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1 Introduction and Review

Our goal is to present a theory of indiscernibles for the model L[T3] and to use
that theory to give a new proof of the weak partition property on §3. This

represents joint work with Steve Jackson.

Martin originally proved the strong partition property on w; using the
theory of indiscernibles for models of the form L[x|, for x a real. This theory,
in conjunction with the fact that every subset of w; is in L[x] for some real
x, provided a good coding for subsets of wy, and this coding was sufficient to
prove the strong partition property. Becker and Kechris subsequently proved
that every subset of dant+1 was in L[T%,41,%], for some real x, and the hope
was that Martin’s techniques would generalize to these models, proving the
strong partition property on do,11. Unfortunately, a theory of indiscernibles for

the models L[T},, z] was not forthcoming. Led by Kunen, other methods were



developed for providing good codings of subsets of dap41. These methods, which
hinge on an analysis of measures on d2n41, crystallized into Jackson’s theory
of descriptions. This theory suffices to prove the strong partition property on
all dan41, as well as for odd projective ordinals in projective-like hierarchies
bounded by some wadge rank (below the first inaccesible?). It is hoped that
the methods presented here might be generalized to prove the strong partition
property for odd projective ordinals in scaled projective-like hierarchies below

the supremum of the suslin cardinals.

The proof we will present will be in the spirit of Martin’s original proof.
Jackson’s recent result that every weakly homogeneous tree has a stabilization
(i.e. the tree T can be restricted to large sets such that if S is the tree constructed
from the Martin-Solovay construction over T, then the leftmost branches of S
are a scale), allows one to replace the L[T,, x| of Becker-Kechris with L[Sy, x]
where S, is a homogeneous tree. The fact that S, is homogeneous allows one to
develop a theory of indiscernibles for the models L[S,,, z], which in turn provide

good codings. We now proceed with the proof.

We review some basic notation. The reals R will be identified with the
Baire space w*. By a tree on a set A we mean a subset of A<% closed under initial
segments. If T is a tree on w x R, p[T]={x € w* : Ir € R¥Vn(x|n,r|n) € T}.
If so,t0, 81,1 € W<, we write (sg,%9) < (s1,t1) to mean sg C to and s; C #;.

For T a tree we define the Kleene-Brouwer ordering on T <% (<xp when T



is clear from context) for s,te T by
s<gpt< (tCs)VIn(sin=tnAs(n) <tn))

note that if T is a tree on a wellfounded set, then T is wellfounded iff <xp is
a wellfounded relation. For T a tree on A x B, we define T, for a € A<% to be

{b € Bl9l|(a,b) € T}. Likewise, for = € w* define T,, = U, ., T - Finally, we

new
fix a bijection 7 : w — w<* such that if s C ¢, then 7~1(s) < 7~ 1(¢).

Definition 1.1. If T is a tree on w X w X Kk, we say T is weakly homogeneous

if there are measures {js¢|s,t € w<¥ A [s| = ||} such that
(i) ps, is a measure on k!5l such that wst(Tse) = 1.
(ii) if so C s1 and tg C t; then ps, 4, projects onto fis, ¢,

(iii) if z,y € w* are such that Jo € kVn((z [ n,y [ n,a | n) € T and {4, }new
are such that A,, € pgpn yn, then o € kVn(a [ n € A,))

Definition 1.2. If T is a weakly homogeneous tree on w X w X x as witnessed

by {fts,:}, then we define the Martin-Solovay construction over T to be a tree S

projecting to p[T]¢ by

(s,a) € S « 3If : Higs({ﬂ-(i)} X Ts[|7r(i)|,7r(i)) — kT such that f is
order preserving with respect to the KB ordering on ({m (i)} x Ty (i)|,x(i)) (We

order tuples lexicographically) and Vi < n(a(i) = [f™] fat . Where, for

(ol (i)
(m(i),a) € T, f7O(a) = f((r(i), a))
Definition 1.3. If T is a tree on w™ X k, then we say T is good if V(s,a) €

(W™ X K)<¥((s,a) € T = Vn < |a|(a(0) > a(n)))



For example, we can arrange for the Schoenfield tree for any X3 set
to be good. Notice that if T is a good, weakly-homogeneous tree, then we can
take the f as in Definition 1.2 to be into . Further, if x has the strong partition
property then we can define measures {vs}scw<~ on the Martin-Solovay tree S

as follows:

A € vy & (3C C K club such that Yo € sP*l(if (s,a) € S and the
function f that witness (s, ) € S as in Definition 1.2 can be taken so that f is

of the correct type and f : Ts — C, then a € A))

It is not difficult to see that in this situation, the {vs} witness that S

is homogenous.

We recall some definitions from [?]. Wi is the club measure on w;
and W™ is its m-fold product. The following definitions come from Definition
4.25 and the paragraphs following it in [?]. Using the notation above, these
definitions describe how the measures {v,} on S come from the measures {ys;}
on T. Recall that in this context, we are only interested in permutations f of
{0,1,...,n — 1} such that f(0) =n—1.

Definition 1.4. A type-1 tree of uniform cofinalities (of depth n) is a function

R satisfying the following:

(1) (p1,i1) € dom(R) for 0 < i3 < a for some integer a, and p; = the unique
permutation of length 1, namely p; = (1). for 41 = 0, R((p1,i1)) = (s),

and for i1 > 0,R((p1,%1)) is either (w), or a permutation py of length 2



(hence py = (2,1)). Also, (p1,¢1) is maximal in dom(R) iff R((p1,41)) =

(w) or (s).

(ii) In general, dom(R) consists of tuples (p1,i1, ..., lm—1,Pm,im), m < n, and
such a tuple is maximal in dom(R) iff R((p1,%1,...; Pm,im)) = (w) or (s)
(there are the only values permitted therefore if m=n). R((p1,i1,...; Dm,im)) =
(s)iff i, = 0. i R((P1,%15 s Py im)) # (w) o1 (8), then R((p1, 91, -, Py im))
is a permutation p,,+1 immediately extending p,,. In this case we have
(D1, 81y <oy Py by P41 im+1) € dom(R) for some integers 0 < ippy1 < a
(a> 0 and depends on (p1,41, -+ Prms by Pmt1))-

Definition 1.5. For R a type-1 tree of uniform cofinalities, we define <™ to

be the lexicographic ordering on sequences (1,41, -, tm—1, ¥m, tm )

(i) Ay ey Oy < W1

(ii) (ai,..., ) is of type p,, where (p1,...,pm) is the unique sequence such
that (p1,%1, -, Pm,im) € dom(R) (Here we say (aq,@1,-.., Qm, i) is of
type (P, i1, P, im))-

Definition 1.6. Say a function f : dom(<®) — w; is of type R if it is order-

preserving and

(1) (1,41, ..., Qm,im)) has uniform cofinality w if either (av, 41, ..., Qum, i) has
successor rank in <™ or if R((p1, 91, ..., P, im)) = (W) (for (a1, i1, ey Qny i)

of type (phila ap’ﬂhlm))

(ii) Otherwise, f((a1, i1, s Qmyim)) = sup{f(3) : 5 <® (Q1,i1, ., U, im)



Definition 1.7. To each tree of uniform cofinalities R we associate a measure

MR by

A € MR ¢ There is a club C' C w; such that Vf : dom(<®) — C of

type R [f]r € A (where [flr = (..., [fPrivePmim)]ym )

where f(pl’“"“’pm’im)(al,...,ozm) = f((a1,i1, ey Qm, i) (here (aq, ..., ayy,) ap-

pear in the correct order).

Now, assume we are applying the Martin Solovay construction (Defi-
nition 1.2) to a weakly homogeneous tree T such that p[T] is a 33 complete set.
Then the [T, ,({m(4)} X Tsjjx(i)),=()) of Definition 1.2 is precisely dom(<*) for
some tree of uniform cofinalities R. Thus the measures {v;} on the resultant

tree S are all measures of the form M7R.

Finally, we will need one result from the descriptions analysis of [?7].
Let R be a tree of uniform cofinalities and let f : dom(<r) — wy be of type R.
Let (aq,...,an) € wl, we define f[(a1, ..., a,)] to be the set of all possible ways

to apply f to a subset of (ay, ..., ). Formally, let f[(cq, ..., @,)] be the set

{8+ Im < n Fig, jisesim, Jm < 1 (0,01, L 0m) € dom(<gr
) A f((agyy i, s, im)) = BY
Theorem 1.8. Let R be a tree of uniform cofinalities and let F : dom(M™) —
wp. Then there is a g:wi* — wi(m is the number of descriptions defined over R

relative to W{'™*) s.t.



2 Indiscernibles for L[S;,x]

For T a weakly homogeneous tree, we say T is stable iff if S is the tree coming
from the Martin Solovay construction over T, then the leftmost branches of S
are a scale. Le. for z € p[S], if & is the leftmost branch of S,;, then the functions
¢n(x) = @(n) are a scale on p[S]. By [?], for every weakly homogeneous tree
T on w X w X K, there is a weakly homogeneous T’ on w X w X k such that

p[T]=p[T’] and T is stable.

Fix a stable tree T on w x w x w; such that p[T] is a £ complete set.
Let T be weakly homogeneous as witnessed by the measures {fis ¢ }(s,¢)e(wxw)<«
(recall each v, is of the form W{™ for some m). Let Sp come from the Martin
Solovay construction over T and be homogeneous as witnessed by the measures
{115 }sew<w (recall each i is of the form M for some tree of uniform cofinalities
R). Fix a real € w*, for the rest of this section we will develop a theory of
indiscernibles for the model L[Ss, z].
Definition 2.1. By a class of indiscernibles for L[Ss, 2] we will mean a proper
class of ordinals T' such that min(T') > w, and Vy1, ..., Y, Y1, -, Y € T, if
Y1 < o < p and Y < oo < Yty and aq, ., @ < min(yr, /1) then for all
(m + n) — ary formulas ¢, L[S2,z] E é(a1, ... @my Y1y, 7n) < L[So,z] =

¢(a17 seey Oém,’}//l, "'77’")'

It is straightforward to show that this definition is equivalent the standard

definition of indiscernibles in terms of embeddings.



Definition 2.2. Given I' a class of indiscernibles, a homogeneous set for I" (in
the language £) is a club C' C w; such that for all trees of uniform cofinalities
R, for all f,g: dom(<gr) — C of type R, for all 1 < ... <, € T, and for all

formulas 1 (in the language £) we have

L[Sz, 2] B U([flrs 15 s ) <> LS2, 2] B ¥([glr: 71505 7n)

For A C wy we will write AT, the ”lift-up of A”’, to denote the set
{a: 3f 0w = AN [flwm =a}

For T a class of indiscernibles for L[S3,z] and C a homogeneous set for ', we
will call (T, C') an indiscernible pair. In general, for (T', C') an indiscernible pair,
we will be interested in H = hull*!522/(T'U CT). The transitive collapse of H
will be some model L[S, z] and the natural question is whether S = S5. This
motivates the following definition:

Definition 2.3. For (I', C') an indiscernible pair, we will say (I", C) is a full pair
if there is a countable language £ (containing {e, S, } and with an interpretation
over L[S3,]) and a set A C w; such that hullﬁ[SQ’x] ruchHnw, = A?

Theorem 2.4. Let (T',C) be a full pair, and let M = L[S, x] be the transitive

collapse of H = hull*!521(CT). Then S = Sy. In particular M = L[S, x].

Proof. S is the collapse of Sy with the second coordinates restricted to AT. TLe.

S is the collapse of the set

{(s,a): (s,0) €Sy A ac (A)<w}



This means that, if Sy comes from the Martin Solovay construction applied to
T, then S is the transitive collapse of the tree S’ where S’ comes from the Martin
Solovay construction applied to T except that the functions f as in Definition

1.2 are required to be into A. Note that the transitive collapse of A is w;.

Let p: A - wy and 6 : H — L[S, z] be the collapse maps. For

frwp = Alet (p(f))(@) = p(f(«)). Note that

Viw! = A, [p(f)lwr = 0([flwy) (%)

Above, we observed that S is the transitive collapse of the tree S’. By (x) , the
transitive collapse of S’ is the same as the Martin Solovay construction applied
to T with the functions f as in Definition 1.2 required to be into the transitive

collapse of A, which is the full Martin Solovay construction. Thus S = Ss.

O

Theorem 2.5. Let T be a class of indiscernibles for L[S, x] with min(T) >
Wwt1. Then there is a C C wy, a homogeneous set for L[Ss, x], such that (T, C)

s a full pair.

Proof. Fix T' a class of indiscernibles with min(I') > w,4+1. The construction
of C will be an w length induction. At each stage n we will have a countable
language L,, containing {e, Sa}, a club C,, C w1, and a countable set of functions

Fn C “wy such that the following properties hold:

(i) C, is a homogeneous set for T" in the language £,,



(ii) Lp41 is £, with countable many function symbols {gm}mew added for each

function g € F,.

(iii) For every term 7 in the language L, for all v; < ... < v, € T, and for all
trees of uniform cofinalities R such that ¥} = [f] 7([f], 71,y Yn) < W1

there exists a function g € F,, such that for all f : dom(<g) — Cy,

([ 71, ) = [@ = g(f[a])]wp

(iv) F, is closed under composition

Although (iv) is not necessary, it will make aspects of our proof notationally

easier. Our construction will also guarantee that C,,+1 C C),.

We expand upon (ii): for g€ F,,, g:w]" — wi, for each I € w we add

a function symbol g; to £, 11 to be interpreted as a function ﬂL[SZ’“’]

.m
: lerl —
wm+1 by

g (), ) = [@ = 9(F2(@), s f @)

This is independent of the choices of representatives fi, ..., fn,. Note also that

L[Sg,x]

each g; is essentially a subset of w,,. Thus, due to the fact that min(T") >

wwt1, I is still a class of indiscernibles with respect to the language £, 1.

Assume we have such a construction and set C = () . Cp,L =

new
Unew £y F = Unew, Fn- We show C is a full set of indiscernibles. Specifi-

cally, let A be the closure of C under the functions in F, we will show that

Hull®>" (T u ) nw, = A",

10



Let H = Hull2>*(ruct).

First we show that H Nw, C AT. To see this, let 8 € H Nw,. Then
B =7([f],71, s Yn) for some tree of uniform cofinalities R and f : dom(<g) —
C,v1 < ... <y, €T and 7 a term in L,,. By (iii), there is a g € F,,, such that

B =la— g(fla])]lwm. Thus 8 € g[C]" and clearly g[C] C A.

Next, we show H Nw, 2 A'. To this end, let f : w? — A be such that
[f] is not representable by a f’ : w} — C. A simple partition argument shows
that, WLOG, there is a single g € F such that [ : w} — ¢[C]. Say dom(g)=w".

For i < m, define f; : wf* — C by fi(@) is the ith coordinate of g~!(f(@)). Then

[f] = [d = g(fl(d)7 R fm(d>)]W1" = @L[S27I]([fl}7 R [fm])
gn i a term in Ly, 41 and [f1], ..., [fm] € CT, so [f]e Hullé[SQ’z](C’T) as required.

Finally, we describe how to construct {L£,}, {Cy}, {F,} so that (i)-(iv)
hold. Set £; = {¢, 52} Fo = 0. By the strong partition property on wy, for each
formula ¢ in L,, for each tree of uniform cofinalities R, and for each m € w,
let Cy »r,m C w1 be club such that for all f1, fo : dom(<r) = Cy r,m of type

R and for all 1 < ... <~yp €T

L[Sa, 2] B »([fi], 71, s vm) € L[S2, 2] = ¢([f2]s 715 s V)

Further, by theorem 1.8 ,for each tree of uniform cofinalities R, and y; < ... <
T, R,m .

Ym € T', and each term 7 in £,, such that V& 7(&, 71, ..., Ym) < Wy, let g

w] = wy and Crrm C wr club be so that for all f : dom(<r) = Crr.m of

11



type R

T(FL sy ) = [@ = g™ (fla])lwy

Then set C,, = ﬂ¢ =om Co.rom O ;. rm Cr,rm and let F, the be the closure
under compositions of Fj,_1 U UT’R{gT’R’m}. To complete the induction, set
Lni1 = L, U UTRm{ng’Rm}lew. It is clear that this construction has the

desired properties. O

3 A good coding of subsets of w,
Our goal in this section is to show that the weak partition property holds at 63.
We first show how to adapt the main theorem of [?7] to our current situation.

Let {¢,} be the scale on p[S2] coming from the leftmost branch, we
now compute the complexity of the ¢,,.

Theorem 3.1. {¢,} is a X} scale on p[Ss].

Proof. We must show that the relations <7 and <} are X1 where
T <py & (¢ €p[So] Ay ¢ plS2]) V (6 (@) < dnly))

<5y (z€p[Sa] Ay & p[S2]) V (Pn(x) < Puly))

We will compute the relation <}, the proof for <} is nearly identical.

For z € w* and (s,a) € (w x k)<, we will say "the tree T, below

(s,a)” to refer to the set {(s',a/): (sUs,aUda’) € T, }. Examining Definition

12



1.2, it is clear that

z <Xy <+ (x € plSa Ay ¢ p[Sa]) \/V*Wl,,(,,md( The tree T, below
1

(m(n),o1(&@)) embeds into the tree T, below (7(n), o2(@)))

where 01, 03 are the unique permutations of length |7 (n)| such that (w(n), o1 (@)) €

T, and (m(n),o2(@)) € Ty.

We will first show that ”The tree T, below (7(n),o1(@)) embeds into
the tree T, below (7(n),o2(@))” is A3, and then show that Aj is closed under

the quantifier V.

To this end, first notice that the coding lemma gives us a 33 coding
of subsets of wy(better codings exist, but we will not need them here). That is,
there is a map ¢ : w* — P(w;) such that
(i) VA C wy there is a real z s.t. ¢(z) = A.

(ii) Va{z:a € ¢(2)} € 21
)<w.

We can view such a coding as coding subsets of (w X w;

To say "z codes an embedding from the tree T}, into the tree 7}, is to

say
V(s, @) € (wx wi)<¥3(L, B) € (wx w1)¥((2)((s, ), (L, 5)))

AV (50, 0), (51, 1), (to, Bo), (t1, 61) € (w x wy)<¥

13



((¢((s0, @0), (to, Bo)) Ad((s1, 1), (t1,B1)) A (0, 0) < (s1,01))) =
((to, Bo) < (t1,81)))

hence is A} (A1 is closed under unions and intersections of length wy). The
above easily generalizes to show that "z codes an embedding from the tree T,

below (m(n),o1(@)) into the tree T}, below (m(n),o2(a@))” is also Aj.

"The tree T, below (m(n), o1(&)) embeds into the tree T, below (7(n), o2(&)))”
can be computed as ¥ by Jz( z codes an embedding from the tree T, be-
low (m(n),o1(@)) into the tree T, below (m(n),o2(@))). It can also be com-
puted as ITZ by Vz (z does not compute an embedding from the tree T}, below

(m(n),02(@)) into a proper initial segment of the tree T, below (7 (n),o1(@))).

Thus, it remains to be shown that A} is closed under the quantifier

Vi1 - We will show it is closed under V7,

Wi the general case is only a complication

of notation. To this end, let {A, : @ < w1} be a sequence of A} sets. It suffices
to show that V’I"/Vla A, is 2%, as an identical computation would show that
1

(Ve Ao) (= Vi a (Aq)°) is 31, Let T° denote the Kunen tree. Then

V;Vlla(a? € A,) < F2((T} is wellfounded) AVa < wq((« is closed under

T)) —»z€A,))

hence is 3%(TI3 A A}) which is X1. O

A trivial modification to Sy ensures that, for

(@0, -y an), (€05 -+, 6n)), (@0, -y an), (€0, -£5)) € S2((§n < &) = Vi <n(&i < &)

14



For x,y€ p[S2] and n,me w, define (n,z) <g, (m,y) iff (n = mAd,(z) < dn(y)).
Then <g,€ X3 and is well-founded of rank w,,. The following is a generalization
of the main result of [77].

Theorem 3.2. For every A C w,, there is a real x such that A € L[Ss, z].

Proof. The argument is identical to that of [?7], so we will only show how to
modify the definitions to fit our situation. The only differences are that (i) we
will use <g, to code ordinals instead of ¢¢ (ii) Sz is not the tree of a scale. We

replace the following definitions in [?7]:

T = {(m, (ag, .., an), (€0, s &n)) = (a0 oy an), (€oy ey En)) € SaA(n < mVEy, < n(m))}

where 7(m) is such that if [(m, z)|<,, = 7 then x(m)=n(m). If there is no such

x then 7(m) = w;. note that, as in [?7], (m,y) € p[T"] = (|(m, y)|<s, <)
For alln € wlet @, C w xR x (wx w" x wT1) be the following set:

{(m07.’17,m1, (a0> “‘>an)7 (507 7€n)) S p[S2]/\(m1> (a07 ~~-7an)7 (503 7577,)) S Tl(mo’w)‘<s2}

As in [?7], let QF be the code set of @, where the ith coordinate is

encoded using ¢;. Formally, Q¥ C w xR x (wx w1 x R"*1) is the set of tuples
{(mOa‘T; my, (a07 ) an)a (207 s Zn)) Vi < TL(ZZ S p[SQ])/\

(mo, T, m1, (ag, - an), (P0(20), -y Pn(21))) € Qn}

The main complication in our generalization is that in [??] their T (our S2)

is the tree of a scale. This allows them to compute Q} as X3} in an easy way.

15



However, we are able to use the homogeneity of S to give a similar, albeit more

complicated, computation. Namely,

(mo,x,m1, (a0, ey @n), (205 s 2n)) € @ <> x € p[S2] AVi < n(z; € p[Sa])A

Fyly € p[S] AVi < n(y(i) = ai) A (¢o(y), .-, ¢n(y)) has the same R-type as

(¢0(ZO)> sy ¢n(zn)) A (mlay) <Sz (mo,l')]

Where (ag, ..., ) has the same R-type as (Bo,..., Bn) iff there is a
tree of uniform cofinalities R and functions fi, fo : dom(<gr) — wi of type
R such that [fi]g = (ag,...an) and [fo]lg = (Bo,...,Bn). A straightforward
computation shows that this is 1, thus Q7 is 1. Finally, given 4 C w,,, let
A* be the codeset for A using <g, and let x be such that A%, <g,,Q} € Xi(z).

The argument of [??] shows that A€ L[Ss, z].

We now prove the weak partition property holds at 63.

Fix a countable language £ D {¢, S2} such that, for each n, £ has
countably many n-ary function symbols. Note that for any full set of indis-
cernibles C as constructed above, we can assume that C is a full set of indis-

cernibles as witnessed by £ under some appropriate interpretation of L.

Note that for any sequence of ordinals & € wS* there is a smallest tree
of uniform cofinalities Ry such that there is a function f: dom(<g.) — w; of

type R and & is a subset of [f].

16



For C a full set of indiscernibles for L[Ss, z], we can code the L-theory
of Hullé[sz’m](C’T) by a real y. Specifically (viewing y as a subset of w), for a
tree of uniform cofinalities R and for a formula % in the language £, we put
< R, >€ yiff ¢ is defined on dom(M™) and for f : dom(<r) — C, L[S, 7] =

Y([f])- In this situation, we say y "is a sharp for L[Sy, z]”.

For y areal, we say "y looks like a sharp” iff y codes a consistent theory
via the coding above and y|= ZFC + V=LIS]. Note that to say "y looks like a

sharp” is Al

For y a real that looks like a sharp, we build the model M, in the
following way: the universe of M,, M,, is the set of all pairs j7, (z1,...25)}
where 7 is an nary L-formula and (z1,...,2,) is a sequence of reals coding a
function f,, : wy® — w; (here we use our 3 coding of subsets of w;). Given
< 71, (@], el ) >y, < Ty, (@, @) ) > in the universe of M, and ¢ an

n-ary L-formula
My = (< T, (:ci, ...,x}nl >, < Ty, (27 sz, ) >)) & < R([fz}]7___,[fm}nl],_”7[&?]7_“7[&%"])’wl >Ey

Where,iff:dom(<7g([fx%] ..... Gt Dosliynloelian ;) = w1 is such that ([fm%],...,[fx}nl},...,[f:c?],...,[fw%n])C

Timq 1 Tmpn

[ﬁ» then 1//([f]) ANe w(Tl([fz}]» it [fxl ])7 "'7Tn([fx¥]“'v [f:r:” ]))

mq mn

We make some observations about M,,. M, is A} as it can be defined

using ordinal quantifiers over w; and our X1 coding of subsets of w;. Also, for

< T (@], ey @) >y ey < Ty (2,2l ) >€ M, and 4 an L-formula, to say

mi

My EY(< i, (21, ozl ) >, < 1, (2}, xy, ) >) is A} by a similar com-

mq m
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putation (here we again use that Al is closed under Vévlm ). Lastly we note that,
while there may be ill founded M,,, every M, contains an initial segment of the
ordinals, which we denote by WFP(M,). Again, standard computations show
that for o € wy, i7, (z1,...2,) >€ My, to say "< 7, (z1,...xn) >€ WFP(M,)
and has rank o” is A}. We now provide our coding:

Theorem 3.3. There is a coding ® : w* — P(w,,) such that
(i) V A Cw, there is a real x such that ®(x) = A.

(i) Va<w, {r:a€d(x)} € Al

Proof. For x € w,, define ®(z) by

a € ®(x) & (x =<1,y > for ¢ a L-formula and y a real that looks

like a sharp) and (o« € WFP(M,) and M, = ¢¥(a))

Of course, by "M, = ¢¥(a)” we mean "3 < 7,(20,....,2n) > ((| <
T, (205 2n) > loymy = @) A My = (< 7,(20,...,2n) >))” or, equivalenty,
< T (205 2n) > (| < T, (20,0020) > oMy = @) &> My, E (<
7,(20, .-, 2n) >))” By the remarks in the paragraph preceding the theorem and

by Theorem 3.2, ® has the desired properties.

By [??] Theorem 3.3 implies that the weak partition property holds at
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Recall from the theory of indiscernibles for L[z]| that the set of reals
{y: 3z (y = 2"} is TI3. We conclude by generalizing this result to sharps for
L[SQ, ZL’] .

Theorem 3.4. The set of reals A= {y: 3z (y is a sharp for L[Ss,z])} is I13.

Proof. y € A iff y looks like a sharp, M, is well-founded, and &My = Ss.
Using our coding from Theorem 3.3, to say ” &M“ = S5” is Al. Further M,
is well founded iff Vz( z does not code an w-sequence of elements of M, that is

M -decreasing), hence is II} as desired. O
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