4.10. For G = <(0 10 ), (0 1 0), (0 11 >> , the collection of polynomials
00w 001 001
1 m1 1 k 1
1+e1(5m—1 I+e~1(5m—5m— m—k—1 2(5m~
ho=f3"° ( ), hi1 = S5 ( ) P y  hogo= 2( )>
k=0
m—] 1 k 1
14+e (™M —-5m— m—k—1 2(5m— m—1 m—1
hia = Z et V13 , o hona=fC7) ) and hguo= " f
k=0

form a Groebner basis for S¢ NmB™! as an ideal of S©.

5. HILBERT SERIES OF INVARIANTS IN THE FROBENIUS IRRELEVANT IDEAL

Again, we assume G is a subgroup of GL,(F,) fixing one hyperplane H and set e
to be the maximal order of a semisimple element of G. We consider the case when
G has maximal transvection root space, i.e., the case when G is generated by n — 1
transvections together possibly with a semisimple reflection of order e.

Proposition 5.1. Suppose G has mazimal transvection root space. Then

Hi (57 1) = ()" ().
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Proof. We replace the ideal S¢ N mlP™) by its initial ideal with respect to the graded
lexicographical order on Fplz1,...,z,] with 21 > --- > x,, since (see, for example, [4])

i (57 ) 0 (5 iy ) 150 (56 i 1)

We compute the Hilbert series recursively using short exact sequences. By Proposi-
tion 4.9, ¢ is a Groebner basis for S¢ N m/P™], and we enumerate the various elements
ho, hia, and ho,p in &4 as hi,ha, h3, ..., h @) by setting

n—1+(3

hy = hl,k forl1<k<n and hna+b—(a+l) = hQ’a’b forl<a<b<n.
2

Define M; = LMgq (h;) and
Iy = (Mo), I = (M;:0<j<i)and J; = (M;/ged(M;, Miy1) : 0 < j <4)
for0<i<n-1+ (Z) with Mn+(n) arbitrarily set to 1 for ease with notation. Note
2

that I

o1 (n) = in(S N mlP™). This gives the short exact sequence (for each i)

G G G
(5.2) 0— (S /Ji) [ — deg(Mi11)] — g L 5 T —0-

Each ideal I; is uniquely determined by some polynomial h; of the form hg, hi g4, or
h2.q4, and we revert to more suggestive notation for the next computations, defining

19 = I, Yk =, 1290 = Ina+b_(a+l) for1<k<n, 1<a<b<n;
2

I =d, I =0y, S =

natb—(“+1) forl<k<n, 1<a<b<n,

so that the ideals Iy, I, . .. ,In71+(n) merely enumerate the ideals 19, 11, I%%b for ease
2

with induction, with the last ideal in our sequence just

2n—1n—1 _ o — in(SC P
I In—1+(2) IH(S nm ) .

To compute the Hilbert series for each S /.J;, we first give minimal generating sets
for each ideal J;,

= ()
Jlha — (fﬁ (p —1)’fjp

m—1

:1§j§a) for 1<a<n-—2

Jl,n—l — (fn) »

T2 = (fo, 7 1< <) for 1<a<b<n-—2
m—1

St = (for f]"i1<j<a)  for 1<a<n-2,

and then use the fact that the Hilbert series are additive over short exact sequences of
the form (for 1 <c¢<n-—1)

0—>(fg)—>SG—)SG(fd)—)O and

m—1

0— (f? )—)SG/ m—1 —>SG/ m—1 —0
‘ (i fl7 s1<i<e—1) (L i1<i<o) -
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We conclude that
(5.3)

11—t
I—e) -1

. (S (=)=
Hilb ( /J1,a, t) = A=) — o) for 1<a<n-—2,
4 (SC B 1—t°
Hib (% jin1, t) = T
G _ 4p™\b(1 _ 4
Hilb (5 Vb, t) - ((117 tt’; (1) flfp):)l for 1<a<b<n—2 and,
o (8¢ _ o (@=)r(1 -t _
Hilb ( /J2,a,n—1, t) = Aot for 1<a<n-—2.
Then as
. SG 1 — pmte—1
5.4 Hilb t) =
( ) 1 ( /IO’ ) (1— te)(l _ tp)nfl ’

Equations (5.2) to (5.4) imply that Hilb (S¢/in(S¢ N mlP"l) t) is

m _ mo__ ’I’L*2 m m__
1 — p"te—1 _tpere 1— -1 _tpm+ez (1_tp )a(l_tp 1)
(1 _ te)(]_ _ tp)nfl (1 _ te)(l _ tp)n—l (1 _ te)(l _ tp)nfl
a=1
JO Jo Jla
n—2 b
m 1—1t¢ m l—tp l—te m l—tp (1 —t°
_ g2 42 Z 20 Z )
(1 —te)(1 — tp)n-1 — —( 1—tP"1 (1 —te)(1 — tp)n—1
a=
Jln—1 J2,(L,b J2,a,n71

We combine summations to express Hilb (S /in(S% N mlP"1) | t) as

n—2
1 — el e (1—tP")* (1 —e" 1)
(s R Dy (e

_opm l—tp 20" l—tp —t°)
t ZZ (1 —te) 1ftP Z (1—te) lftP" 1’

blal

which simplifies (using elementary series formulas) to

1— et — tpm-‘re (1 — (1 — tpm)nil)(l — tpmil)
(1 —te)(1 —ep)n1 P (1 — te)(1 — tp)nl
n—2 T\ — e
_ 2 Z 1—tp o (LA
1 (1 —te)( tp n—1 tP" (1 —te)(1 — tp)n—t

We use the fact that

"z_: b(1— tpm)b _ —(1 =" (n— 1) (1 — )2 " 1 — (1 — ™)L

tzpm

11
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to rewrite this last expression as

(SO - _ @=L 1))
Hilb ( /in(SG N m[P ]) s t) - (1 _ t@)(l _ tp)”—l )

(1—to)(1 - 15)2
6. DECOMPOSITION OF THE INVARIANT SPACE

We use the description of S€ N mlP™] from the last two sections to give a direct
sum decomposition of (S/mlP™E in this section. Again, we consider a subgroup G of
GL,(F,) fixing a hyperplane. Without loss of generality, we use the basis z1,...,z, of
V* as in Section 3 and basic invariants fi,..., f, for G. We show that (S/mlP"1)& is
the direct sum of subspaces

G [p™]
Ag = (57 +m )/m[pm} and
l
Bg = Fylfi1,.. ., fn—1]-span{z{’ ...a:;”acﬁm_l +mlP" 0 < < p,za@' > 2}
i=1
Recall that ¢ is the minimal number of transvections needed to generate G together
possibly with some semisimple reflection of order e; we set e = 1 if no group elements
in G are diagonalizable.

Remark 6.1. In defining the subspace B¢, we require Zle a; > 2 to avoid nontrivial

intersection with Ag; see Proposition 6.5. Otherwise Bg would contain xﬁm_l + mP™]
and zzh !+ mlP™], for example, which lie in Ag for i < £.

We first describe the leading monomial in (S/mP"1)¢ using the standard graded
lexicographical order on S = Fp[z1,...,2,] with 21 > -+ > x,,.

Lemma 6.2. Assume G has mazimal transvection root space. Suppose f +mlP™! lies in
(S/mlP" NG with f homogeneous in x1, ..., x,. Then LMg(f) lies in

—1 m__q
or Fplz,....¢n-1, ff (v )] or ]Fp[xlf,...,:z:fb_l,fn].

i

mlP

Proof. Say M = LMg(f) does not lie in mP"] or in Fplz, ..., 201, fﬁil(pm_l)]. Then

M = 3:?1 xzk ~--3:Z"_*11 mf{“‘ for some by,...,b,_1 <p™ and b, <p™ —1.
We use the generators gi,..., g, of G from Section 3. Since f is G-invariant modulo
mlP™1 the difference g, f — f lies in mP™] and the low degree of each z; forces f itself to
be invariant under g,; hence b,, is divisible by e.
Suppose there is some exponent by which is not divisible by p with k£ < n. Consider

g=g; " acting on M = LMg(f). Then g- M — M is

_ b
i (o) o) ol et
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with leading monomial

b b—1y b b b
(6.3) LMg(gM — M) = abt - 2" (by, b s ) abe
as by # 0 in IF,,. Notice that the leading monomial of gM — M is the leading monomial
of gf — f as M is the leading monomial of f and g fixes x1,...,Tk—1, Tkt1,-..,%Tn.

Since f is invariant modulo mlP™, the difference gf — f and thus its leading monomial
(6.3) lies in mlP™). But this is impossible as b, < p™ — 1 and by, ...,by_1 < p™ by our
assumptions. Thus every exponent by for £ < n must be divisible by p. O

We use Lemma 6.2 to decompose the invariants of the quotient space.
Proposition 6.4. For G with maximal transvection root space, (S/m[pm])G = Ag+ Bg.

Proof. By construction, Ag C (S/mlP"1)&. To show Bg C (S/mlP"1)¢, consider
M=z 2Pt with M 4+mlP"] e Bg.

n—1

We consider the generators g, ..., gy of G from Section 3; for k < n,
gk_l<M) +mlP" = it .. .xzk__ll (z1 + xn)akxzi-s-ll . x;lli_llxgm_l + ol

=29 gt el = M P

. n—1

since the binomial theorem implies that all but the initial term lies in mP"]. In addition,
e divides p™ —1, so g, fixes M. Hence Bg is G-invariant and thus Ag+Bg C (S/mlP"¢.

To show the reverse containment, we first argue that any monomial M in the vari-
ables x1,...,2, with deg, (M) = p™ — 1 represents a coset of mlP™] either in Ag or
in Bg. Both Ag and Bg are closed under multiplication by fi,..., fn—1, SO we may
assume without loss of generality that deg, (M) < p for i < n by Eq. (4.2). Let
k=3Y1"deg, (M) mod p.If k > 2, then M +mP"] lies in By by definition. If k = 0,

then M = 22" = £¢ "D and M + ml™ lies in Ag. If k = 1, then M + mlP™ Ties
in Ag as well since

m—1
—ziaP Tl = Z fﬁ_l(pm*p])ffmilﬂ mod mP"l for i < n.
j=0
Hence M + mP™! lies in either A¢ or Be.

If the reverse containment fails, we may choose some f + mP"l in (S/mlP" & but
not in Ag + Bg with f homogeneous in z1,...,z, and LMg(f) minimal. Note that
deg, (LMs(f)) < p™ for all i. By the minimality assumption, LMg(f) +mP"] does not
lie in Ag or Bg, so by the argument in the last paragraph, deg, (LMg(f)) <p™ — 1.

By Lemma 6.2, the monomial LMg(f) lies in Fp[2¥, ..., 2P |, f,], so
LMg(f) =« ab™ - ab? a5 for some ¢;.
Define h by

h=afftfs?--- fori' for,  for a the leading coefficient of f.

n n

Then f — h 4+ mP"] lies in (S/m[pm})G since h + mP™] lies in A, and, by construction,
LMg(h) = LMg(f), implying that LMg(f —h) < LMg(f). The minimality assumption



14 C. DRESCHER AND A. V. SHEPLER

then implies that f — A must lie in Ag + Bg. However, Ag + Bg contains h already, so
must contain f as well, contradicting our choice of f. Thus (S/mP"N¢ = A+ Bg. O

Proposition 6.5. Suppose the transvection root space of G is maximal. Then
G
(S/m[pm]) =Ac® Bg .
Proof. By Proposition 6.4, we need only show Ag N B¢ is trivial. If m < 1, a simple
degree comparison shows Ag N Bg = {0}, hence we assume m > 2. Suppose Ag N Bg
is non-trivial, say some f in S¢ and h 4+ mlP"! in By satisfy
0# f+mP" M =h+mlP"l e Ac N B .

We multiply f —h by f, = ¢ so that (f — h)f, lies in mP™] f,. We will show that ff,
and hf, have no monomials in the variables z1,..., 2, in common; this will force hf,
to lie in mP"1 £, contradicting the fact that h does not lie in m?"],

Fix some M in X, N X, for

Xy the set of monomials in x1,...,z, of ff,, and

X, the set of monomials in x1,...,x, of hf,.

Since h lies in the ideal (a:ﬁm_l) and e > 1, the ideal mlP™! contains hf, and thus
also ffn, = (f — h)fu + hfn. However, ff, also lies in S, so ff, lies in S¢ N mP™].
Proposition 4.9 then implies that M is a monomial of some S%-multiple of hy, hi,q, or
ha,qp for some 1 < a < b < n (see Definition 4.3) and we use Lemma 4.5 to expand in
the variables z1, ..., x,. Since h is not in mlP"! and M lies in X},, Eq. (4.2) implies that
(6.6) deg, (M)=p"+e—1 and

n—1
(6.7) deg, (M) = b; p+ a; for some b; < p™ !, a; < p, with Z a; > 2.

i=1

First, suppose M is a monomial of some polynomial in S hg. For i < n, Lemma 4.5

and the binomial theorem imply that

m _ _ n—1 ..
deg,, (M) = ah e HrentP=1) iy Je for some ¢, € N, and
deg,. (M) = pc; — (p — 1)j; = (ci — ji)p + ji  for some ¢; € Nand 0 < j; <¢;.

But Eq. (6.6) implies that j; = 0 for all i <n and ¢, = 0. Then p must divide deg, (M)
for each 1 < i < n, contradicting Eq. (6.7).

Second, suppose that M is a monomial of some polynomial in S¢ hi1,q for some a < n.
Without loss of generality, say a = 1. Then, for 1 < i < n,

deg, (M) =pc; — (p—1)j; forsome ¢; €N and 0 < j; <¢;.
Furthermore, by Lemma 4.5,
deg,, (M) =p™ +pcr —(p—1)j1  or  deg,, (M) =1+pcr—(p—1)i
for some ¢; € Nand 1 < j; < ¢;. But Eq. (6.7) implies the latter case holds, and thus

n—1
degmn(M> :pm+€—1+0n+(p—1)2ji for some ¢, € N.
i=1
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Again, Eq. (6.6) implies j; = 0 for all 1 < i < n and ¢, = 0. However, this forces p to
divide deg, (M) for 2 <i < n and deg, (M) = 1+ pc1, contradicting Eq. (6.7).
Third, suppose that M is a monomial of some polynomial in S¢ ha.qp for some pair

a,bwith1 <a <b<n.Eq. (6.7) implies that the degree of z, or of z; in each monomial

m—1 m—1 _ m—1
of hg 44 is too high to contribute to M except the last monomial b :1;5 xi(p Lp

so we assume M is an S@-multiple of that monomial. Since m > 2,

Y

deg,, (M) =2(p—1)p" ' =p"+(p—-2)p" ' >p"+p>p" +e—1,
contradicting Eq. (6.6). This completes the proof.

U
Example 6.8. For G = <((1) ? 8), (é ? (1)), <(% ? (1))> , Proposition 6.5 implies that the
- 00w 001 001
space (S/mP"1)E decomposes as

G [5™] m m
(57 +m )/m[5m] & Fs[f1, fg]—span{x‘l“:n‘g?mg 1 a; < p,a; +ag > 2}.

In the next result, we do not assume the transvection root space is maximal.
Corollary 6.9. For any group G C GLy(F,) fizing a hyperplane,
() = Ag @ Ba .
Proof. We decompose the vector space V to separate out the trivial action: set
Vi = C-span{vy,...,vp,v,} and Vo = C-span{vei1,...,vn-1},
and set 51 = S(V}*) = Fpla1,..., 2, x,] and Sy = S(V5) = Fplzpy, ..., xn—1]. Like-

wise, set m[lp I = (. ...2h  2h ) and m[2p I = (27115 -»2h_1) - Then G is the

"
direct sum G = Gy @& Gy for G; = Gy, and mP" = (m[lpm},m[zpm}). By Propo-
sition 6.5, (,5’1/111[117771])G1 = Ag, ® Bg,. Since G2 acts trivially on V5, we may set
Ag, = Fplviga, ..., von—1] + mg’m])/mg’m] and Bg, = {0}. The graded isomorphism
S = 51 ®p, S2 induces a graded isomorphism

S m ~ S m S m
Vbl = TV ©r,y P )
and induces graded vector space isomorphisms
G G1 G2
(S/ m[pm]) = <Sl/m[1pm]> B, (Sz/m[me]> = (A, ® Ba,) @, Ag, = Ac ® Ba -
The result follows since Ag + Bg C (S/mP"1)&, O

7. HILBERT SERIES FOR MAXIMAL TRANSVECTION ROOT SPACES

Again, we assume throughout this section that G is a subgroup of GL,,(F,) fixing a
hyperplane H and e is the maximal order of a semisimple element of G. We assume
the root space of G is maximal to avoid excessive notation arising from a trivial action
of G on extra variables. By Proposition 6.5, (S/mP")& is a direct sum Ag @ Bg with
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invariant subspace Ag described in Sections 4 and 5. For ease with notation, we fix a
basis of V' as in Section 3 and describe here

n—1
Bg =Fp(fi,..., fn1]-span{z]" ... xfln__llxﬁmfl +mlP" 0 <a; <p, Z a; > 2}.
i=1

Lemma 7.1. Suppose the transvection root space of G is maximal. Then

(= WSS [ (<o

Proof. Observe that Bg = Fy[f1,..., fu1]-span C = Fy[f1,..., fn1] ®F, C as a graded
vector space by Eq. (4.2), where
C = Fp-span{z]* . gyl 0 < gy < p,ai+...+ap—1 >2}.

n—1 “n

Since deg f; = p for i < n,

_pm\n—1
Hilb(Be, t) = (i) . Hilb(C, #)

1—1tp
L—t?"\ 1 m_ 1=t \nL
= (= p - _ _ _
( 1—t1’> t ((1—t) (n—1)t 1)’
with subtracted terms arising from the restriction ay + ...+ ap—1 > 2. U

Theorem 7.2. Suppose the transvection root space of G is mazximal. Then

b ((4m) 1) = (75) T () + e ()

Proof. By Proposition 6.5, (S/mlP"1\¢ = Ag@ Bg, and the theorem follows from adding

the Hilbert series for Ag and Bg given in Lemmas 5.1 and 7.1 and simplifying. O
Example 7.3. For our archetype example, G = <<(1) ? 8), (é ? (1)>, ((1) ? (1)>> ,
00w 001 001

Bg = F5|f1, fg]—span{x(flzcg%gm_l +mP" g < p,oar +ag > 2}

and Lemma 7.1 implies that

: _5mo1 1—t5)2_ _ )(1—t5m)2

By Theorem 7.2, the Hilbert series of (S/mP™ is

(145"1)2(145"1—1) +t5m_1<17t5m)2
1—1t° 1—te 1—t '

We record an alternate expression for the Hilbert series in Theorem 7.2:

Corollary 7.4. Suppose the transvection root space of G is maximal. Then

Hilb (3, p) %, ¢) =Hilb(SE, £)(1 — ") (1 Tl (1 - ey (ﬂ)ml)

1—t¢
- (=) () =D
1—tp 1—te 1—t¢ '
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8. HILBERT SERIES FOR ARBITRARY GROUP FIXING A HYPERPLANE

Again, we assume G is a subgroup of GL,(F,) fixing a hyperplane H and set { =
dimp, (RootSpace(G)) N H, the dimension of the transvection root space of GG, and e the
maximal order of a semisimple element of G.

Theorem 8.1. Suppose G is a subgroup of GL,(F,) fizing a hyperplane. Then

. S, . \G A A e A A A B m_q(1—tP\¢

i () 1) = (=) (e ) (G2 )+ (620)
A N e A I A B pr—1(1—tP
_<1—t> (1—t1’>( 1—t€)+t (l—t)

= Hilb(SC, ) (1 — t*")! ((1 — "y (g t6)<11:t:>€) .

Proof. We write G = G1 ® G2, S = S1 ®F, S2, and mlP"l = (m[1 m],mgpm]) as in the proof
of Corollary 6.9 and use the graded isomorphism

S m ¢ (51 m)Gl <S2 m)
(Fabm)” = (S) " en, (%0
Since G4 acts trivially on Vs of dimension n — ¢ — 1,
e (S, \G2 ) _ <1ftpm)n—4’—1
H11b<(/m£p R I :
Since GG has maximal transvection root space in V7, Corollary 7.4 implies that
(g™ o) = (=) () (e )+ (=)
Hﬂb((/mg’ N t) = 1—t¢ 11— = )T 1—¢ '

The theorem then follows from taking the product of the two Hilbert series above. [

G2

100 101 . . .
Example 8.2. Say G = <<8 (1) 0) (8 (1) (1)>>, a group without maximal transvection
w

root space, acting on V = (F5)? for an e-th root-of-unity w in F5. Theorem 8.1 implies

i ()% 1) = (27) () () oo (2).

We take the limit as ¢ approaches 1 in Theorem 8.1 to obtain the dimension:

Corollary 8.3. Suppose G is a subgroup of GLy(F)) fizing a hyperplane. The dimension
of (S/mlP"NG as an Fp-vector space is

e
Remark 8.4. Note that the Hilbert series in Theorem 8.1 agrees with the series we

expect in the nonmodular case. Indeed, when all the reflections in G are semisimple,
¢ =0, and the theorem implies that

. S . G > _ (1 _ tpm)nfl(l _ tpm+€71)
Hilb <( V) ) = e
The basic invariants have degrees 1,...,1,¢e in this case and the series above describes

G e
(S/m[pm]) = Fp[l'la $27 e 7:1371,717 xn]/( pm xpm) .

] .,
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Compare with [9, Example 1.4].

Remark 8.5. At the other end of the extreme, consider the case when G contains no
semisimple elements. In this case, e = 1 and £ is just the minimum number of generators
of GG. Theorem 8.1 implies that

(5, G ) - A=) 1)
Hllb (( /m[p ]) ) t) — (1_tp)é(1_t)n7€ +tp < 1—1t¢ ) .

9. FULL POINTWISE STABILIZER IN THE GENERAL LINEAR GROUP

In this section, we consider the full pointwise stabilizer GL,,(F,)y in GL,(F,) of an
arbitrary hyperplane H in V' = (F,)". For any H, the group GL,(F,)x is generated
by ¢ = n — 1 transvections together with a semisimple reflection of order e = p — 1, so

Theorem 8.1 gives Theorem 1.1 as a corollary, restated here with additional expressions:

Corollary 9.1. Let H be any hyperplane in V. =F and set G = GL,(Fp)u. Then

() 1) = (5 ) (o e ()
= Hilb(5%, £)(1 — """t (1= "t o (1= e (ﬂ)nil)

1-—-t
_ _1|lm m_ _1|m
_ [pm 1}; 1|:1:| +tp 1[pm]? 1|:0:| .
Dyt p,t

Orbits and the dimension of the invariant space. The conjecture of Lewis, Reiner,
and Stanton [9] giving the Hilbert series for the GL,, (F,)-invariants in S/ml?"] specializes
to a conjecture for the dimension of the invariants as an F,-vector space. They show
this specialization gives the number of orbits for GL,(F,) acting on the vector space
V' = (Fgm)", see [9, Section 7.1 and Theorem 6.16].

Our Corollary 8.3 gives the dimension of the G-invariants in S/mlP™! over F p for any
group G fixing a hyperplane. Below we prove that this integer gives the number of
orbits for G as a subgroup of GL,(F,) acting on on the vector space V' = (Fpm )" (with
canonical coordinate-wise action induced from the embedding F, C Fpm). This result
thus proves a special case of the conjecture of Lewis, Staton, and Reiner, namely, the
dimension of G-invariants in S/ml?"] over F, counts G-orbits in (Fym)".

In the next corollary, ¢ = dimp,(RootSpace(G)) N H as usual with e the maximal
order of a semisimple element of G.

Corollary 9.2. Suppose G < GL,(F,) is a reflection group fizing a hyperplane H in
V = (Fp)". The number of orbits of points in V' = (Fpm)™ under the action of G is
equal to the dimension over I, of the G-invariants in S/m[pm]:

dimg, (5 )¢ = pmY 4 prD (pm7—1

(&
Proof. Corollary 8.3 records the dimension; we count orbits here. Let H' be the image of
H under the coordinate-wise embedding V' < V’. Choose a basis 21, . . ., 2, of (V')* dual
to the standard coordinate basis as in Section 3 with H' = Ker z,, in V. The number of
points with orbit size 1 is the number of points on the hyperplane H’, namely, (p™)"~!.

) = # orbits of G on (Fpm)"
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Two points v and u lying in the complement (H')¢ of H' in V" lie in the same G-orbit if
and only if x;(v) = x;(u) for i < ¢ and x,(u) lies in Fpxi(v) + - - - + Fpae(v) + (w)zp(v)
for w a primitive e-th root-of-unity in F,. Thus a fixed v in (H’)¢ has orbit size p’e
whereas |(H')¢| = (p™)"~1(p™ — 1) and

# of orbits in (H')® = |(H')°] _ pm(n—l)—e (p— 1) .

size of an orbit in (H')° e
The total number of orbits for GL,,(FF,) i acting on Fpm is then
# of orbits = (# orbits on H') + (# orbits on (H'))
= D) pmin=n)—¢ (P77 1)

e

O

We take e = p— 1 and ¢ = n — 1 in Corollary 9.2 to count orbits under the full
pointwise stabilizer subgroup of an arbitrary hyperplane, obtaining Corollary 1.2.

Corollary 9.3. The number of orbits of points in (Fym)™ under the action of the full
pointwise stabilizer G = (GL,,(Fp,))u in GL,(Fp) of a hyperplane H in (F,)" is

: ¢ m(n— m—1)(n— "1 m(n— m m—1)(n— m
dimp, (S/m[pm}) — pnn=1) 4 g (m=D(n-1) (%) — pm(n=1) [0] + pm=1)(n=1) [ 1] .
p p

10. LEwIis, REINER, AND STANTON CONJECTURE

We use our results in previous sections to bound the exponents of x1,...,x, in any
invariant of S/mlP"] under the full general linear group GLy,(F,).

Proposition 10.1. Say f + mlP"! € (§/mlP")CLn(Fo) - For any monomial M ¢ mP™

inTi,...,Tn of [, either M = mﬁ’mflxé’mfl gl op deg, (M) < p™ —p for all i.

Proof. We may assume [ is homogeneous in 1, . . . , 2, with no monomials lying in m?™!,
By Lemma 6.2 with e = p — 1 and hyperplane H = Ker z,, with ordering x1 > --- > x,,
LM(f) € Fplxy, ..., 21,20 ] or LM(f) € Fplah,... a0 |, P71,

yYn—1r%n

First suppose deg, (LM(f)) = p™ — 1. The element f + mlP"] and hence f itself, is
invariant under the action of the symmetric group &, permuting the variables as a
subgroup of GL,(FF,). This forces LM(f) = xﬁ’m_l b T = f, as f is homogeneous.

Now assume deg, (LM(f)) # p™ — 1, so that p divides deg, (LM(f)). Since f is
invariant under the diagonal reflection with z; — wz; for w a primitive (p — 1)-th root-
of-umity, (p — 1) also divides deg,, (LM(f)). Therefore, p(p — 1) divides deg,, (LM(f))
and deg,, (LM(f)) < p™ —p. Then deg,, (M) < p™ — p for any monomial M of f. As
[ is &y-invariant, deg, (M) < p™ — p for all i as well. O

The previous proposition gives a bound on coeflicients of the Hilbert series. Let HF
be the Hilbert function, HF (M, i) = dimy M;, for any Z-graded vector space M = @ M;.
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Corollary 10.2. We give a bound on the Hilbert function of GL,,(IF,)-invariants:
HF () S 0™ = 1)) =1 and

HE (%) 7 ) SHF(Saropit  pmopiysi) fori #n(p™ —1).

11. TWO DIMENSIONAL VECTOR SPACES

We now consider the 2-dimensional case and take a group G of GLy(IF,) fixing a hy-
perplane (line) of V = (F,)? pointwise. Here, mP" := (22", 28"). We give a resolution
of S NmlP"] directly using syzygies, providing an alternate direct computation for the
Hilbert series of Ag = (S¢ 4+ mP™)/mlP™]. For any graded module M, we write M]i]

for the graded module with degrees shifted down by i so that M|[ilg = M, 4.

Nonmodular Setting. If G' contains no transvections, then S¢ N mP"! is generated
m —1(p,m _ m

by h=fI" and W' = f21+e P" 1) and we obtain an easy resolution for S¢ N mP"]

[7] [ 1]

0— [ R SENmlP"l — 0,

where [} = SE[—(2p™ + e — 1)] and Fy = S¢[—p™] © SC[—(p™ + e — 1)] with relation
—1(,,m m
T= f21 e Ty, f¥7 K. This gives Hilbert series

m

P + tp7n+671 _ t?pm+€7l

. G [pm]
Hilb(s Nl 1) = ==

= I’Illb(SG7 t)(tpm + tpm-‘re—l . tgpm+e_1) .

Modular setting. Suppose now that G contains a transvection. After conjugation,
G={(({2),(§1)) for some root-of-unity w € F,, of order e > 1. Here,

SC = Fy[z1,22)% = F,[f1, fo] for fi = a? — x5 " and fo = 25.

The Groebner basis

m—1
1+e_1(pm—1) 1+e—1(pm_pm—k) pm—k—l 2pm—1
h0:2 ) hlzg fz f1 ) h2:f1
k=0

(see Definition 4.3) of the ideal S¢ N m/™} in the polynomial ring S¢ is small enough
to directly provide a manageable resolution of S¢/S% N mlP"] which we record below.

Proposition 11.1. For G a subgroup of GLg(F,) containing a transvection, a graded
free resolution of the S¢-module S NmlP™] s

[T0,1 71,2] [ho h1 hs2]

SENml™ — 0

0—>F1 Fg

for
Fo=8-(p"+e-1)] oS- (p"+e)] a5 [-2p™], and
Fr=S89—(2p"+e)] ®S°[— (2" +e—1)].
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Proof. Buchberger’s algorithm gives generators for the first syzygy-module in (S¢)3 for
SE NmlP"] = (hg, hy, hy), namely,

m—1
m—1 m—k—1 6_1 m__k 6_1 m__
01 = (—f - fo £ (™ —p )’ £ (p 1)7 0)
k=1

2 m—1 1+ —1 m__q
7’0’2 = ( lp s 0, —J9 € (p )), and
m—! j—1 k—1 1 k j 1 m—! k—1 1 k
M pm TR peT  (pM —pt —pT +1 e MRl e (pT —p
Ta= (=Y T T S N S A N YD
Jk=1 k=1

But 792 is redundant as

m__ k:)

m—1
_ pm Rt e (P —ph) pm ! e Hp™—p
0,2 = ( > A fa To1 — f1 701 — fo T2,
=1

and the first syzygy-module is generated over S¢ by just 719 and 70,1- As these are
linearly independent over S¢, the second syzygy-module is trivial, and the result follows.
O

This gives an easy proof of Proposition 5.1 in the modular 2-dimensional setting:

Corollary 11.2. For G a subgroup of GLa(F,) fizing a hyperplane in V = (F,)? and
containing a transvection,

G [n’/] m m m m
Hilh (57 TP b)) = Hilb(SC, £)(1 — 7™ )(1 4 47" — " el _ ey
]

Proof. By Proposition 11.1, the Hilbert series for S¢ N mP™) is just the series for F}
subtracted from that for Fjy. The proposition then follows from using the exact sequence

SE 4+ mlP"ly

- €]
0— S NmP }—>SG—>S/(SGmm[pm])%( /m[pm]—>0.
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