These notes prove some basic structure theorems about extenders. Given an extender E that witnesses the strength of some embedding, we use our theorems to show that the generators of E have a property we call "full". Though we have no proof, it seems likely that the converse is true as well, i.e. if E is an extender with full generators, then E comes from a strong embedding.

Let E be an extender over HOD with $crit(E) = \kappa$ and let $\{\xi_{\alpha}\}_{{\alpha}<\gamma}$ enumerate the generators of E in increasing order. For all ${\alpha}<\gamma$, let μ_{α} be the measure on ξ_{α} derived from the embedding $i_{\alpha}: Ult(HOD, E \upharpoonright \xi_{\alpha}) \to Ult(HOD, E \upharpoonright (\xi_{\alpha} + 1))$. Note that, in general, $\mu_{\alpha} \notin Ult(HOD, E \upharpoonright \xi_{\alpha})$. In fact, if E is to witness any large cardinal properties, there must be many α for which this is the case.

We demonstrate the connection between μ_{α} and $E \upharpoonright (\xi_{\alpha} + 1)$. Let $A \subset \xi_{\alpha}$, $A \in Ult(HOD, E \upharpoonright \xi_{\alpha})$. Say $A = [a, f]_{E \upharpoonright \xi_{\alpha}}$, with $a \in [\xi_{\alpha}]^{<\omega}$ and $f : \kappa^{|a|} \to 2^{\kappa}$. Define $A^* \subset \kappa^{|a|+1}$ to be the set $\{(\overline{\alpha}, \beta) : \beta \in f(\overline{\alpha})\}$. Then $A \in \mu_{\alpha} \leftrightarrow A^* \in E_{a \cap \xi_{\alpha}}$. To see this, note that (using notation from the diagram below)

$$A \in \mu_{\alpha} \leftrightarrow \xi_{\alpha} \in \tilde{i}_{\alpha}(A)$$

$$\leftrightarrow \xi_{\alpha} \in i_{\alpha}(A)$$

$$\leftrightarrow \xi_{\alpha} \in [a, f]_{E_{\alpha} \cap \xi_{\alpha}}$$

$$\leftrightarrow \forall_{E_{\alpha} \cap \xi_{\alpha}}^{*}(\overline{\alpha}, \beta) \ \beta \in f(\overline{\alpha})$$

$$\leftrightarrow A^{*} \in E_{\alpha} \cap \xi_{\alpha}$$

Where the second " \leftrightarrow " holds because $crit(k) > \xi_{\alpha}$.

$$Ult(HOD, E \upharpoonright \xi_{\alpha}) \xrightarrow{i_{\alpha}} Ult(HOD, E \upharpoonright (\xi_{\alpha} + 1))$$

$$\downarrow i_{\alpha} \qquad \downarrow k$$

$$Ult(Ult(HOD, E \upharpoonright \xi_{\alpha}), \mu_{\alpha})$$

Next, we show how E can be decomposed via $\{\mu_{\alpha}\}_{{\alpha}<\gamma}$. For ${\alpha}\leq {\gamma}$, we define by induction the "decomposition of E up to ξ_{α} on HOD", $Dec_{\alpha}(HOD)$, by

(i):
$$Dec_0(HOD) = HOD$$

(ii):
$$Dec_{\alpha+1}(HOD) = Ult(Dec_{\alpha}(HOD), \mu_{\alpha})$$

(iii): For α a limit ordinal $Dec_{\alpha}(M) = DirLim_{\beta < \alpha}(HOD)$.

Note that while μ_{α} is ostensibly a measure on $Ult(HOD, E \upharpoonright \xi_{\alpha})$, it is always the case that $Dec_{\alpha}(HOD) \subset Ult(HOD, E \upharpoonright \xi_{\alpha})$, so that (ii) makes sense.

Let $\tilde{i}_{\alpha,\alpha+1}:Dec_{\alpha}(HOD)\to Dec_{\alpha+1}(HOD)$ be the ultrapower embedding.

Claim 0.1. Let \tilde{E} be the $(\kappa, lh(E))$ -extender derived from the embedding $\tilde{i}: HOD \to Dec_{\gamma}(HOD)$, then $\tilde{E} = E$.

Proof. It is clear that E and \tilde{E} have the same generators. We show by induction on $\alpha < \gamma$ that

(1)
$$\tilde{E} \upharpoonright (\xi_{\alpha} + 1) = E \upharpoonright (\xi_{\alpha} + 1)$$

For $\alpha = 0$, (1) is immediate from the fact that $\mu_0 = E_{\kappa}$.

Now, assume we have shown (1) for $\beta < \alpha$. Let $a \in [\xi_{\alpha}]^{<\omega}$ and let $A^* \in \kappa^{|a|+1}$. Define $f : \kappa^{|a|} \to 2^{\kappa}$ by $f(\overline{\alpha}) = \{\beta : (\overline{\alpha}, \beta) \in A^*\}$ and let $A = [a, f]_{E \upharpoonright \xi_{\alpha}}$.

By our work above,

$$A^* \in \tilde{E}_{\alpha \frown \xi_{\alpha}} \leftrightarrow \xi_{\alpha} \in \tilde{i}_{\alpha,\alpha+1}(A),$$

and by the definition if $\tilde{i}_{\alpha,\alpha+1}$,

$$\xi_{\alpha} \in \tilde{i}_{\alpha,\alpha+1}(A) \leftrightarrow A \in \mu_{\alpha}$$

again, by our work above

$$A \in \mu_{\alpha} \leftrightarrow A^* \in E_{a \frown \xi_{\alpha}}$$

so $\tilde{E} \upharpoonright (\xi_{\alpha} + 1) = E \upharpoonright (\xi_{\alpha} + 1)$ as required.

Corollary 0.2. $Dec_{\alpha}(HOD) = Ult(HOD, E \upharpoonright \xi_{\alpha})$

Let E be an extender on HOD that witnesses that κ is $(\kappa + 2)$ -strong what are the generators of E? As before, let $\{\xi_{\alpha}\}_{\alpha<\gamma}$ enumerate the generators of E. The strength of E implies that $(\kappa^{++})^{ULT(HOD,E)} = (\kappa^{++})^{HOD}$. Further, the embedding $Ult(HOD, E \upharpoonright \xi_{\alpha}) \to Ult(HOD, E)$ is elementary with critical point ξ_{α} . Thus, if $(\kappa^{++})^{Ult(HOD,E)\xi_{\alpha}} < (\kappa^{++})^{Ult(HOD,E)}$, then $\xi_{\alpha} = (\kappa^{++})^{Ult(HOD,E)\xi_{\alpha}}$. This reasoning gives rise to the following lemma:

Lemma 0.3. Let E be an extender on HOD with critical point κ . Let γ be a HOD-cardinal less than the least inaccessible above κ such that $ULT(HOD, E) \upharpoonright \gamma = HOD \upharpoonright \gamma$. Then $\xi_1 = (\kappa^{++})^{Ult(HOD, E \upharpoonright \xi_1)}$, and in general, for $\alpha < \gamma$, $\xi_{\alpha} = (|sup_{\beta < \alpha}(\xi_{\beta})|^+)^{Ult(HOD, E \upharpoonright \xi_{\alpha})}$.

The proof of the Lemma is repeated application of the following two facts:

- (i): If ξ_{α} is a successor cardinal in $Ult(HOD, E \upharpoonright \xi_{\alpha})$, then ξ_{α} is not a cardinal in $Ult(HOD, E \upharpoonright (\xi_{\alpha} + 1))$.
- (ii): If we know $\xi_{\alpha} \geq \lambda$ and λ is a cardinal in $Ult(HOD, E \upharpoonright (\xi_{\alpha}+1))$ such that $(\lambda^{+})^{Ult(HOD, E \upharpoonright \xi_{\alpha})} < (\lambda^{+})^{Ult(HOD, E \upharpoonright (\xi_{\alpha}+1))}$, then $\xi_{\alpha} = (\lambda^{+})^{Ult(HOD, E \upharpoonright \xi_{\alpha})}$.

The lemma leaves open the following question;

Question 0.4. Let E be an extender on HOD with critical point κ . Assume $Ult(HOD, E) \upharpoonright \gamma = HOD \upharpoonright \gamma$ where $\gamma > \eta$ and η is the η th inaccessible in HOD. Is it possible that η is a generator of E? Is it possible that η is not a generator of E?

Let E be an extender on HOD with critical point κ ., Let γ be a HOD-cardinal greater than κ . Let $(\xi_{\alpha})_{\alpha<\gamma}$ enumerate (in increasing order) E's generators. If $\xi_1=(\kappa^{++})^{Ult(HOD,E\restriction\xi_1)}$ and for $\alpha>1$ $\xi_{\alpha}=(|sup_{\beta<\alpha}(\xi_{\beta})|^+)^{Ult(HOD,E\restriction\xi_{\alpha})}$, then we say that E is γ -saturated.

Fact (i) above implies that if E is γ -saturated, then for all HOD-cardinals $\rho < \gamma$, $(\rho^+)^{Ult(HOD,E)} = (\rho^+)^{HOD}$. This motivates the following question:

Question 0.5. Let E be an extender that is γ -saturated, then is it the case that $Ult(HOD, E)|\gamma = HOD|\gamma$?

If the answer is "yes" then this could be viewed as a generalization of Farmer Schlutzenberg's theorem that all measure in HOD are on the sequence.

In view of Lemma 0.3, the weakest possible embedding hypotheses (after measurability) that a cardinal κ can possess is that there is an extender E on κ such that E has two generators and the second generator of E, say ξ , is $(\kappa^{++})^{Ult(V,E \mid \xi)}$. We will call such a κ a 2-generator cardinal.

Question 0.6. Let κ be a 2-generator cardinal. Does κ have Mitchell order κ^{++} ?