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1 Introduction and Review

Our goal is to present a theory of indiscernibles for the model L[T2] and to use

that theory to give a new proof of the weak partition property on δ13 . This

represents joint work with Steve Jackson.

Martin originally proved the strong partition property on ω1 using the

theory of indiscernibles for models of the form L[x], for x a real. This theory,

in conjunction with the fact that every subset of ω1 is in L[x] for some real

x, provided a good coding for subsets of ω1, and this coding was sufficient to

prove the strong partition property. Becker and Kechris subsequently proved

that every subset of δ2n+1 was in L[T2n+1,x], for some real x, and the hope

was that Martin’s techniques would generalize to these models, proving the

strong partition property on δ2n+1. Unfortunately, a theory of indiscernibles for

the models L[Tn, x] was not forthcoming. Led by Kunen, other methods were
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developed for providing good codings of subsets of δ2n+1. These methods, which

hinge on an analysis of measures on δ2n+1, crystallized into Jackson’s theory

of descriptions. This theory suffices to prove the strong partition property on

all δ2n+1, as well as for odd projective ordinals in projective-like hierarchies

bounded by some wadge rank (below the first inaccesible?). It is hoped that

the methods presented here might be generalized to prove the strong partition

property for odd projective ordinals in scaled projective-like hierarchies below

the supremum of the suslin cardinals.

The proof we will present will be in the spirit of Martin’s original proof.

Jackson’s recent result that every weakly homogeneous tree has a stabilization

(i.e. the tree T can be restricted to large sets such that if S is the tree constructed

from the Martin-Solovay construction over T, then the leftmost branches of S

are a scale), allows one to replace the L[Tn,x] of Becker-Kechris with L[Sn, x]

where Sn is a homogeneous tree. The fact that Sn is homogeneous allows one to

develop a theory of indiscernibles for the models L[Sn, x], which in turn provide

good codings. We now proceed with the proof.

We review some basic notation. The reals R will be identified with the

Baire space ωω. By a tree on a set A we mean a subset of A<ω closed under initial

segments. If T is a tree on ω × R, p[T]={x ∈ ωω : ∃r ∈ Rω∀n(x|n, r|n) ∈ T}.

If s0, t0, s1, t1 ∈ ω<ω, we write (s0, t0) < (s1, t1) to mean s0 ⊂ t0 and s1 ⊂ t1.

For T a tree we define the Kleene-Brouwer ordering on T <TKB (<KB when T
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is clear from context) for s,t∈ T by

s <KB t↔ (t ⊂ s) ∨ ∃n(s|n = t|n ∧ s(n) < t(n))

note that if T is a tree on a wellfounded set, then T is wellfounded iff <KB is

a wellfounded relation. For T a tree on A×B, we define Ta for a ∈ A<ω to be

{b ∈ B|a||(a, b) ∈ T}. Likewise, for x ∈ ωω define Tx =
⋃
n∈ω Tx�n . Finally, we

fix a bijection π : ω → ω<ω such that if s ⊂ t, then π−1(s) < π−1(t).

Definition 1.1. If T is a tree on ω × ω × κ, we say T is weakly homogeneous

if there are measures {µs,t|s, t ∈ ω<ω ∧ |s| = |t|} such that

(i) µs,t is a measure on κ|s| such that µs,t(Ts,t) = 1.

(ii) if s0 ⊂ s1 and t0 ⊂ t1 then µs1,t1 projects onto µs0,t0

(iii) if x, y ∈ ωω are such that ∃α ∈ κω∀n((x � n, y � n, α � n) ∈ T and {An}n∈ω

are such that An ∈ µx�n,y�n, then ∃α ∈ κω∀n(α � n ∈ An))

Definition 1.2. If T is a weakly homogeneous tree on ω × ω × κ as witnessed

by {µs,t}, then we define the Martin-Solovay construction over T to be a tree S

projecting to p[T ]c by

(s, α) ∈ S ↔ ∃f :
∏
i≤s({π(i)} × Ts�|π(i)|,π(i)) → κ+ such that f is

order preserving with respect to the KB ordering on ({π(i)} × Ts|π(i)|,π(i)) (we

order tuples lexicographically) and ∀i < n(α(i) = [fπ(i)]µs�|π(i)|,π(i)
). Where, for

(π(i), α) ∈ T , fπ(i)(α) = f((π(i), α))

Definition 1.3. If T is a tree on ωn × κ, then we say T is good if ∀(s, α) ∈

(ωn × κ)<ω((s, α) ∈ T → ∀n < |α|(α(0) > α(n)))
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For example, we can arrange for the Schoenfield tree for any Σ1
2 set

to be good. Notice that if T is a good, weakly-homogeneous tree, then we can

take the f as in Definition 1.2 to be into κ. Further, if κ has the strong partition

property then we can define measures {νs}s∈ω<ω on the Martin-Solovay tree S

as follows:

A ∈ νs ↔ (∃C ⊂ κ club such that ∀α ∈ κ|s|(if (s, α) ∈ S and the

function f that witness (s, α) ∈ S as in Definition 1.2 can be taken so that f is

of the correct type and f : Ts → C, then α ∈ A))

It is not difficult to see that in this situation, the {νs} witness that S

is homogenous.

We recall some definitions from [?]. W 1
1 is the club measure on ω1

and Wm
1 is its m-fold product. The following definitions come from Definition

4.25 and the paragraphs following it in [?]. Using the notation above, these

definitions describe how the measures {νs} on S come from the measures {µs,t}

on T. Recall that in this context, we are only interested in permutations f of

{0, 1, ..., n− 1} such that f(0) = n− 1.

Definition 1.4. A type-1 tree of uniform cofinalities (of depth n) is a function

R satisfying the following:

(i) (p1, i1) ∈ dom(R) for 0 ≤ i1 ≤ a for some integer a, and p1 = the unique

permutation of length 1, namely p1 = (1). for i1 = 0, R((p1, i1)) = (s),

and for i1 > 0,R((p1, i1)) is either (ω), or a permutation p2 of length 2
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(hence p2 = (2, 1)). Also, (p1, i1) is maximal in dom(R) iff R((p1, i1)) =

(ω) or (s).

(ii) In general, dom(R) consists of tuples (p1, i1, ..., im−1, pm, im),m ≤ n, and

such a tuple is maximal in dom(R) iff R((p1, i1, ..., pm, im)) = (ω) or (s)

(there are the only values permitted therefore if m=n). R((p1, i1, ..., pm, im)) =

(s) iff im = 0. ifR((p1, i1, ..., pm, im)) 6= (ω) or (s), thenR((p1, i1, ..., pm, im))

is a permutation pm+1 immediately extending pm. In this case we have

(p1, i1, ..., pm, im, pm+1, im+1) ∈ dom(R) for some integers 0 ≤ im+1 ≤ a

(a≥ 0 and depends on (p1, i1, ..., pm, im, pm+1)).

Definition 1.5. For R a type-1 tree of uniform cofinalities, we define <R to

be the lexicographic ordering on sequences (α1, i1, ..., im−1, αm, im)

(i) α1, ..., αm < ω1

(ii) (α1, ..., αm) is of type pm where (p1, ..., pm) is the unique sequence such

that (p1, i1, ..., pm, im) ∈ dom(R) (Here we say (α1, i1, ..., αm, im) is of

type (p1, i1, ...pm, im)).

Definition 1.6. Say a function f : dom(<R) → ω1 is of type R if it is order-

preserving and

(i) f((α1, i1, ..., αm, im)) has uniform cofinality ω if either (α1, i1, ..., αm, im) has

successor rank in<R or ifR((p1, i1, ..., pm, im)) = (ω) (for (α1, i1, ..., αm, im)

of type (p1, i1, ..., pm, im)).

(ii) Otherwise, f((α1, i1, ..., αm, im)) = sup{f(s) : s <R (α1, i1, ..., αm, im)
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Definition 1.7. To each tree of uniform cofinalities R we associate a measure

MR by

A ∈ MR ↔ There is a club C ⊂ ω1 such that ∀f : dom(<R) → C of

type R [f ]R ∈ A (where [f ]R = (..., [f (p1,i1,...,pm,im)]Wm
1
, ...))

where f (p1,i1,...,pm,im)(α1, ..., αm) = f((α1, i1, ..., αm, im)) (here (α1, ..., αm) ap-

pear in the correct order).

Now, assume we are applying the Martin Solovay construction (Defi-

nition 1.2) to a weakly homogeneous tree T such that p[T] is a Σ1
2 complete set.

Then the
∏
i≤s({π(i)}× Ts�|π(i)|,π(i)) of Definition 1.2 is precisely dom(<R) for

some tree of uniform cofinalities R. Thus the measures {νs} on the resultant

tree S are all measures of the form MR.

Finally, we will need one result from the descriptions analysis of [??].

Let R be a tree of uniform cofinalities and let f : dom(<R)→ ω1 be of type R.

Let (α1, ..., αn) ∈ ωn1 , we define f[(α1, ..., αn)] to be the set of all possible ways

to apply f to a subset of (α1, ..., αn). Formally, let f [(α1, ..., αn)] be the set

{β : ∃m ≤ n ∃i1, j1, ..., im, jm ≤ n (αj1 , i1, ..., αjm , im) ∈ dom(<R

) ∧ f((αj1 , i1, ..., αjm , im)) = β}

Theorem 1.8. Let R be a tree of uniform cofinalities and let F : dom(MR)→

ωn. Then there is a g:ωm1 → ω1(m is the number of descriptions defined over R

relative to Wn−1
1 ) s.t.

∀∗MR [f ] F ([f ]) = [ᾱ 7→ g(f [ᾱ])]Wn−1
1
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2 Indiscernibles for L[S2,x]

For T a weakly homogeneous tree, we say T is stable iff if S is the tree coming

from the Martin Solovay construction over T, then the leftmost branches of S

are a scale. I.e. for x ∈ p[S], if ᾱ is the leftmost branch of Sx, then the functions

φn(x) = ᾱ(n) are a scale on p[S]. By [?], for every weakly homogeneous tree

T on ω × ω × κ, there is a weakly homogeneous T’ on ω × ω × κ such that

p[T]=p[T’] and T’ is stable.

Fix a stable tree T on ω×ω×ω1 such that p[T ] is a Σ1
2 complete set.

Let T be weakly homogeneous as witnessed by the measures {µs,t}(s,t)∈(ω×ω)<ω

(recall each νs,t is of the form Wm
1 for some m). Let S2 come from the Martin

Solovay construction over T and be homogeneous as witnessed by the measures

{µs}s∈ω<ω (recall each µs is of the form MR for some tree of uniform cofinalities

R). Fix a real x ∈ ωω, for the rest of this section we will develop a theory of

indiscernibles for the model L[S2, x].

Definition 2.1. By a class of indiscernibles for L[S2, x] we will mean a proper

class of ordinals Γ such that min(Γ) > ωω and ∀γ1, ..., γn, γ′1, ..., γ′n ∈ Γ, if

γ1 < ... < γn and γ′1 < ... < γ′n and α1, ..., αm < min(γ1, γ′1) then for all

(m + n) − ary formulas φ, L[S2, x] |= φ(α1, ..., αm, γ1, ..., γn) ↔ L[S2, x] |=

φ(α1, ..., αm, γ′1, ..., γ′n).

It is straightforward to show that this definition is equivalent the standard

definition of indiscernibles in terms of embeddings.
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Definition 2.2. Given Γ a class of indiscernibles, a homogeneous set for Γ (in

the language L) is a club C ⊆ ω1 such that for all trees of uniform cofinalities

R, for all f, g : dom(<R) → C of type R, for all γ1 < ... < γn ∈ Γ, and for all

formulas ψ (in the language L) we have

L[S2, x] |= ψ([f ]R, γ1, ..., γn)↔ L[S2, x] |= ψ([g]R, γ1, ..., γn)

For A ⊂ ω1 we will write A↑, the ”lift-up of A”’, to denote the set

{α : ∃f : ωm1 → A ∧ [f ]Wm
1

= α}

For Γ a class of indiscernibles for L[S2, x] and C a homogeneous set for Γ, we

will call (Γ, C) an indiscernible pair. In general, for (Γ, C) an indiscernible pair,

we will be interested in H = hullL[S2,x](Γ ∪ C↑). The transitive collapse of H

will be some model L[S, x] and the natural question is whether S = S2. This

motivates the following definition:

Definition 2.3. For (Γ, C) an indiscernible pair, we will say (Γ, C) is a full pair

if there is a countable language L (containing {ε, S2} and with an interpretation

over L[S2, x]) and a set A ⊂ ω1 such that hull
L[S2,x]
L (Γ ∪ C↑) ∩ ωω = A↑

Theorem 2.4. Let (Γ, C) be a full pair, and let M = L[S, x] be the transitive

collapse of H = hullL[S2,x](C↑). Then S = S2. In particular M = L[S2, x].

Proof. S is the collapse of S2 with the second coordinates restricted to A↑. I.e.

S is the collapse of the set

{(s, α) : (s, α) ∈ S2 ∧ α ∈ (A↑)<ω}
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This means that, if S2 comes from the Martin Solovay construction applied to

T, then S is the transitive collapse of the tree S’ where S’ comes from the Martin

Solovay construction applied to T except that the functions f as in Definition

1.2 are required to be into A. Note that the transitive collapse of A is ω1.

Let ρ : A → ω1 and θ : H → L[S, x] be the collapse maps. For

f : ωn1 → A let (ρ(f))(α) = ρ(f(α)). Note that

∀f : ωn1 → A, [ρ(f)]Wn
1

= θ([f ]Wn
1

) (?)

Above, we observed that S is the transitive collapse of the tree S’. By (?) , the

transitive collapse of S’ is the same as the Martin Solovay construction applied

to T with the functions f as in Definition 1.2 required to be into the transitive

collapse of A, which is the full Martin Solovay construction. Thus S = S2.

Theorem 2.5. Let Γ be a class of indiscernibles for L[S2, x] with min(Γ) >

ωω+1. Then there is a C ⊂ ω1, a homogeneous set for L[S2, x], such that (Γ, C)

is a full pair.

Proof. Fix Γ a class of indiscernibles with min(Γ) > ωω+1. The construction

of C will be an ω length induction. At each stage n we will have a countable

language Ln containing {ε, S2}, a club Cn ⊂ ω1, and a countable set of functions

Fn ⊂ ω1ω1 such that the following properties hold:

(i) Cn is a homogeneous set for Γ in the language Ln
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(ii) Ln+1 is Ln with countable many function symbols {g
m
}m∈ω added for each

function g ∈ Fn.

(iii) For every term τ in the language Ln, for all γ1 < ... < γn ∈ Γ, and for all

trees of uniform cofinalities R such that ∀∗MR [f ] τ([f ], γ1, ..., γn) < ωm+1

there exists a function g ∈ Fn such that for all f : dom(<R)→ Cn

τ([f ], γ1, ..., γn) = [ᾱ→ g(f [ᾱ])]Wm
1

(iv) Fn is closed under composition

Although (iv) is not necessary, it will make aspects of our proof notationally

easier. Our construction will also guarantee that Cn+1 ⊂ Cn.

We expand upon (ii): for g∈ Fn, g : ωm1 → ω1, for each l ∈ ω we add

a function symbol gl to Ln+1 to be interpreted as a function gl
L[S2,x] : ωml+1 →

ωm+1 by

gl
L[S2,x]([f1], ...[fm]) = [ᾱ 7→ g(f1(ᾱ), ..., fn(ᾱ))]W l

1

This is independent of the choices of representatives f1, ..., fm. Note also that

each gl
L[S2,x] is essentially a subset of ωω. Thus, due to the fact that min(Γ) >

ωω+1, Γ is still a class of indiscernibles with respect to the language Ln+1.

Assume we have such a construction and set C =
⋂
n∈ω Cn,L =⋃

n∈ω Ln,F =
⋃
n∈ω Fn. We show C is a full set of indiscernibles. Specifi-

cally, let A be the closure of C under the functions in F , we will show that

Hull
L[S2,x]
L (Γ ∪ C↑) ∩ ωω = A↑.
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Let H = Hull
L[S2,x]
L (Γ ∪ C↑).

First we show that H ∩ ωω ⊆ A↑. To see this, let β ∈ H ∩ ωω. Then

β = τ([f ], γ1, ..., γn) for some tree of uniform cofinalities R and f : dom(<R)→

C, γ1 < .... < γn ∈ Γ and τ a term in Lm. By (iii), there is a g ∈ Fm such that

β = [ᾱ→ g(f [ᾱ])]Wm
1

. Thus β ∈ g[C]↑ and clearly g[C] ⊂ A.

Next, we show H∩ωω ⊇ A↑. To this end, let f : ωn1 → A be such that

[f] is not representable by a f ′ : ωn1 → C. A simple partition argument shows

that, WLOG, there is a single g ∈ F such that f : ωn1 → g[C]. Say dom(g)=ωm1 .

For i < m, define fi : ωn1 → C by fi(ᾱ) is the ith coordinate of g−1(f(ᾱ)). Then

[f ] = [ᾱ 7→ g(f1(ᾱ), ..., fm(ᾱ))]Wn
1

= gn
L[S2,x]([f1], ..., [fm])

gn is a term in Ln+1 and [f1], ..., [fm] ∈ C↑, so [f]∈ HullL[S2,x]
L (C↑) as required.

Finally, we describe how to construct {Ln}, {Cn}, {Fn} so that (i)-(iv)

hold. Set L1 = {ε, S2} F0 = ∅. By the strong partition property on ω1, for each

formula ψ in Ln, for each tree of uniform cofinalities R, and for each m ∈ ω,

let Cψ,R,m ⊂ ω1 be club such that for all f1, f2 : dom(<R) → Cψ,R,m of type

R and for all γ1 < ... < γm ∈ Γ

L[S2, x] |= ψ([f1], γ1, ..., γm)↔ L[S2, x] |= ψ([f2], γ1, ..., γm)

Further, by theorem 1.8 ,for each tree of uniform cofinalities R, and γ1 < ... <

γm ∈ Γ, and each term τ in Ln such that ∀∗Rᾱ τ(ᾱ, γ1, ..., γm) < ωω, let gτ,R,m :

ωr1 → ω1 and Cτ,R,m ⊂ ω1 club be so that for all f : dom(<R) → Cτ,R,m of
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type R

τ([f ], γ1, ..., γm) = [ᾱ 7→ gτ,R,m(f [α])]W l
1

Then set Cn =
⋂
ψ,R,m Cψ,R,m ∩

⋂
τ,R,m Cτ,R,m and let Fn the be the closure

under compositions of Fn−1 ∪
⋃
τ,R{gτ,R,m}. To complete the induction, set

Ln+1 = Ln ∪
⋃
τ,R,m{g

τ,Rm
l }l∈ω. It is clear that this construction has the

desired properties.

3 A good coding of subsets of ωω

Our goal in this section is to show that the weak partition property holds at δ1
3 .

We first show how to adapt the main theorem of [??] to our current situation.

Let {φn} be the scale on p[S2] coming from the leftmost branch, we

now compute the complexity of the φn.

Theorem 3.1. {φn} is a Σ1
3 scale on p[S2].

Proof. We must show that the relations <∗n and ≤∗n are Σ1
3 where

x <∗n y ↔ (x ∈ p[S2] ∧ y /∈ p[S2]) ∨ (φn(x) < φn(y))

x ≤∗n y ↔ (x ∈ p[S2] ∧ y /∈ p[S2]) ∨ (φn(x) ≤ φn(y))

We will compute the relation ≤∗n, the proof for <∗n is nearly identical.

For x ∈ ωω and (s, α) ∈ (ω × κ)<ω, we will say ”the tree Tx below

(s, α)” to refer to the set {(s′, α′) : (s ∪ s′, α ∪ α′) ∈ Tx}. Examining Definition
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1.2, it is clear that

x ≤∗n y ↔ (x ∈ p[S2] ∧ y /∈ p[S2]) ∨ ∀∗
W
|π(n)|
1

ᾱ( The tree Tx below

(π(n), σ1(ᾱ)) embeds into the tree Ty below (π(n), σ2(ᾱ)))

where σ1, σ2 are the unique permutations of length |π(n)| such that (π(n), σ1(ᾱ)) ∈

Tx and (π(n), σ2(ᾱ)) ∈ Ty.

We will first show that ”The tree Tx below (π(n), σ1(ᾱ)) embeds into

the tree Ty below (π(n), σ2(ᾱ))” is ∆1
3, and then show that ∆1

3 is closed under

the quantifier ∀∗Wm
1

To this end, first notice that the coding lemma gives us a Σ1
2 coding

of subsets of ω1(better codings exist, but we will not need them here). That is,

there is a map φ : ωω → P (ω1) such that

(i) ∀A ⊂ ω1 there is a real z s.t. φ(z) = A.

(ii) ∀α{z : α ∈ φ(z)} ∈ Σ1
2

We can view such a coding as coding subsets of (ω × ω1)<ω.

To say ”z codes an embedding from the tree Tx into the tree Ty is to

say

∀(s, α) ∈ (ω × ω1)<ω∃!(t, β) ∈ (ω × ω1)<ω(φ(z)((s, α), (t, β)))

∧∀(s0, α0), (s1, α1), (t0, β0), (t1, β1) ∈ (ω × ω1)<ω
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((φ((s0, α0), (t0, β0))∧φ((s1, α1), (t1, β1))∧ ((s0, α0) <TxKB (s1, α1)))→

((t0, β0) <
Ty
KB (t1, β1)))

hence is ∆1
3 (∆1

3 is closed under unions and intersections of length ω1). The

above easily generalizes to show that ”z codes an embedding from the tree Tx

below (π(n), σ1(ᾱ)) into the tree Ty below (π(n), σ2(ᾱ))” is also ∆1
3.

”The tree Tx below (π(n), σ1(ᾱ)) embeds into the tree Ty below (π(n), σ2(ᾱ)))”

can be computed as Σ1
3 by ∃z( z codes an embedding from the tree Tx be-

low (π(n), σ1(ᾱ)) into the tree Ty below (π(n), σ2(ᾱ))). It can also be com-

puted as Π1
3 by ∀z (z does not compute an embedding from the tree Ty below

(π(n), σ2(ᾱ)) into a proper initial segment of the tree Tx below (π(n), σ1(ᾱ))).

Thus, it remains to be shown that ∆1
3 is closed under the quantifier

∀∗W 1
m

. We will show it is closed under ∀∗
W 1

1
, the general case is only a complication

of notation. To this end, let {Aα : α < ω1} be a sequence of ∆1
3 sets. It suffices

to show that ∀∗
W 1

1
α Aα is Σ1

3, as an identical computation would show that

¬(∀∗
W 1

1
α Aα)(= ∀∗

W 1
1
α (Aα)c) is Σ1

3. Let T’ denote the Kunen tree. Then

∀∗
W 1

1
α(x ∈ Aα)↔ ∃z((T ′z is wellfounded) ∧∀α < ω1((α is closed under

T ′z)→ x ∈ Aα))

hence is ∃R(Π1
2 ∧∆1

3) which is Σ1
3.

A trivial modification to S2 ensures that, for

((a0, ..., an), (ξ0, ..., ξn)), ((a0, ..., an), (ξ′0, ...ξ
′
n)) ∈ S2((ξn < ξ′n)→ ∀i < n(ξi ≤ ξ′i))
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For x,y∈ p[S2] and n,m∈ ω, define (n, x) <S2 (m, y) iff (n = m∧φn(x) < φn(y)).

Then <S2
∈ Σ1

3 and is well-founded of rank ωω. The following is a generalization

of the main result of [??].

Theorem 3.2. For every A ⊂ ωω there is a real x such that A ∈ L[S2, x].

Proof. The argument is identical to that of [??], so we will only show how to

modify the definitions to fit our situation. The only differences are that (i) we

will use <S2
to code ordinals instead of φ0 (ii) S2 is not the tree of a scale. We

replace the following definitions in [??]:

T η = {(m, (a0, ..., an), (ξ0, ..., ξn)) : ((a0, ..., an), (ξ0, ..., ξn)) ∈ S2∧(n < m∨ξm ≤ η(m))}

where η(m) is such that if |(m,x)|<S2
= η then x(m)=η(m). If there is no such

x then η(m) = ω1. note that, as in [??], (m, y) ∈ p[T η]→ (|(m, y)|<S2
≤ η)

For all n ∈ ω let Qn ⊆ ω×R× (ω×ωn+1×ωn+1
ω ) be the following set:

{(m0, x,m1, (a0, ..., an), (ξ0, ..., ξn)) : x ∈ p[S2]∧(m1, (a0, ..., an), (ξ0, ..., ξn)) ∈ T |(m0,x)|<S2 }

As in [??], let Q∗n be the code set of Qn where the ith coordinate is

encoded using φi. Formally, Q∗n ⊆ ω×R×(ω×ωn+1×Rn+1) is the set of tuples

{(m0, x,m1, (a0, ..., an), (z0, ..., zn)) : ∀i ≤ n(zi ∈ p[S2])∧

(m0, x,m1, (a0, ..., an), (φ0(z0), ..., φn(zn))) ∈ Qn}

The main complication in our generalization is that in [??] their T (our S2)

is the tree of a scale. This allows them to compute Q∗n as Σ1
3 in an easy way.
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However, we are able to use the homogeneity of S2 to give a similar, albeit more

complicated, computation. Namely,

(m0, x,m1, (a0, ..., an), (z0, ..., zn)) ∈ Q∗n ↔ x ∈ p[S2] ∧ ∀i ≤ n(zi ∈ p[S2])∧

∃y[y ∈ p[S2] ∧ ∀i ≤ n(y(i) = ai) ∧ (φ0(y), ..., φn(y)) has the same R-type as

(φ0(z0), ..., φn(zn)) ∧ (m1, y) <S2
(m0, x)]

Where (α0, ..., αn) has the same R-type as (β0, ..., βn) iff there is a

tree of uniform cofinalities R and functions f1, f2 : dom(<R) → ω1 of type

R such that [f1]R = (α0, ...αn) and [f2]R = (β0, ..., βn). A straightforward

computation shows that this is Σ1
3, thus Q∗n is Σ1

3. Finally, given A ⊂ ωω, let

A∗ be the codeset for A using <S2 and let x be such that A∗, <S2 , Q
∗
n ∈ Σ1

3(x).

The argument of [??] shows that A∈ L[S2, x].

We now prove the weak partition property holds at δ1
3 .

Fix a countable language L ⊃ {ε, S2} such that, for each n, L has

countably many n-ary function symbols. Note that for any full set of indis-

cernibles C as constructed above, we can assume that C is a full set of indis-

cernibles as witnessed by L under some appropriate interpretation of L.

Note that for any sequence of ordinals ᾱ ∈ ω<ωω there is a smallest tree

of uniform cofinalities Rᾱ such that there is a function f: dom(<Rᾱ) → ω1 of

type Rᾱ and ᾱ is a subset of [f].
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For C a full set of indiscernibles for L[S2, x], we can code the L-theory

of Hull
L[S2,x]
L (C↑) by a real y. Specifically (viewing y as a subset of ω), for a

tree of uniform cofinalities R and for a formula ψ in the language L, we put

< R, ψ >∈ y iff ψ is defined on dom(MR) and for f : dom(<R)→ C,L[S2, x] |=

ψ([f ]). In this situation, we say y ”is a sharp for L[S2, x]”.

For y a real, we say ”y looks like a sharp” iff y codes a consistent theory

via the coding above and y|= ZFC + V=L[S]. Note that to say ”y looks like a

sharp” is ∆1
1.

For y a real that looks like a sharp, we build the model My in the

following way: the universe of My, My, is the set of all pairs ¡τ, (x1, ...xn)¿

where τ is an nary L-formula and (x1, ..., xn) is a sequence of reals coding a

function fxi : ωni1 → ω1 (here we use our Σ1
2 coding of subsets of ω1). Given

< τ1, (x
1
1, ..., x

1
m1

) >, ..., < τn, (x
n
1 ..., x

n
mn) > in the universe of My and ψ an

n-ary L-formula

My |= ψ(< τ1, (x
1
1, ..., x

1
m1

>, ..., < τn, (x
n
1 ..., x

n
mn) >))↔< R([f

x1
1
],...,[fx1

m1
],...,[fxn1

],...,[fxnmn
]), ψ

′ >∈ y

Where, if f:dom(<R([f
x1
1

],...,[f
x1
m1

],...,[fxn1
],...,[fxnmn

])
)→ ω1 is such that ([fx1

1
], ..., [fx1

m1
], ..., [fxn1 ], ..., [fxnmn ]) ⊂

[f ], then ψ′([f ])↔ ψ(τ1([fx1
1
], ..., [fx1

m1
]), ..., τn([fxn1 ]..., [fxnmn ])).

We make some observations aboutMy. My is ∆1
3 as it can be defined

using ordinal quantifiers over ω1 and our Σ1
2 coding of subsets of ω1. Also, for

< τ1, (x
1
1, ..., x

1
m1

) >, ..., < τn, (x
n
1 , ..., x

n
mn) >∈ My and ψ an L-formula, to say

My |= ψ(< τ1, (x
1
1, ..., x

1
m1

) >, ..., < τn, (x
n
1 ..., x

n
mn) >) is ∆1

3 by a similar com-
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putation (here we again use that ∆1
3 is closed under ∀∗Wm

1
). Lastly we note that,

while there may be ill foundedMy, everyMy contains an initial segment of the

ordinals, which we denote by WFP (My). Again, standard computations show

that for α ∈ ωω, ¡τ, (x1, ...xn) >∈ My, to say ”< τ, (x1, ...xn) >∈ WFP (My)

and has rank α” is ∆1
3. We now provide our coding:

Theorem 3.3. There is a coding Φ : ωω → P (ωω) such that

(i) ∀ A ⊂ ωω there is a real x such that Φ(x) = A.

(ii) ∀ α < ωω {x : α ∈ Φ(x)} ∈∆1
3.

Proof. For x ∈ ωω define Φ(x) by

α ∈ Φ(x) ↔ (x =< ψ, y > for ψ a L-formula and y a real that looks

like a sharp) and (α ∈WFP (My) and My |= ψ(α))

Of course, by ”My |= ψ(α)” we mean ”∃ < τ, (z0, ..., zn) > ((| <

τ, (z0, ..., zn) > |ONMy = α) ∧ My |= ψ(< τ, (z0, ..., zn) >))” or, equivalenty,

”∀ < τ, (z0, ..., zn) > ((| < τ, (z0, ..., zn) > |ONMy = α) → My |= ψ(<

τ, (z0, ..., zn) >))” By the remarks in the paragraph preceding the theorem and

by Theorem 3.2, Φ has the desired properties.

By [??] Theorem 3.3 implies that the weak partition property holds at

δ1
3 .
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Recall from the theory of indiscernibles for L[x] that the set of reals

{y : ∃x (y = x])} is Π1
2. We conclude by generalizing this result to sharps for

L[S2, x].

Theorem 3.4. The set of reals A = {y : ∃x (y is a sharp for L[S2, x])} is Π1
3.

Proof. y ∈ A iff y looks like a sharp, My is well-founded, and S2
My = S2.

Using our coding from Theorem 3.3, to say ”S2
My = S2” is ∆1

3. Further My

is well founded iff ∀z( z does not code an ω-sequence of elements of My that is

My-decreasing), hence is Π1
3 as desired.
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