The External Ultrapower of HOD via W_1^1

Cody Dance

University of North Texas

2016 Spring AMS Sectional

The study of the structure of HOD is one of the hallmarks of modern set theory.

The study of the structure of HOD is one of the hallmarks of modern set theory.

Some amazing facts about HOD:

(i) ω_1 is measurable in HOD (Solovay).

The study of the structure of HOD is one of the hallmarks of modern set theory.

Some amazing facts about HOD:

- (i) ω_1 is measurable in HOD (Solovay).
- (ii) δ_1^2 is strong to Θ in HOD and Θ is Woodin in HOD (Woodin).

The study of the structure of HOD is one of the hallmarks of modern set theory.

Some amazing facts about HOD:

- (i) ω_1 is measurable in HOD (Solovay).
- (ii) δ_1^2 is strong to Θ in HOD and Θ is Woodin in HOD (Woodin).
- (iii) $HOD|\Theta$ is a fine structural extender model! (Steel)

The study of the structure of HOD is one of the hallmarks of modern set theory.

Some amazing facts about HOD:

- (i) ω_1 is measurable in HOD (Solovay).
- (ii) δ_1^2 is strong to Θ in HOD and Θ is Woodin in HOD (Woodin).
- (iii) $HOD|\Theta$ is a fine structural extender model! (Steel)

(iii) means that $HOD|\Theta$ is a model of the form $L[\vec{E}]$ where \vec{E} is a coherent sequence of extenders.

The study of the structure of HOD is one of the hallmarks of modern set theory.

Some amazing facts about HOD:

- (i) ω_1 is measurable in HOD (Solovay).
- (ii) δ_1^2 is strong to Θ in HOD and Θ is Woodin in HOD (Woodin).
- (iii) $HOD|\Theta$ is a fine structural extender model! (Steel)
- (iii) means that $HOD|\Theta$ is a model of the form $L[\vec{E}]$ where \vec{E} is a coherent sequence of extenders.

Steel used the proof of (iii) to show

(iv) If κ is a regular cardinal in HOD such that $cof^{L(\mathbb{R})}(\kappa) > \omega$, then κ is measurable in HOD.

(i) Besides the results mentioned above, little is known about the large cardinal structure of HOD. In particular- what large cardinal properties does ω_2 have in HOD?.

- (i) Besides the results mentioned above, little is known about the large cardinal structure of HOD. In particular- what large cardinal properties does ω_2 have in HOD?.
 - Conjecture: ω_2 is strong to ω_{ω} in HOD and ω_{ω} is the least α s.t. α is Woodin in $L[HOD|\alpha]$.

(i) Besides the results mentioned above, little is known about the large cardinal structure of HOD. In particular- what large cardinal properties does ω_2 have in HOD?.

Conjecture: ω_2 is strong to ω_{ω} in HOD and ω_{ω} is the least α s.t. α is Woodin in $L[HOD|\alpha]$.

More generally, how does the large cardinal structure of HOD interact with the structural theory of $L(\mathbb{R})$ under AD?

- Besides the results mentioned above, little is known about the large cardinal structure of HOD. In particular- what large cardinal properties does ω_2 have in HOD?. Conjecture: ω_2 is strong to ω_{ω} in HOD and ω_{ω} is the least α s.t. α is Woodin in $L[HOD|\alpha]$.
 - More generally, how does the large cardinal structure of HOD interact with the structural theory of $L(\mathbb{R})$ under AD?
- (ii) There is a class of naturally arising embeddings of HOD called external ultrapowers. It is interesting to consider these maps from the inner model point of view- can they be viewed as iterations of HOD?

Questions (i) and (ii) above are related.

Questions (i) and (ii) above are related. In attempting to study the large cardinal structure of HOD, it is natural to study such an external ultrapower embedding and attempt show that the embedding witnesses some large cardinal property.

Background

Questions (i) and (ii) above are related.

In attempting to study the large cardinal structure of HOD, it is natural to study such an external ultrapower embedding and attempt show that the embedding witnesses some large cardinal property.

This is how Woodin originally showed that δ_1^2 is strong to Θ and that Θ is Woodin in HOD.

Recall that AD implies that ω_1 is measurable in $L(\mathbb{R})$ and let W_1^1 denote the unique normal measure.

Recall that AD implies that ω_1 is measurable in $L(\mathbb{R})$ and let W_1^1 denote the unique normal measure.

Definition

The external ultrapower of HOD via W_1^1 , $Ext(HOD, W_1^1)$, is the model of set theory with universe

$$\{ [f]_{W_1^1} \mid f \in L(\mathbb{R}) \land f : \omega_1 \to HOD \}$$

and the ϵ -relation defined in the usual ultrapower way.

Recall that AD implies that ω_1 is measurable in $L(\mathbb{R})$ and let W_1^1 denote the unique normal measure.

Definition

The external ultrapower of HOD via W_1^1 , $Ext(HOD, W_1^1)$, is the model of set theory with universe

$$\{ [f]_{W_1^1} \mid f \in L(\mathbb{R}) \land f : \omega_1 \to HOD \}$$

and the ϵ -relation defined in the usual ultrapower way.

Note that the universe of $Ext(HOD, W_1^1)$ consists of equivalence classes of all such functions in $L(\mathbb{R})$.

Recall that AD implies that ω_1 is measurable in $L(\mathbb{R})$ and let W_1^1 denote the unique normal measure.

Definition

The external ultrapower of HOD via W_1^1 , $Ext(HOD, W_1^1)$, is the model of set theory with universe

$$\{ [f]_{W_1^1} \mid f \in L(\mathbb{R}) \land f : \omega_1 \to HOD \}$$

and the ϵ -relation defined in the usual ultrapower way.

Note that the universe of $Ext(HOD, W_1^1)$ consists of equivalence classes of all such functions in $L(\mathbb{R})$.

Let $j_{W_1^1}: HOD \to Ext(HOD, W_1^1)$ denote the canonical embedding (i.e. $j_{W_1^1}(\alpha) = [c_{\alpha}]_{W_1^1}$ where c_{α} is the constant α function).

Woodin asked "is $j_{W_1^1}$ the map of an iteration tree?"

Woodin asked "is $j_{W_1^1}$ the map of an iteration tree?" We show that, for a large initial segment of the embedding, the answer is "yes".

Woodin asked "is $j_{W_1^1}$ the map of an iteration tree?" We show that, for a large initial segment of the embedding, the answer is "yes".

We use our analysis to answer a question of Jackson-Ketchersid about which ordinals less than ω_{ω} are coded by functions in HOD.

Let W_1^n be the n-fold product of W_1^1 .

Let W_1^n be the n-fold product of W_1^1 . Let $\mu=W_1^1\cap HOD$ (μ is the unique normal measure on ω_1 in HOD).

Notation

```
Let W_1^n be the n-fold product of W_1^1.
```

Below ω2

Let $\mu = W_1^1 \cap HOD$ (μ is the unique normal measure on ω_1 in HOD).

We define the iterated ultrapower:

For $\alpha + 1$ a successor ordinal, let

$$Ult^{\alpha+1}(HOD,\mu) = Ult(Ult^{\alpha}(HOD,\mu),i_{\alpha}(\mu))$$

for α a limit ordinal let

$$Ult^{\alpha}(HOD, \mu) = DirLim_{\beta < \alpha}(Ult^{\beta}(HOD, \mu))$$
 where

 $i_{\alpha}: HOD \rightarrow Ult^{\alpha}(HOD, \mu)$ are the canonical embeddings.

Below ω_2

$j_{W_1^1}$ below ω_2

Theorem

Let E be the (ω_1, ω_2) extender derived from $j_{W_1^1}$. Then E is the extender that comes from iterating μ ω_2 -many times.

Theorem

Let E be the (ω_1, ω_2) extender derived from $j_{W_1^1}$. Then E is the extender that comes from iterating μ ω_2 -many times.

We will use the following theorem of Steel:

Theorem

(Steel) HOD and $Ext(HOD, W_1^1)$ have a successful comparison.

$j_{W_1^1}$ below ω_2

Theorem

Let E be the (ω_1, ω_2) extender derived from $j_{W_1^1}$. Then E is the extender that comes from iterating μ ω_2 -many times.

We will use the following theorem of Steel:

Theorem

(Steel) HOD and $Ext(HOD, W_1^1)$ have a successful comparison.

We will also make frequent use of the following Lemma, which is a generalization of a result of Jackson-Ketchersid.

Lemma

Let M be an iterate of HOD, and let $\kappa \in M$ be s.t. there are no total extenders in M, E, with $crit(E) < \kappa$ and $Lh(E) > \kappa$. Let Γ be a proper class of ordinals. Then every $A \in (P(\kappa))^M$ is definable from parameters in $\kappa \cup \Gamma$.

Sketching the proof:

Let

$$HOD \xrightarrow{\mathcal{T}} M$$

$$Ext(HOD, W_1^1) \xrightarrow{S} N$$

be the comparison given by Steel's Theorem.

Sketching the proof: I et

$$HOD \longrightarrow M$$

$$Ext(HOD, W_1^1) \stackrel{\mathcal{S}}{\longrightarrow} N$$

be the comparison given by Steel's Theorem.

We first show that in the first ω_2 -many steps of the comparison, $Ext(HOD, W_1^1)$ doesn't move while HOD iterates μ ω_2 -many times.

Sketching the proof:

Let

$$HOD \longrightarrow^{\mathcal{T}} M$$

$$Ext(HOD, W_1^1) \stackrel{\mathcal{S}}{\longrightarrow} N$$

be the comparison given by Steel's Theorem.

We first show that in the first ω_2 -many steps of the comparison, $Ext(HOD, W_1^1)$ doesn't move while HOD iterates μ ω_2 -many times.

First the minimality of HOD implies that M=N.

Sketching the proof: I et

$$HOD \longrightarrow \mathcal{T} M$$

$$Ext(HOD, W_1^1) \xrightarrow{S} N$$

be the comparison given by Steel's Theorem.

We first show that in the first ω_2 -many steps of the comparison, $Ext(HOD, W_1^1)$ doesn't move while HOD iterates μ ω_2 -many times.

First the minimality of HOD implies that M=N.

This implies that, if b is the branch through \mathcal{T} leading to M and c is the branch through \mathcal{S} leading to N, then neither b nor c drop.

$$HOD \xrightarrow{\mathcal{T}} M$$
$$Ext(HOD, W_1^1) \xrightarrow{\mathcal{S}} N$$

The fact that c does not drop implies that, if $Ext(HOD, W_1^1)$ moves at all in the comparison, then the first extender applied to $Ext(HOD, W_1^1)$ has $length > \omega_2$

$$HOD \xrightarrow{\mathcal{T}} M$$
$$Ext(HOD, W_1^1) \xrightarrow{\mathcal{S}} N$$

The fact that c does not drop implies that, if $Ext(HOD, W_1^1)$ moves at all in the comparison, then the first extender applied to $Ext(HOD, W_1^1)$ has $length > \omega_2$ This is because ω_2 is the least measurable cardinal of $Ext(HOD, W_1^1)$.

$$HOD \xrightarrow{\mathcal{T}} M$$
$$Ext(HOD, W_1^1) \xrightarrow{\mathcal{S}} N$$

The fact that c does not drop implies that, if $Ext(HOD, W_1^1)$ moves at all in the comparison, then the first extender applied to $Ext(HOD, W_1^1)$ has $length > \omega_2$

This is because ω_2 is the least measurable cardinal of $Ext(HOD, W_1^1)$.

Similarly, the fact that b does not drop implies that when HOD movies in the comparison, then the first extender applied to HOD has $length > \omega_1$.

Below ω2

$$HOD \xrightarrow{\mathcal{T}} M$$
$$Ext(HOD, W_1^1) \xrightarrow{\mathcal{S}} N$$

The fact that c does not drop implies that, if $Ext(HOD, W_1^1)$ moves at all in the comparison, then the first extender applied to $Ext(HOD, W_1^1)$ has $length > \omega_2$

This is because ω_2 is the least measurable cardinal of $Ext(HOD, W_1^1)$.

Similarly, the fact that b does not drop implies that when HOD movies in the comparison, then the first extender applied to HOD has $length > \omega_1$.

This is because ω_1 is the least measurable cardinal of HOD.

$$HOD \xrightarrow{\mathcal{T}} M$$
$$Ext(HOD, W_1^1) \xrightarrow{\mathcal{S}} N$$

The fact that c does not drop implies that, if $Ext(HOD, W_1^1)$ moves at all in the comparison, then the first extender applied to $Ext(HOD, W_1^1)$ has $length > \omega_2$

This is because ω_2 is the least measurable cardinal of $Ext(HOD, W_1^1)$.

Similarly, the fact that b does not drop implies that when HOD movies in the comparison, then the first extender applied to HOD has $length > \omega_1$.

This is because ω_1 is the least measurable cardinal of HOD. We exploit these facts repeatedly to show that, in the first $\omega_2 - many$ steps of the comparison, $Ext(HOD, W_1^1)$ doesn't move, while HOD iterates μ .

The analysis of the comparison shows that $Ext(HOD, W_1^1)|\omega_2 = Ult^{\omega_2}(HOD, \mu)|\omega_2$, but we would also like to show that the embeddings are the same.

The analysis of the comparison shows that $Ext(HOD,W_1^1)|\omega_2=Ult^{\omega_2}(HOD,\mu)|\omega_2$, but we would also like to show that the embeddings are the same. I.e., let E be the (ω_1,ω_2) extender derived from $j_{W_1^1}$ and let $\{ \ \xi_{\alpha} \ | \ \alpha < \gamma \ \}$ enumerate its generators.

The analysis of the comparison shows that $Ext(HOD, W_1^1)|\omega_2 = Ult^{\omega_2}(HOD, \mu)|\omega_2$, but we would also like to show that the embeddings are the same. I.e., let E be the (ω_1, ω_2) extender derived from $j_{W_1^1}$ and let $\{ \xi_{\alpha} \mid \alpha < \gamma \}$ enumerate its generators.

Let μ_{α} be the measure on ξ_{α} derived from the canonical embedding $j_{\alpha}: Ult(HOD, E \upharpoonright \xi_{\alpha}) \rightarrow Ult(HOD, E)$.

The analysis of the comparison shows that $Ext(HOD,W_1^1)|\omega_2=Ult^{\omega_2}(HOD,\mu)|\omega_2$, but we would also like to show that the embeddings are the same. I.e., let E be the (ω_1,ω_2) extender derived from $j_{W_1^1}$ and let $\{\ \xi_\alpha\ |\ \alpha<\gamma\ \}$ enumerate its generators. Let μ_α be the measure on ξ_α derived from the canonical embedding $j_\alpha:Ult(HOD,E\upharpoonright\xi_\alpha)\to Ult(HOD,E)$. We complete our analysis of E by showing that $\gamma=\omega_2$,

 $\xi_{\alpha} = i_{\alpha}(\omega_1)$ and $\mu_{\alpha} = i_{\alpha}(\mu)$.

We complete our analysis of E by showing that $\gamma = \omega_2$,

The analysis of the comparison shows that $Ext(HOD, W_1^1)|\omega_2 = Ult^{\omega_2}(HOD, \mu)|\omega_2$, but we would also like to show that the embeddings are the same. I.e., let E be the (ω_1, ω_2) extender derived from $j_{W_1^1}$ and let $\{ \xi_\alpha \mid \alpha < \gamma \}$ enumerate its generators. Let μ_α be the measure on ξ_α derived from the canonical embedding $j_\alpha : Ult(HOD, E \upharpoonright \xi_\alpha) \to Ult(HOD, E)$.

(ロ) (部) (注) (注) 注 り()

 $\xi_{\alpha} = i_{\alpha}(\omega_1)$ and $\mu_{\alpha} = i_{\alpha}(\mu)$. It is clear that $\xi_0 = \omega_1$. The analysis of the comparison shows that

 $Ext(HOD, W_1^1)|\omega_2 = Ult^{\omega_2}(HOD, \mu)|\omega_2$, but we would also like to show that the embeddings are the same.

I.e., let E be the (ω_1,ω_2) extender derived from $j_{W_1^1}$ and let $\{ \ \xi_{\alpha} \mid \alpha < \gamma \ \}$ enumerate its generators.

Let μ_{α} be the measure on ξ_{α} derived from the canonical embedding $j_{\alpha}: Ult(HOD, E \upharpoonright \xi_{\alpha}) \to Ult(HOD, E)$.

We complete our analysis of E by showing that $\gamma = \omega_2$,

$$\xi_{\alpha} = i_{\alpha}(\omega_1)$$
 and $\mu_{\alpha} = i_{\alpha}(\mu)$.

It is clear that $\xi_0 = \omega_1$.

Let $\alpha < \omega_2$ and assume we have shown that for $\beta \leq \alpha$, $\xi_{\beta} = i_{\beta}(\omega_1)$ and for $\beta < \alpha$, $\mu_{\beta} = i_{\beta}(\mu)$.

The analysis of the comparison shows that

 $Ext(HOD, W_1^1)|\omega_2 = Ult^{\omega_2}(HOD, \mu)|\omega_2$, but we would also like to show that the embeddings are the same.

I.e., let E be the (ω_1,ω_2) extender derived from $j_{W_1^1}$ and let $\{ \xi_\alpha \mid \alpha < \gamma \}$ enumerate its generators.

Let μ_{α} be the measure on ξ_{α} derived from the canonical embedding $j_{\alpha}: Ult(HOD, E \upharpoonright \xi_{\alpha}) \to Ult(HOD, E)$.

We complete our analysis of E by showing that $\gamma = \omega_2$,

$$\xi_{\alpha} = i_{\alpha}(\omega_1)$$
 and $\mu_{\alpha} = i_{\alpha}(\mu)$.

It is clear that $\xi_0 = \omega_1$.

Let $\alpha < \omega_2$ and assume we have shown that for $\beta \leq \alpha$,

$$\xi_{\beta} = i_{\beta}(\omega_1)$$
 and for $\beta < \alpha$, $\mu_{\beta} = i_{\beta}(\mu)$.

We conclude the proof by showing $\mu_{\alpha}=i_{\alpha}(\mu)$ and

$$\xi_{\alpha}+1=i_{\alpha+1}(\omega_1).$$

The analysis of the comparison shows that

 $Ext(HOD, W_1^1)|\omega_2 = Ult^{\omega_2}(HOD, \mu)|\omega_2$, but we would also like to show that the embeddings are the same.

I.e., let E be the (ω_1,ω_2) extender derived from $j_{W_1^1}$ and let $\{ \xi_{\alpha} \mid \alpha < \gamma \}$ enumerate its generators.

Let μ_{α} be the measure on ξ_{α} derived from the canonical embedding $j_{\alpha}: Ult(HOD, E \upharpoonright \xi_{\alpha}) \to Ult(HOD, E)$.

We complete our analysis of E by showing that $\gamma = \omega_2$,

$$\xi_{\alpha} = i_{\alpha}(\omega_1)$$
 and $\mu_{\alpha} = i_{\alpha}(\mu)$.

It is clear that $\xi_0 = \omega_1$.

Let $\alpha < \omega_2$ and assume we have shown that for $\beta \leq \alpha$,

$$\xi_{\beta} = i_{\beta}(\omega_1)$$
 and for $\beta < \alpha$, $\mu_{\beta} = i_{\beta}(\mu)$.

We conclude the proof by showing $\mu_{\alpha} = i_{\alpha}(\mu)$ and

 $\xi_{\alpha} + 1 = i_{\alpha+1}(\omega_1)$.

As a demonstration of our methods, we will show the proof of $i_{\alpha}(\mu) = \mu_{\alpha}$.

$$\mu_{\alpha} = i_{\alpha}(\mu)$$

$$\mu_{\alpha} = i_{\alpha}(\mu)$$

$$Ult^{\alpha}(HOD, \mu) \xrightarrow{\mathcal{T}} M$$

$$\downarrow_{j_{\alpha}} \downarrow$$

$$Ext(HOD, W_1^1) \xrightarrow{\mathcal{S}} N$$

$$\mu_{\alpha} = i_{\alpha}(\mu)$$

$$Ult^{\alpha}(HOD, \mu) \xrightarrow{\mathcal{T}} M$$

$$\downarrow_{j_{\alpha}} \downarrow$$

$$Ext(HOD, W_1^1) \xrightarrow{\mathcal{S}} N$$

Again, the minimality of HOD implies M=N.

$$\mu_{\alpha} = i_{\alpha}(\mu)$$

$$Ult^{\alpha}(HOD, \mu) \xrightarrow{\mathcal{T}} M$$

$$\downarrow^{j_{\alpha}} \qquad \qquad \downarrow$$

$$Ext(HOD, W_1^1) \xrightarrow{\mathcal{S}} N$$

Again, the minimality of HOD implies M=N.

Assume toward contradiction that there is an $A \subset i_{\alpha}(\omega_1)$ s.t.

$$A \in i_{\alpha}(\mu)$$
 but $A \notin \mu_{\alpha}$.

$$Ult^{\alpha}(HOD, \mu) \xrightarrow{\mathcal{T}} M$$

$$\downarrow^{j_{\alpha}} \downarrow$$

$$Ext(HOD, W_1^1) \xrightarrow{\mathcal{S}} N$$

Again, the minimality of HOD implies M=N.

Assume toward contradiction that there is an $A \subset i_{\alpha}(\omega_1)$ s.t.

 $A \in i_{\alpha}(\mu)$ but $A \notin \mu_{\alpha}$.

This means that $i_{\alpha}(\omega_1) \in i_{\mathcal{T}}(A)$ but $i_{\alpha}(\omega_1) \notin i_{\alpha}(A)$.

$$\mu_{\alpha} = i_{\alpha}(\mu)$$

$$Ult^{\alpha}(HOD, \mu) \xrightarrow{\mathcal{T}} M$$

$$\downarrow_{j_{\alpha}} \downarrow$$

$$Ext(HOD, W_1^1) \xrightarrow{\mathcal{S}} N$$

Again, the minimality of HOD implies M=N.

Assume toward contradiction that there is an $A \subset i_{\alpha}(\omega_1)$ s.t.

 $A \in i_{\alpha}(\mu)$ but $A \notin \mu_{\alpha}$.

This means that $i_{\alpha}(\omega_1) \in i_{\mathcal{T}}(A)$ but $i_{\alpha}(\omega_1) \notin j_{\alpha}(A)$.

Let Γ be a proper class of ordinals fixed by all the above embeddings and let $\bar{\beta} \in (\Gamma \cup i_{\alpha}(\omega_{1}))^{<\omega}$ be s.t. A is definable in $Ult(HOD, E \upharpoonright \xi_{\alpha})$ from $\bar{\beta}$.

$$\mu_{\alpha} = i_{\alpha}(\mu)$$

$$Ult^{\alpha}(HOD, \mu) \xrightarrow{\mathcal{T}} M$$

$$\downarrow_{j_{\alpha}} \downarrow$$

$$Ext(HOD, W_1^1) \xrightarrow{\mathcal{S}} N$$

Again, the minimality of HOD implies M=N.

Assume toward contradiction that there is an $A \subset i_{\alpha}(\omega_1)$ s.t.

 $A \in i_{\alpha}(\mu)$ but $A \notin \mu_{\alpha}$.

This means that $i_{\alpha}(\omega_1) \in i_{\mathcal{T}}(A)$ but $i_{\alpha}(\omega_1) \notin i_{\alpha}(A)$.

Let Γ be a proper class of ordinals fixed by all the above embeddings and let $\bar{\beta} \in (\Gamma \cup i_{\alpha}(\omega_1))^{<\omega}$ be s.t. A is definable in $Ult(HOD, E \upharpoonright \xi_{\alpha})$ from $\bar{\beta}$.

Say $A = \tau^{Ult(HOD,E \upharpoonright \xi_{\alpha})}(\bar{\beta})$.

$$\mu_{\alpha} = i_{\alpha}(\mu)$$

(i)
$$i_{\alpha}(\omega_{1}) \in i_{\mathcal{T}}(A)$$
 but $i_{\alpha}(\omega_{1}) \notin j_{\alpha}(A)$
(ii) $A = \tau^{Ult(HOD,E \upharpoonright \xi_{\alpha})}(\bar{\beta})$

(i)
$$i_{\alpha}(\omega_{1}) \in i_{\mathcal{T}}(A)$$
 but $i_{\alpha}(\omega_{1}) \notin j_{\alpha}(A)$
(ii) $A = \tau^{Ult(HOD,E \mid \xi_{\alpha})}(\bar{\beta})$
 $crit(i_{\mathcal{S}}) > i_{\alpha}(\omega_{1})$, so that (i) implies that $i_{\alpha}(\omega_{1}) \notin i_{\mathcal{S}}(j_{\alpha}(A))$

$$\mu_{\alpha} = i_{\alpha}(\mu)$$

(i)
$$i_{\alpha}(\omega_{1}) \in i_{\mathcal{T}}(A)$$
 but $i_{\alpha}(\omega_{1}) \notin j_{\alpha}(A)$
(ii) $A = \tau^{Ult(HOD, E \mid \xi_{\alpha})}(\bar{\beta})$
 $crit(i_{\mathcal{S}}) > i_{\alpha}(\omega_{1})$, so that (i) implies that $i_{\alpha}(\omega_{1}) \notin i_{\mathcal{S}}(j_{\alpha}(A))$
but $i_{\mathcal{T}}(A) = \tau^{M}(\bar{\beta}) = \tau^{N}(\bar{\beta}) = i_{\mathcal{S}}(j_{\alpha}(A))$, a contradiction!

$$\mu_{\alpha} = i_{\alpha}(\mu)$$

$$Ult(HOD, E \upharpoonright \xi_{\alpha}) \xrightarrow{\mathcal{T}} M$$

$$j_{\alpha} \bigvee_{j_{\alpha}} Ext(HOD, W_{1}^{1}) \xrightarrow{\mathcal{S}} N$$

(i)
$$i_{\alpha}(\omega_{1}) \in i_{\mathcal{T}}(A)$$
 but $i_{\alpha}(\omega_{1}) \notin j_{\alpha}(A)$
(ii) $A = \tau^{Ult(HOD,E \mid \xi_{\alpha})}(\bar{\beta})$
 $crit(i_{\mathcal{S}}) > i_{\alpha}(\omega_{1})$, so that (i) implies that $i_{\alpha}(\omega_{1}) \notin i_{\mathcal{S}}(j_{\alpha}(A))$
but $i_{\mathcal{T}}(A) = \tau^{M}(\bar{\beta}) = \tau^{N}(\bar{\beta}) = i_{\mathcal{S}}(j_{\alpha}(A))$, a contradiction!
 $(i_{\alpha}(\omega_{1}) \in i_{\mathcal{T}}(A))$ but $i_{\alpha}(\omega_{1}) \notin i_{\mathcal{S}}(j_{\alpha}(A))$

(i)
$$i_{\alpha}(\omega_{1}) \in i_{\mathcal{T}}(A)$$
 but $i_{\alpha}(\omega_{1}) \notin j_{\alpha}(A)$
(ii) $A = \tau^{Ult(HOD,E \mid \xi_{\alpha})}(\bar{\beta})$
 $crit(i_{\mathcal{S}}) > i_{\alpha}(\omega_{1})$, so that (i) implies that $i_{\alpha}(\omega_{1}) \notin i_{\mathcal{S}}(j_{\alpha}(A))$
but $i_{\mathcal{T}}(A) = \tau^{M}(\bar{\beta}) = \tau^{N}(\bar{\beta}) = i_{\mathcal{S}}(j_{\alpha}(A))$, a contradiction!
 $(i_{\alpha}(\omega_{1}) \in i_{\mathcal{T}}(A)$ but $i_{\alpha}(\omega_{1}) \notin i_{\mathcal{S}}(j_{\alpha}(A))$)
This shows that $\mu_{\alpha} = i_{\alpha}(\mu)$.

Before moving on to a discussion of $Ext(HOD, W_1^1)$ above ω_2 , we use our analysis thus far to answer a question of Jackson-Ketchersid.

Ultrapowers via the W_1^n provide a way of coding ordinals less than ω_ω via functions $f:\omega_1^n\to\omega_1$.

Ultrapowers via the W_1^n provide a way of coding ordinals less than ω_ω via functions $f:\omega_1^n\to\omega_1$.

i.e., given such a function, view f as coding the ordinal $[f]_{W_1^n}$.

Before moving on to a discussion of $Ext(HOD, W_1^1)$ above ω_2 , we use our analysis thus far to answer a question of lackson-Ketchersid

Ultrapowers via the W_1^n provide a way of coding ordinals less than ω_{ω} via functions $f:\omega_1^n\to\omega_1$.

i.e., given such a function, view f as coding the ordinal $[f]_{W_1^n}$. Jackson-Ketchersid asked "what ordinals are coded by functions in $f \in HOD$?"

Definition

Let $f: \omega_1^n \to \omega_1$, $f \in HOD$. We say "there is a gap at f" if

$$Sup([g]_{W_1^n} \mid g \in HOD \ \land \ [g] < [f]) < [f]_{W_1^n}$$

Let $f:\omega_1^n\to\omega_1$, $f\in HOD$. We say "there is a gap at f" if

$$Sup([g]_{W_1^n} \mid g \in HOD \ \land \ [g] < [f]) < [f]_{W_1^n}$$

Jackson-Ketchersid showed that for all $f: \omega_1 \to \omega_1$, $f \in HOD$, there is not a gap at f.

Let $f: \omega_1^n \to \omega_1$, $f \in HOD$. We say "there is a gap at f' if

$$Sup([g]_{W_1^n} \mid g \in HOD \ \land \ [g] < [f]) < [f]_{W_1^n}$$

Jackson-Ketchersid showed that for all $f: \omega_1 \to \omega_1$, $f \in HOD$, there is not a gap at f.

i.e. the ordinals less than ω_2 coded by functions in HOD constitute an initial segment of ω_2 .

Let $f:\omega_1^n\to\omega_1$, $f\in HOD$. We say "there is a gap at f' if

$$Sup([g]_{W_1^n} \mid g \in HOD \ \land \ [g] < [f]) < [f]_{W_1^n}$$

Jackson-Ketchersid showed that for all $f: \omega_1 \to \omega_1$, $f \in HOD$, there is not a gap at f.

i.e. the ordinals less than ω_2 coded by functions in HOD constitute an initial segment of ω_2 .

We complete the analysis by showing the following:

Theorem

Let $f \in HOD$, $f : \omega_1^n \to \omega_1$. Then f begins a gap iff $cof^{Ult(HOD,\mu^n)}([f]_{\mu^n}) \in \{i_1(\omega_1),...,i_{n-1}(\omega_1)\}$

Definition

Let $f: \omega_1^n \to \omega_1$, $f \in HOD$. We say "there is a gap at f" if

$$Sup([g]_{W_1^n} \mid g \in HOD \ \land \ [g] < [f]) < [f]_{W_1^n}$$

Jackson-Ketchersid showed that for all $f: \omega_1 \to \omega_1$, $f \in HOD$, there is not a gap at f.

i.e. the ordinals less than ω_2 coded by functions in HOD constitute an initial segment of ω_2 .

We complete the analysis by showing the following:

Theorem

Let $f \in HOD$, $f : \omega_1^n \to \omega_1$. Then f begins a gap iff $cof^{Ult(HOD,\mu^n)}([f]_{\mu^n}) \in \{i_1(\omega_1),...,i_{n-1}(\omega_1)\}$

We will sketch the proof of the representative case n=2.

We have the map

$$HOD \xrightarrow{i_{\mu \times \mu}} Ult(HOD, \mu \times \mu)$$

We have the map

$$HOD \xrightarrow{i_{\mu \times \mu}} Ult(HOD, \mu \times \mu)$$

This extends to

$$HOD \xrightarrow{i_{\mu \times \mu}} Ult(HOD, \mu \times \mu)$$

$$\downarrow j_{W_1^2} \downarrow k$$

$$Ext(HOD, W_1^2)$$

where $k([f]_{\mu \times \mu}) = [f]_{W_1^2}$.

Key Idea

We have the map

$$HOD \xrightarrow{i_{\mu} \times \mu} Ult(HOD, \mu \times \mu)$$

This extends to

$$HOD \xrightarrow{i_{\mu} \times \mu} Ult(HOD, \mu \times \mu)$$

$$\downarrow j_{W_1^2} \downarrow k$$

$$Ext(HOD, W_1^2)$$

where $k([f]_{\mu \times \mu}) = [f]_{W_1^2}$.

There is a gap at f iff k is discontinuous at $[f]_{\mu \times \mu}$.

$$HOD \xrightarrow{i_{\mu \times \mu}} Ult(HOD, \mu \times \mu)$$

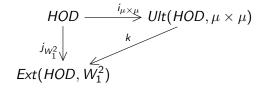
$$\downarrow j_{W_1^2} \downarrow \qquad \qquad k$$

$$Ext(HOD, W_1^2)$$

where
$$k([f]_{\mu \times \mu}) = [f]_{W_1^2}$$
.

There is a gap at f iff k is discontinuous at $[f]_{\mu \times \mu}$.

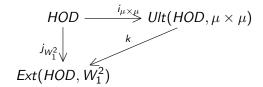
Key Idea



where $k([f]_{\mu \times \mu}) = [f]_{W_1^2}$.

There is a gap at f iff k is discontinuous at $[f]_{\mu \times \mu}$.

Let F be the extender that comes from iterating $i_1(\mu)$ ω_2 – many times.



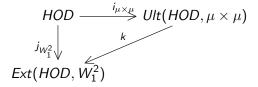
where $k([f]_{\mu \times \mu}) = [f]_{W_1^2}$.

There is a gap at f iff k is discontinuous at $[f]_{\mu \times \mu}$.

Let F be the extender that comes from iterating $i_1(\mu)$ ω_2 – many times.

One can show that F is the $(i_1(\omega_1), \omega_2)$ extender derived from k.

Key Idea



where $k([f]_{\mu \times \mu}) = [f]_{W_1^2}$.

There is a gap at f iff k is discontinuous at $[f]_{\mu \times \mu}$.

Let F be the extender that comes from iterating $i_1(\mu)$ ω_2 – many times.

One can show that F is the $(i_1(\omega_1), \omega_2)$ extender derived from k. Further, $Ult(Ult(HOD, \mu \times \mu), F) = Ult^{\omega_2+1}(HOD, \mu)$

Key Idea

This yields the following picture:

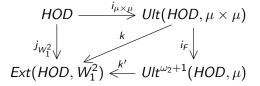
$$HOD \xrightarrow{I_{\mu \times \mu}} Ult(HOD, \mu \times \mu)$$

$$\downarrow_{J_{W_1^2}} \downarrow \qquad \qquad \downarrow_{I_F} \downarrow$$

$$Ext(HOD, W_1^2) \xleftarrow{k'} Ult^{\omega_2 + 1}(HOD, \mu)$$

F is the extender that comes from iterating $i_1(\mu)$ ω_2-many times and there is a gap at f iff k is discontinuous at $[f]_{\mu\times\mu}$

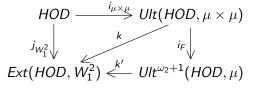
This yields the following picture:



F is the extender that comes from iterating $i_1(\mu)$ ω_2-many times and there is a gap at f iff k is discontinuous at $[f]_{\mu\times\mu}$ One can show that $crit(k')=i_F(i_2(\omega_1))$

Key Idea

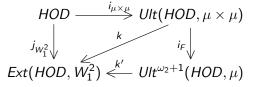
This yields the following picture:



F is the extender that comes from iterating $i_1(\mu)$ $\omega_2 - many$ times and there is a gap at f iff k is discontinuous at $[f]_{\mu \times \mu}$ One can show that $crit(k') = i_F(i_2(\omega_1))$ So f begins a gap iff i_F is discontinuous at $[f]_{\mu \times \mu}$.

This yields the following picture:

Below ω2



F is the extender that comes from iterating $i_1(\mu)$ ω_2-many times and there is a gap at f iff k is discontinuous at $[f]_{\mu\times\mu}$ One can show that $crit(k')=i_F(i_2(\omega_1))$

So f begins a gap iff i_F is discontinuous at $[f]_{\mu \times \mu}$. It is straightforward to check that i_F is discontinuous at $[f]_{\mu \times \mu}$ iff $cof^{Ult(HOD,\mu \times \mu)}([f]_{\mu \times \mu}) = i_1(\omega_1)$.

$$HOD \xrightarrow{\mathcal{T}} M$$
$$Ext(HOD, W_1^1) \xrightarrow{\mathcal{S}} N$$

$Ext(HOD, W_1^1)$ above ω_2

$$HOD \xrightarrow{\mathcal{T}} M$$
$$Ext(HOD, W_1^1) \xrightarrow{\mathcal{S}} N$$

We have shown that in the first ω_2 -many steps of the comparison, HOD iterates μ - what's next?

 $Ext(HOD, W_1^1)$ above ω_2

$$HOD \xrightarrow{\mathcal{T}} M$$

$$Ext(HOD, W_1^1) \xrightarrow{\mathcal{S}} N$$

We have shown that in the first $\omega_2\text{-many}$ steps of the comparison, HOD iterates $\mu\text{-}$ what's next?

Let κ_2 denote the second measurable cardinal of $Ult^{\omega_2}(HOD, \mu)$ and let μ_2 denote it's normal measure.

ickground Below

$Ext(HOD, W_1^1)$ above ω_2

$$HOD \xrightarrow{\mathcal{T}} M$$
$$Ext(HOD, W_1^1) \xrightarrow{\mathcal{S}} N$$

We have shown that in the first ω_2 -many steps of the comparison, HOD iterates μ - what's next?

Let κ_2 denote the second measurable cardinal of $Ult^{\omega_2}(HOD, \mu)$ and let μ_2 denote it's normal measure.

One can show κ_2 is less than the second measurable cardinal of $Ext(HOD, W_1^1)$.

$Ext(HOD, W_1^1)$ above ω_2

$$HOD \xrightarrow{\mathcal{T}} M$$

$$Ext(HOD, W_1^1) \xrightarrow{\mathcal{S}} N$$

We have shown that in the first ω_2 -many steps of the comparison, HOD iterates μ - what's next?

Let κ_2 denote the second measurable cardinal of $Ult^{\omega_2}(HOD, \mu)$ and let μ_2 denote it's normal measure.

One can show κ_2 is less than the second measurable cardinal of $Ext(HOD, W_1^1)$.

Thus, the next thing that happens in the comparison is that $Ult^{\omega_2}(HOD, \mu)$ iterate μ_2 until the image of κ_2 "lines up" with the second measurable cardinal of $Ext(HOD, W_1^1)$ (an open question is how long this iteration lasts).

Indeed, using various methods, one can show that this process continues for quite a ways.

Indeed, using various methods, one can show that this process continues for quite a ways.

We have shown that this process continues until we reach a κ such that there is a $\gamma < \kappa$ such that γ is strong past κ .

Indeed, using various methods, one can show that this process continues for quite a ways.

We have shown that this process continues until we reach a κ such that there is a $\gamma < \kappa$ such that γ is strong past κ .

The limiting factor is our inability to prove the following Lemma for such κ

Lemma

Let M be an iterate of HOD, and let $\kappa \in M$ be s.t. there are no total extenders in M, E, with $crit(E) < \kappa$ and $Lh(E) > \kappa$. Let Γ be a proper class of ordinals. Then every $A \in (P(\kappa))^M$ is definable from parameters in $\kappa \cup \Gamma$.

(i) What is a full analysis of $j_{W_1^1}$?

- (i) What is a full analysis of $j_{W_1^1}$?
- (ii) Let S_1^1 be the measure on ω_2 coming from W_1^1 and the strong partition property on ω_1 .

- (i) What is a full analysis of $j_{W_1^1}$?
- (ii) Let S_1^1 be the measure on ω_2 coming from W_1^1 and the strong partition property on ω_1 . Do HOD and $Ext(HOD, S_1^1)$ have a successful comparison?

Some open questions:

- (i) What is a full analysis of $j_{W_1^1}$?
- (ii) Let S_1^1 be the measure on ω_2 coming from W_1^1 and the strong partition property on ω_1 . Do HOD and $Ext(HOD, S_1^1)$ have a successful comparison? what is $j_{S_1^1}: HOD \to Ext(HOD, S_1^1)$?

- (i) What is a full analysis of $j_{W_1^1}$?
- (ii) Let S_1^1 be the measure on ω_2 coming from W_1^1 and the strong partition property on ω_1 . Do HOD and $Ext(HOD, S_1^1)$ have a successful comparison? what is $j_{S_1^1}: HOD \to Ext(HOD, S_1^1)$?
- (iii) What ordinals less than ω_3 are coded by $f:\omega_2\to\omega_2$, $f\in HOD$?

Thank you!

