MATH 1710.200 - Homework 2

Due: 9/14/16

1. Find the limit (if it exists). Use the symbols ∞ or $-\infty$ if appropriate.

$$\lim_{x \to -2} \frac{3(2x+1)^2 - 27}{x+2}$$

- 2. Evaluate the following limits (if they exist). Use the symbols ∞ or $-\infty$ if appropriate.
 - (a) $\lim_{x \to \infty} \frac{1 x}{2x}$
 - (b) $\lim_{x \to \infty} \frac{1 x}{x^2}$
 - (c) $\lim_{x \to \infty} \frac{1 x^2}{2x}$
- 3. Find the following limits (if they exist).
 - (a) $\lim_{x \to 1} \left(\frac{1}{1-x} \frac{2}{1-x^2} \right)$
 - (b) $\lim_{x \to \pi/3} \frac{2\cos^2 x + 3\cos x 2}{2\cos x 1}$
- 4. Because of their connection with rates of change, limits of the form $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ occur frequently in calculus. Evaluate this limit for $f(x)=x^2$ and x=-2.
- 5. Suppose that $\lim_{x\to 3} xf(x) = 12$. Show that $\lim_{x\to 3} f(x)$ exists and find its value.
- 6. Suppose $\lim_{x\to a}(f(x)+g(x))=3$ and $\lim_{x\to a}(f(x)-g(x))=1$ then find $\lim_{x\to a}f(x)g(x)$
- 7. Textbook 2.4 number 44