Projects in the Classroom

Neal Brand

Professor Department of Mathematics University of North Texas

April 7, 2018

Projects in the Classroom

Neal Brand

ProfessorRETIRED! Department of Mathematics University of North Texas

April 7, 2018

My goal for today -

My goal for today - give my opinion on:

 \blacktriangleright What is a project?

- \blacktriangleright What is a project?
- \blacktriangleright Why give projects?

- \blacktriangleright What is a project?
- \blacktriangleright Why give projects?
- \blacktriangleright Individual projects or group projects?

- \blacktriangleright What is a project?
- \blacktriangleright Why give projects?
- \blacktriangleright Individual projects or group projects?
- \blacktriangleright How do you get ideas for projects?

My goal for today - give my opinion on:

- \blacktriangleright What is a project?
- \blacktriangleright Why give projects?
- \blacktriangleright Individual projects or group projects?
- \blacktriangleright How do you get ideas for projects?

Look at examples to help answer the questions.

My goal for today - give my opinion on:

- \blacktriangleright What is a project?
- \blacktriangleright Why give projects?
- \blacktriangleright Individual projects or group projects?
- \blacktriangleright How do you get ideas for projects?

Look at examples to help answer the questions.

 \blacktriangleright What is a tippe top?

- \blacktriangleright What is a tippe top?
- \blacktriangleright How does it work?

- \blacktriangleright What is a tippe top?
- \blacktriangleright How does it work? Beats Me!

- \blacktriangleright What is a tippe top?
- How does it work? Beats Me! But it needs a low center of mass.

- \blacktriangleright What is a tippe top?
- How does it work? Beats Me! But it needs a low center of mass.
- \blacktriangleright What is the project?

- \blacktriangleright What is a tippe top?
- How does it work? Beats Me! But it needs a low center of mass.
- \triangleright What is the project?
	- \blacktriangleright How deep do you drill a hole in a solid sphere in order to make the center of mass as low as possible?

- \blacktriangleright What is a tippe top?
- How does it work? Beats Me! But it needs a low center of mass.
- \blacktriangleright What is the project?
	- \blacktriangleright How deep do you drill a hole in a solid sphere in order to make the center of mass as low as possible?

- \blacktriangleright What is a tippe top?
- How does it work? Beats Me! But it needs a low center of mass.
- \triangleright What is the project?
	- \blacktriangleright How deep do you drill a hole in a solid sphere in order to make the center of mass as low as possible?

- \blacktriangleright What is a tippe top?
- How does it work? Beats Me! But it needs a low center of mass.
- \triangleright What is the project?
	- \blacktriangleright How deep do you drill a hole in a solid sphere in order to make the center of mass as low as possible?

- \blacktriangleright What is a tippe top?
- \blacktriangleright How does it work? Beats Me! But it needs a low center of mass.
- \triangleright What is the project?
	- \blacktriangleright How deep do you drill a hole in a solid sphere in order to make the center of mass as low as possible?

F Radius of sphere is 1, radius of drill bit is r make a table showing $a = y$ position that minimizes center of mass height.

- \blacktriangleright What is a tippe top?
- \blacktriangleright How does it work? Beats Me! But it needs a low center of mass.
- \triangleright What is the project?
	- \blacktriangleright How deep do you drill a hole in a solid sphere in order to make the center of mass as low as possible?

F Radius of sphere is 1, radius of drill bit is r make a table showing $a = y$ position that minimizes center of mass height.

What mathematics are involved?

What mathematics are involved?

Exercise Center of mass \overline{y} for a shape defined piecewise.

What mathematics are involved?

Exerche Follow Center of mass \overline{y} for a shape defined piecewise.

What mathematics are involved?

Exercise Center of mass \overline{y} for a shape defined piecewise.

$$
\frac{\int_{-1}^{a} \pi (1 - y^2) y \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) y \, dy}{\int_{-1}^{a} \pi (1 - y^2) \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) \, dy} =
$$

What mathematics are involved?

Center of mass \overline{y} **for a shape defined piecewise.**

$$
\frac{\int_{-1}^{a} \pi (1 - y^2) y \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) y \, dy}{\int_{-1}^{a} \pi (1 - y^2) \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) \, dy} = \frac{\frac{8}{3}}{\frac{8}{3}} (1 - \frac{y^2}{1 - r^2})
$$

$$
\begin{pmatrix}\n1 & 1 \\
\cdot & \cdot \\
\cdot & \cdot \\
\hline\n\frac{r^4 - 2r^2 + 2r^2 a^2}{\frac{8}{3}(1 - r^2)^{3/2} + \frac{2}{3} + 4r^2 a}\n\end{pmatrix}
$$

What mathematics are involved?

Exercise Center of mass \overline{y} for a shape defined piecewise.

$$
\frac{\int_{-1}^{a} \pi (1 - y^2) y \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) y \, dy}{\int_{-1}^{a} \pi (1 - y^2) \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) \, dy} =
$$

$$
\begin{pmatrix}\n1 & 1 \\
\cdot & \cdot \\
\cdot & \cdot \\
\hline\n\frac{r^4 - 2r^2 + 2r^2 a^2}{\frac{8}{3}(1 - r^2)^{3/2} + \frac{2}{3} + 4r^2 a}\n\end{pmatrix}
$$

 \blacktriangleright Minimizing function.

^{*−*}₁ $π(1 – y²)$ *y* dy + $\int_{a}^{\sqrt{1 - r^{2}}}$

*−*₁ $π(1 - y²) dy + \int_{a}^{√{1 - r²}}$

What mathematics are involved?

∫ *a*

∫ *a*

Exerche Center of mass \overline{y} **for a shape.**

shape defined piecewise.
\n
$$
\frac{\sqrt{1-r^2}}{a} \pi (1 - y^2 - r^2) y \, dy}{\pi \sqrt{1-r^2}} = \frac{r^4 - 2r^2 + 2r^2 a^2}{\frac{8}{3}(1 - r^2)^{3/2} + \frac{2}{3} + 4r^2 a}
$$

 $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

 \blacktriangleright Minimizing function. Who wants to differentiate that fraction!

What mathematics are involved?

Exercise Center of mass \overline{y} for a shape defined piecewise.

$$
\frac{\int_{-1}^{a} \pi (1 - y^2) y \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) y \, dy}{\int_{-1}^{a} \pi (1 - y^2) \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) \, dy} = \frac{\sqrt{4 - 2r^2 + 2r^2 a^2}}{\frac{8}{3} (1 - r^2)^{3/2} + \frac{2}{3} + 4r}
$$

- \blacktriangleright Minimizing function. Who wants to differentiate that fraction!
	- \triangleright Only worry about the numerator.

$$
\left(\begin{array}{c}\n\cdot \\
\cdot \\
\cdot \\
\hline\n\frac{r^4 - 2r^2 + 2r^2a^2}{\frac{8}{2}(1 - r^2)^{3/2} + \frac{2}{2} + 4r}\n\end{array}\right)
$$

2*a .*

What mathematics are involved?

Exerche Follow Center of mass \overline{y} for a shape defined piecewise.

$$
\frac{\int_{-1}^{a} \pi (1 - y^2) y \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) y \, dy}{\int_{-1}^{a} \pi (1 - y^2) \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) \, dy} = \frac{\sqrt{4 - 2r^2 + 2r^2 a^2}}{\frac{8}{3} (1 - r^2)^{3/2} + \frac{2}{3} + 4r^2 a}
$$

- \blacktriangleright Minimizing function. Who wants to differentiate that fraction!
	- \triangleright Only worry about the numerator.
	- \blacktriangleright Use technology to differentiate.

What mathematics are involved?

EXECUTE: Center of mass \overline{y} for a shape defined piecewise.

$$
\frac{\int_{-1}^{a} \pi (1 - y^2) y \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) y \, dy}{\int_{-1}^{a} \pi (1 - y^2) \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) \, dy} = \frac{\sqrt{4 - 2r^2 + 2r^2 a^2}}{\frac{8}{3}(1 - r^2)^{3/2} + \frac{2}{3} + 4r^2}
$$

- \blacktriangleright Minimizing function. Who wants to differentiate that fraction!
	- \triangleright Only worry about the numerator.
	- \triangleright Use technology to differentiate.
	- \blacktriangleright Divide and then differentiate.

$$
\begin{pmatrix}\n1 & 1 \\
\cdot & \cdot \\
\cdot & \cdot \\
\hline\n\frac{r^4 - 2r^2 + 2r^2a^2}{\frac{8}{3}(1 - r^2)^{3/2} + \frac{2}{3} + 4r}\n\end{pmatrix}
$$

2*a .*

What mathematics are involved?

Exerche Follow Center of mass \overline{y} for a shape defined piecewise.

$$
\frac{\int_{-1}^{a} \pi (1 - y^2) y \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) y \, dy}{\int_{-1}^{a} \pi (1 - y^2) \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) \, dy} = \frac{\sqrt{4 - 2r^2 + 2r^2 a^2}}{\frac{8}{3} (1 - r^2)^{3/2} + \frac{2}{3} + 4r^2 a}
$$

- \triangleright Minimizing function. Who wants to differentiate that fraction!
	- \triangleright Only worry about the numerator.
	- \triangleright Use technology to differentiate.
	- \blacktriangleright Divide and then differentiate.

► Minimum when *a* satisfies
$$
0 = 2r^2a^2 + (\frac{8}{3}(1 - r^2)^{3/2} + \frac{2}{3})a + 2r^2 - r^4
$$
.

What mathematics are involved?

Exerche Figure Center of mass \overline{y} for a shape defined piecewise.

$$
\frac{\int_{-1}^{a} \pi (1 - y^2) y \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) y \, dy}{\int_{-1}^{a} \pi (1 - y^2) \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) \, dy} = \frac{\sqrt{4 - 2r^2 + 2r^2 a^2}}{\frac{8}{3} (1 - r^2)^{3/2} + \frac{2}{3} + 4r^2 a}
$$

- \triangleright Minimizing function. Who wants to differentiate that fraction!
	- \triangleright Only worry about the numerator.
	- \blacktriangleright Use technology to differentiate.
	- \triangleright Divide and then differentiate.

► Minimum when *a* satisfies
$$
0 = 2r^2a^2 + (\frac{8}{3}(1 - r^2)^{3/2} + \frac{2}{3})a + 2r^2 - r^4
$$
.

 \triangleright What if the remaining object is in two pieces?
Tippe Tops and Calculus (cont.)

What mathematics are involved?

Exerche Follow Center of mass \overline{y} for a shape defined piecewise.

$$
\frac{\int_{-1}^{a} \pi (1 - y^2) y \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) y \, dy}{\int_{-1}^{a} \pi (1 - y^2) \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) \, dy} = \frac{\sqrt{4 - 2r^2 + 2r^2 a^2}}{\frac{8}{3} (1 - r^2)^{3/2} + \frac{2}{3} + 4r^2 a}
$$

- \triangleright Minimizing function. Who wants to differentiate that fraction!
	- \triangleright Only worry about the numerator.
	- \blacktriangleright Use technology to differentiate.
	- \triangleright Divide and then differentiate.

► Minimum when *a* satisfies
$$
0 = 2r^2a^2 + (\frac{8}{3}(1 - r^2)^{3/2} + \frac{2}{3})a + 2r^2 - r^4
$$
.

- \triangleright What if the remaining object is in two pieces?
- ► Compare *a* and the center of mass.

 $\ddot{\bullet}$

.

Tippe Tops and Calculus (cont.)

What mathematics are involved?

EXECUTE: Center of mass \overline{y} for a shape defined piecewise.

$$
\frac{\int_{-1}^{a} \pi (1 - y^2) y \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) y \, dy}{\int_{-1}^{a} \pi (1 - y^2) \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) \, dy} = \frac{\sqrt{4 - 2r^2 + 2r^2 a^2}}{\frac{8}{3} (1 - r^2)^{3/2} + \frac{2}{3} + 4r^2 a}
$$

- \triangleright Minimizing function. Who wants to differentiate that fraction!
	- \triangleright Only worry about the numerator.
	- \triangleright Use technology to differentiate.
	- \triangleright Divide and then differentiate.

► Minimum when *a* satisfies
$$
0 = 2r^2a^2 + (\frac{8}{3}(1 - r^2)^{3/2} + \frac{2}{3})a + 2r^2 - r^4
$$
.

- \triangleright What if the remaining object is in two pieces?
- ► Compare *a* and the center of mass.
- In Which radius *r* gives the lowest center of mass?

2 3

 $\ddot{\cdot}$

.

Tippe Tops and Calculus (cont.)

What mathematics are involved?

EXECUTE: Center of mass \overline{y} for a shape defined piecewise.

$$
\frac{\int_{-1}^{a} \pi (1 - y^2) y \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) y \, dy}{\int_{-1}^{a} \pi (1 - y^2) \, dy + \int_{a}^{\sqrt{1 - r^2}} \pi (1 - y^2 - r^2) \, dy} = \frac{\sqrt{4 - 2r^2 + 2r^2 a^2}}{\frac{8}{3} (1 - r^2)^{3/2} + \frac{2}{3} + 4r^2 a}
$$

- \triangleright Minimizing function. Who wants to differentiate that fraction!
	- \triangleright Only worry about the numerator.
	- \triangleright Use technology to differentiate.
	- \triangleright Divide and then differentiate.

► Minimum when *a* satisfies
$$
0 = 2r^2a^2 + (\frac{8}{3}(1 - r^2)^{3/2} + \frac{2}{3})a + 2r^2 - r^4
$$
.

- \triangleright What if the remaining object is in two pieces?
- ► Compare *a* and the center of mass.
- In Which radius *r* gives the lowest center of mass?

2 3

 $\ddot{\cdot}$

.

A support spindle is a pointed stick used to spin yarn.

A support spindle is a pointed stick used to spin yarn.

Project: Design a support spindle.

A support spindle is a pointed stick used to spin yarn.

Project: Design a support spindle.

 \blacktriangleright Attractive.

A support spindle is a pointed stick used to spin yarn.

Project: Design a support spindle.

- \blacktriangleright Attractive.
- \blacktriangleright Have the "right" moment of inertia.

A support spindle is a pointed stick used to spin yarn.

Project: Design a support spindle.

- \blacktriangleright Attractive.
- \blacktriangleright Have the "right" moment of inertia.

A support spindle is a pointed stick used to spin yarn.

Project: Design a support spindle.

- \blacktriangleright Attractive.
- \blacktriangleright Have the "right" moment of inertia.

Student had not seen the concept of moment of inertia.

 \triangleright Given the moment of inertia of a point mass about a fixed axis:

A support spindle is a pointed stick used to spin yarn.

Project: Design a support spindle.

- \blacktriangleright Attractive.
- \blacktriangleright Have the "right" moment of inertia.

Student had not seen the concept of moment of inertia.

Given the moment of inertia of a point mass about a fixed axis: mr^2 .

A support spindle is a pointed stick used to spin yarn.

Project: Design a support spindle.

- \blacktriangleright Attractive.
- \blacktriangleright Have the "right" moment of inertia.

- Given the moment of inertia of a point mass about a fixed axis: mr^2 .
- \triangleright Given the moment of inertia of a finite number of point masses is the sum of their moments of inertia.

A support spindle is a pointed stick used to spin yarn.

Project: Design a support spindle.

- \blacktriangleright Attractive.
- \blacktriangleright Have the "right" moment of inertia.

- Given the moment of inertia of a point mass about a fixed axis: mr^2 .
- \triangleright Given the moment of inertia of a finite number of point masses is the sum of their moments of inertia.
- \triangleright They derived the integral formula for the moment of inertia.

A support spindle is a pointed stick used to spin yarn.

Project: Design a support spindle.

- \blacktriangleright Attractive.
- \blacktriangleright Have the "right" moment of inertia.

- Given the moment of inertia of a point mass about a fixed axis: mr^2 .
- \triangleright Given the moment of inertia of a finite number of point masses is the sum of their moments of inertia.
- \blacktriangleright They derived the integral formula for the moment of inertia.
- \triangleright Compute the standard formulas for cylinder, sphere, cone, parabolic shape.

A support spindle is a pointed stick used to spin yarn.

Project: Design a support spindle.

- \blacktriangleright Attractive.
- \blacktriangleright Have the "right" moment of inertia.

- Given the moment of inertia of a point mass about a fixed axis: mr^2 .
- \triangleright Given the moment of inertia of a finite number of point masses is the sum of their moments of inertia.
- \blacktriangleright They derived the integral formula for the moment of inertia.
- \triangleright Compute the standard formulas for cylinder, sphere, cone, parabolic shape.
- \blacktriangleright Design a spindle.

A support spindle is a pointed stick used to spin yarn.

Project: Design a support spindle.

- \blacktriangleright Attractive.
- \blacktriangleright Have the "right" moment of inertia.

- Given the moment of inertia of a point mass about a fixed axis: mr^2 .
- \triangleright Given the moment of inertia of a finite number of point masses is the sum of their moments of inertia.
- \blacktriangleright They derived the integral formula for the moment of inertia.
- \triangleright Compute the standard formulas for cylinder, sphere, cone, parabolic shape.
- \blacktriangleright Design a spindle.

 \triangleright A sample of algae contains some bacteria.

 \triangleright A sample of algae contains some bacteria. How do you produce an axenic (bacteria free) sample?

- \triangleright A sample of algae contains some bacteria. How do you produce an axenic (bacteria free) sample?
	- \blacktriangleright Place small samples in clean flasks and allow to grow.

- \triangleright A sample of algae contains some bacteria. How do you produce an axenic (bacteria free) sample?
	- \blacktriangleright Place small samples in clean flasks and allow to grow.
	- \triangleright Check each sample for algae and bacteria hope one sample is axenic.

- \triangleright A sample of algae contains some bacteria. How do you produce an axenic (bacteria free) sample?
	- \blacktriangleright Place small samples in clean flasks and allow to grow.
	- \triangleright Check each sample for algae and bacteria hope one sample is axenic.
	- \blacktriangleright There is hope since the bacteria and algae do not tend to stick together.

- \triangleright A sample of algae contains some bacteria. How do you produce an axenic (bacteria free) sample?
	- \blacktriangleright Place small samples in clean flasks and allow to grow.
	- \triangleright Check each sample for algae and bacteria hope one sample is axenic.
	- \blacktriangleright There is hope since the bacteria and algae do not tend to stick together.
- ▶ Project:

- \triangleright A sample of algae contains some bacteria. How do you produce an axenic (bacteria free) sample?
	- \blacktriangleright Place small samples in clean flasks and allow to grow.
	- \triangleright Check each sample for algae and bacteria hope one sample is axenic.
	- \blacktriangleright There is hope since the bacteria and algae do not tend to stick together.
- Project:
	- \triangleright Given the concentration of bacteria and the concentration of algae, how large should a sample be in order to maximize the probability of at least one algae and no bacteria in the sample?

- \triangleright A sample of algae contains some bacteria. How do you produce an axenic (bacteria free) sample?
	- \blacktriangleright Place small samples in clean flasks and allow to grow.
	- \triangleright Check each sample for algae and bacteria hope one sample is axenic.
	- \blacktriangleright There is hope since the bacteria and algae do not tend to stick together.
- \blacktriangleright Project:
	- \triangleright Given the concentration of bacteria and the concentration of algae, how large should a sample be in order to maximize the probability of at least one algae and no bacteria in the sample?
	- \triangleright For what ratios of concentration of bacteria to concentration of algae is the probability at least 0.95 that among 20 samples, at least one will be axenic?

- \triangleright A sample of algae contains some bacteria. How do you produce an axenic (bacteria free) sample?
	- \blacktriangleright Place small samples in clean flasks and allow to grow.
	- \triangleright Check each sample for algae and bacteria hope one sample is axenic.
	- \blacktriangleright There is hope since the bacteria and algae do not tend to stick together.
- \blacktriangleright Project:
	- \triangleright Given the concentration of bacteria and the concentration of algae, how large should a sample be in order to maximize the probability of at least one algae and no bacteria in the sample?
	- \triangleright For what ratios of concentration of bacteria to concentration of algae is the probability at least 0.95 that among 20 samples, at least one will be axenic?

Model and solve:

 \blacktriangleright Take small sample so only a few algae and bacteria appear in each sample -

Model and solve:

 \blacktriangleright Take small sample so only a few algae and bacteria appear in each sample -Poisson Distribution: $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^{\kappa}}{k!}$.

- \blacktriangleright Take small sample so only a few algae and bacteria appear in each sample -Poisson Distribution: $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^{\kappa}}{k!}$.
- \triangleright Concentration -

- \blacktriangleright Take small sample so only a few algae and bacteria appear in each sample -Poisson Distribution: $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^{\kappa}}{k!}$.
- \triangleright Concentration Assume on average one algae per unit volume and

- \blacktriangleright Take small sample so only a few algae and bacteria appear in each sample -Poisson Distribution: $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^{\kappa}}{k!}$.
- ► Concentration Assume on average one algae per unit volume and *b* bacteria per unit volume.

- \blacktriangleright Take small sample so only a few algae and bacteria appear in each sample -Poisson Distribution: $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^{\kappa}}{k!}$.
- ► Concentration Assume on average one algae per unit volume and *b* bacteria per unit volume.
- \blacktriangleright Sample size *x* units of volume.
- \blacktriangleright Take small sample so only a few algae and bacteria appear in each sample -Poisson Distribution: $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^{\kappa}}{k!}$.
- ► Concentration Assume on average one algae per unit volume and *b* bacteria per unit volume.
- \blacktriangleright Sample size *x* units of volume.
- \blacktriangleright $\lambda = x$ for algae and

- \blacktriangleright Take small sample so only a few algae and bacteria appear in each sample -Poisson Distribution: $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^{\kappa}}{k!}$.
- ► Concentration Assume on average one algae per unit volume and *b* bacteria per unit volume.
- \blacktriangleright Sample size *x* units of volume.
- $\lambda = x$ for algae and $\lambda = bx$ for bacteria.

- \blacktriangleright Take small sample so only a few algae and bacteria appear in each sample -Poisson Distribution: $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^{\kappa}}{k!}$.
- ► Concentration Assume on average one algae per unit volume and *b* bacteria per unit volume.
- \blacktriangleright Sample size *x* units of volume.
- $\lambda = x$ for algae and $\lambda = bx$ for bacteria.
- $X =$ Number of algae in a sample and

- \blacktriangleright Take small sample so only a few algae and bacteria appear in each sample -Poisson Distribution: $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^{\kappa}}{k!}$.
- ▶ Concentration Assume on average one algae per unit volume and *b* bacteria per unit volume.
- \blacktriangleright Sample size *x* units of volume.
- $\blacktriangleright \lambda = x$ for algae and $\lambda = bx$ for bacteria.
- \triangleright *X* = Number of algae in a sample and *Y* = Number of bacteria in a sample.

- \blacktriangleright Take small sample so only a few algae and bacteria appear in each sample -Poisson Distribution: $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^{\kappa}}{k!}$.
- ► Concentration Assume on average one algae per unit volume and *b* bacteria per unit volume.
- \blacktriangleright Sample size *x* units of volume.
- $\lambda = x$ for algae and $\lambda = bx$ for bacteria.
- \blacktriangleright *X* = Number of algae in a sample and *Y* = Number of bacteria in a sample.
- $P(X \ge 1 \text{ and } Y = 0) =$

- \blacktriangleright Take small sample so only a few algae and bacteria appear in each sample -Poisson Distribution: $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^{\kappa}}{k!}$.
- ► Concentration Assume on average one algae per unit volume and *b* bacteria per unit volume.
- \blacktriangleright Sample size *x* units of volume.
- $\lambda = x$ for algae and $\lambda = bx$ for bacteria.
- \blacktriangleright *X* = Number of algae in a sample and *Y* = Number of bacteria in a sample.
- ► $P(X \ge 1 \text{ and } Y = 0) = P(X \ge 1)P(Y = 0)$

- \blacktriangleright Take small sample so only a few algae and bacteria appear in each sample -Poisson Distribution: $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^{\kappa}}{k!}$.
- ► Concentration Assume on average one algae per unit volume and *b* bacteria per unit volume.
- \blacktriangleright Sample size *x* units of volume.
- $\lambda = x$ for algae and $\lambda = bx$ for bacteria.
- \blacktriangleright *X* = Number of algae in a sample and *Y* = Number of bacteria in a sample.
- ▶ $P(X \ge 1$ and $Y = 0) = P(X \ge 1)P(Y = 0)$ Independent!

- \blacktriangleright Take small sample so only a few algae and bacteria appear in each sample -Poisson Distribution: $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^{\kappa}}{k!}$.
- ► Concentration Assume on average one algae per unit volume and *b* bacteria per unit volume.
- \blacktriangleright Sample size *x* units of volume.
- $\lambda = x$ for algae and $\lambda = bx$ for bacteria.
- \blacktriangleright *X* = Number of algae in a sample and *Y* = Number of bacteria in a sample.
- ▶ $P(X \ge 1$ and $Y = 0) = P(X \ge 1)P(Y = 0)$ Independent!
- \blacktriangleright $f(x) = P(\text{Success}) = (1 e^{-x})e^{-bx}$

- \blacktriangleright Take small sample so only a few algae and bacteria appear in each sample -Poisson Distribution: $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^{\kappa}}{k!}$.
- ► Concentration Assume on average one algae per unit volume and *b* bacteria per unit volume.
- \blacktriangleright Sample size *x* units of volume.
- $\lambda = x$ for algae and $\lambda = bx$ for bacteria.
- \blacktriangleright *X* = Number of algae in a sample and *Y* = Number of bacteria in a sample.
- ▶ $P(X \ge 1$ and $Y = 0) = P(X \ge 1)P(Y = 0)$ Independent!
- \blacktriangleright $f(x) = P(\text{Success}) = (1 e^{-x})e^{-bx}$
- \blacktriangleright Maximize $f(x)$

- \blacktriangleright Take small sample so only a few algae and bacteria appear in each sample -Poisson Distribution: $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^{\kappa}}{k!}$.
- ► Concentration Assume on average one algae per unit volume and *b* bacteria per unit volume.
- Sample size x units of volume.
- $\lambda = x$ for algae and $\lambda = bx$ for bacteria.
- \blacktriangleright *X* = Number of algae in a sample and *Y* = Number of bacteria in a sample.
- ▶ $P(X \ge 1$ and $Y = 0) = P(X \ge 1)P(Y = 0)$ Independent!
- \blacktriangleright $f(x) = P(\text{Success}) = (1 e^{-x})e^{-bx}$
- \blacktriangleright Maximize $f(x)$
- \triangleright Bernoulli trials 20 samples.

- \blacktriangleright Take small sample so only a few algae and bacteria appear in each sample -Poisson Distribution: $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^{\kappa}}{k!}$.
- ► Concentration Assume on average one algae per unit volume and *b* bacteria per unit volume.
- Sample size x units of volume.
- $\lambda = x$ for algae and $\lambda = bx$ for bacteria.
- \blacktriangleright *X* = Number of algae in a sample and *Y* = Number of bacteria in a sample.
- ▶ $P(X \ge 1$ and $Y = 0) = P(X \ge 1)P(Y = 0)$ Independent!
- \blacktriangleright $f(x) = P(\text{Success}) = (1 e^{-x})e^{-bx}$
- \blacktriangleright Maximize $f(x)$
- \triangleright Bernoulli trials 20 samples. Find *b* that keeps probability of at least one success at 0.95 or better.

- \blacktriangleright Take small sample so only a few algae and bacteria appear in each sample -Poisson Distribution: $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^{\kappa}}{k!}$.
- ► Concentration Assume on average one algae per unit volume and *b* bacteria per unit volume.
- Sample size x units of volume.
- $\lambda = x$ for algae and $\lambda = bx$ for bacteria.
- \blacktriangleright *X* = Number of algae in a sample and *Y* = Number of bacteria in a sample.
- ▶ $P(X \ge 1$ and $Y = 0) = P(X \ge 1)P(Y = 0)$ Independent!
- \blacktriangleright $f(x) = P(\text{Success}) = (1 e^{-x})e^{-bx}$
- \blacktriangleright Maximize $f(x)$
- \triangleright Bernoulli trials 20 samples. Find *b* that keeps probability of at least one success at 0.95 or better.
- ^I Answer: *≃* 2*.*1603

- \blacktriangleright Take small sample so only a few algae and bacteria appear in each sample -Poisson Distribution: $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\frac{\lambda^{\kappa}}{k!}$.
- ► Concentration Assume on average one algae per unit volume and *b* bacteria per unit volume.
- Sample size x units of volume.
- $\lambda = x$ for algae and $\lambda = bx$ for bacteria.
- \blacktriangleright *X* = Number of algae in a sample and *Y* = Number of bacteria in a sample.
- ▶ $P(X \ge 1$ and $Y = 0) = P(X \ge 1)P(Y = 0)$ Independent!
- \blacktriangleright $f(x) = P(\text{Success}) = (1 e^{-x})e^{-bx}$
- \blacktriangleright Maximize $f(x)$
- \triangleright Bernoulli trials 20 samples. Find *b* that keeps probability of at least one success at 0.95 or better.
- ^I Answer: *≃* 2*.*1603

 \blacktriangleright Let $p(x)$ be a polynomial.

If Let $p(x)$ be a polynomial. The derivative $p'(a)$ is the slope of the "best" approximating line through (*a, p*(*a*)).

- If Let $p(x)$ be a polynomial. The derivative $p'(a)$ is the slope of the "best" approximating line through (*a, p*(*a*)).
- ► The line $y = mx + b$ is best if $p(x) (mx + b)$ has a double root at *a*.

- If Let $p(x)$ be a polynomial. The derivative $p'(a)$ is the slope of the "best" approximating line through (*a, p*(*a*)).
- **F** The line $y = mx + b$ is best if $p(x) (mx + b)$ has a double root at *a*. That is $p(x) - (mx + b) = (x - a)^2 q(x)$.

- If Let $p(x)$ be a polynomial. The derivative $p'(a)$ is the slope of the "best" approximating line through (*a, p*(*a*)).
- **F** The line $y = mx + b$ is best if $p(x) (mx + b)$ has a double root at *a*. That is $p(x) - (mx + b) = (x - a)^2 q(x)$.
- ▶ Project:

- If Let $p(x)$ be a polynomial. The derivative $p'(a)$ is the slope of the "best" approximating line through (*a, p*(*a*)).
- **F** The line $y = mx + b$ is best if $p(x) (mx + b)$ has a double root at *a*. That is $p(x) - (mx + b) = (x - a)^2 q(x)$.
- \triangleright Project: Use the best approximating line definition to derive the usual formula for the derivative of a polynomial:

- If Let $p(x)$ be a polynomial. The derivative $p'(a)$ is the slope of the "best" approximating line through (*a, p*(*a*)).
- **►** The line $y = mx + b$ is best if $p(x) (mx + b)$ has a double root at *a*. That is $p(x) - (mx + b) = (x - a)^2 q(x)$.
- \triangleright Project: Use the best approximating line definition to derive the usual formula for the derivative of a polynomial: *d* $\frac{d}{dx}(a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0) = na_nx^{n-1} + (n-1)a_{n-1}x^{n-1} + \cdots + a_1$

- If Let $p(x)$ be a polynomial. The derivative $p'(a)$ is the slope of the "best" approximating line through (*a, p*(*a*)).
- **F** The line $y = mx + b$ is best if $p(x) (mx + b)$ has a double root at *a*. That is $p(x) - (mx + b) = (x - a)^2 q(x)$.
- \blacktriangleright Project: Use the best approximating line definition to derive the usual formula for the derivative of a polynomial: *d*

$$
\frac{d}{dx}(a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0)=na_nx^{n-1}+(n-1)a_{n-1}x^{n-1}+\cdots+a_1.
$$

 \blacktriangleright Concepts involved:

- If Let $p(x)$ be a polynomial. The derivative $p'(a)$ is the slope of the "best" approximating line through (*a, p*(*a*)).
- **F** The line $y = mx + b$ is best if $p(x) (mx + b)$ has a double root at *a*. That is $p(x) - (mx + b) = (x - a)^2 q(x)$.
- \blacktriangleright Project: Use the best approximating line definition to derive the usual formula for the derivative of a polynomial:

$$
\frac{d}{dx}(a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0)=na_nx^{n-1}+(n-1)a_{n-1}x^{n-1}+\cdots+a_1.
$$

- \blacktriangleright Concepts involved:
	- \triangleright Using a definition to derive a formula.

- If Let $p(x)$ be a polynomial. The derivative $p'(a)$ is the slope of the "best" approximating line through (*a, p*(*a*)).
- ► The line $y = mx + b$ is best if $p(x) (mx + b)$ has a double root at *a*. That is $p(x) - (mx + b) = (x - a)^2 q(x)$.
- \blacktriangleright Project: Use the best approximating line definition to derive the usual formula for the derivative of a polynomial:

$$
\frac{d}{dx}(a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0)=na_nx^{n-1}+(n-1)a_{n-1}x^{n-1}+\cdots+a_1.
$$

- \blacktriangleright Concepts involved:
	- \triangleright Using a definition to derive a formula.
	- \triangleright Starting with special cases and working to more complicated cases.

- If Let $p(x)$ be a polynomial. The derivative $p'(a)$ is the slope of the "best" approximating line through (*a, p*(*a*)).
- ► The line $y = mx + b$ is best if $p(x) (mx + b)$ has a double root at *a*. That is $p(x) - (mx + b) = (x - a)^2 q(x)$.
- \blacktriangleright Project: Use the best approximating line definition to derive the usual formula for the derivative of a polynomial:

$$
\frac{d}{dx}(a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0)=na_nx^{n-1}+(n-1)a_{n-1}x^{n-1}+\cdots+a_1.
$$

- \blacktriangleright Concepts involved:
	- \triangleright Using a definition to derive a formula.
	- \triangleright Starting with special cases and working to more complicated cases.
	- \blacktriangleright Linearity.

- If Let $p(x)$ be a polynomial. The derivative $p'(a)$ is the slope of the "best" approximating line through (*a, p*(*a*)).
- ► The line $y = mx + b$ is best if $p(x) (mx + b)$ has a double root at *a*. That is $p(x) - (mx + b) = (x - a)^2 q(x)$.
- \blacktriangleright Project: Use the best approximating line definition to derive the usual formula for the derivative of a polynomial:

$$
\frac{d}{dx}(a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0)=na_nx^{n-1}+(n-1)a_{n-1}x^{n-1}+\cdots+a_1.
$$

- \blacktriangleright Concepts involved:
	- \triangleright Using a definition to derive a formula.
	- \triangleright Starting with special cases and working to more complicated cases.
	- \blacktriangleright Linearity.

 \blacktriangleright Give students practice solving larger problems as opposed to homework exercises.

- \blacktriangleright Give students practice solving larger problems as opposed to homework exercises.
- \blacktriangleright Reinforce topics.

- \blacktriangleright Give students practice solving larger problems as opposed to homework exercises.
- \blacktriangleright Reinforce topics.
- \blacktriangleright Introduce new topics.

- \triangleright Give students practice solving larger problems as opposed to homework exercises.
- \blacktriangleright Reinforce topics.
- \blacktriangleright Introduce new topics.
- \blacktriangleright Give students practice in communicating mathematics.

- \triangleright Give students practice solving larger problems as opposed to homework exercises.
- \blacktriangleright Reinforce topics.
- \blacktriangleright Introduce new topics.
- \blacktriangleright Give students practice in communicating mathematics.
- \blacktriangleright Let students explore a topic from a different perspective.

- \triangleright Give students practice solving larger problems as opposed to homework exercises.
- \blacktriangleright Reinforce topics.
- \blacktriangleright Introduce new topics.
- \blacktriangleright Give students practice in communicating mathematics.
- \blacktriangleright Let students explore a topic from a different perspective.
- \blacktriangleright Give students examples of actual applications.

- \triangleright Give students practice solving larger problems as opposed to homework exercises.
- \blacktriangleright Reinforce topics.
- \blacktriangleright Introduce new topics.
- \blacktriangleright Give students practice in communicating mathematics.
- \blacktriangleright Let students explore a topic from a different perspective.
- \triangleright Give students examples of actual applications.
- \blacktriangleright It is fun to develop projects!

- \triangleright Give students practice solving larger problems as opposed to homework exercises.
- \blacktriangleright Reinforce topics.
- \blacktriangleright Introduce new topics.
- \blacktriangleright Give students practice in communicating mathematics.
- \blacktriangleright Let students explore a topic from a different perspective.
- \triangleright Give students examples of actual applications.
- \blacktriangleright It is fun to develop projects!

Individual Verses Group Projects
\blacktriangleright Group requires students to communicate mathematics to each other.

- \blacktriangleright Group requires students to communicate mathematics to each other.
- \blacktriangleright Group gives some students undeserved credit.

- \blacktriangleright Group requires students to communicate mathematics to each other.
- \blacktriangleright Group gives some students undeserved credit.
- \triangleright Group is not easily accomplished on a commuter campus.

- \blacktriangleright Group requires students to communicate mathematics to each other.
- \blacktriangleright Group gives some students undeserved credit.
- \triangleright Group is not easily accomplished on a commuter campus.
- \triangleright Students less likely to cheat on a group project.

- \blacktriangleright Group requires students to communicate mathematics to each other.
- \blacktriangleright Group gives some students undeserved credit.
- \triangleright Group is not easily accomplished on a commuter campus.
- \triangleright Students less likely to cheat on a group project.

And the number one advantage of a group project is

- \blacktriangleright Group requires students to communicate mathematics to each other.
- \triangleright Group gives some students undeserved credit.
- \triangleright Group is not easily accomplished on a commuter campus.
- \triangleright Students less likely to cheat on a group project.

And the number one advantage of a group project is

 \blacktriangleright Less work for the instructor!

- \blacktriangleright Group requires students to communicate mathematics to each other.
- \triangleright Group gives some students undeserved credit.
- \triangleright Group is not easily accomplished on a commuter campus.
- \triangleright Students less likely to cheat on a group project.

And the number one advantage of a group project is

 \blacktriangleright Less work for the instructor!

How do you get ideas for projects?

How do you get ideas for projects? Always look for connections with mathematics.

 \triangleright Cheat! - Look on line or in books.

How do you get ideas for projects? Always look for connections with mathematics.

▶ Cheat! - Look on line or in books. Beware, students can cheat, too!

- ▶ Cheat! Look on line or in books. Beware, students can cheat, too!
- \blacktriangleright Hobbies, volunteer work, other interests.

- ▶ Cheat! Look on line or in books. Beware, students can cheat, too!
- \blacktriangleright Hobbies, volunteer work, other interests. Added benefit of letting your students know you better.

- ▶ Cheat! Look on line or in books. Beware, students can cheat, too!
- \blacktriangleright Hobbies, volunteer work, other interests. Added benefit of letting your students know you better. Spindles and tippe tops.

- ▶ Cheat! Look on line or in books. Beware, students can cheat, too!
- \blacktriangleright Hobbies, volunteer work, other interests. Added benefit of letting your students know you better. Spindles and tippe tops.
- \blacktriangleright Think about what topics you want to cover but cannot.

- ▶ Cheat! Look on line or in books. Beware, students can cheat, too!
- \blacktriangleright Hobbies, volunteer work, other interests. Added benefit of letting your students know you better. Spindles and tippe tops.
- \blacktriangleright Think about what topics you want to cover but cannot. Moment of inertia (spindles),

- ▶ Cheat! Look on line or in books. Beware, students can cheat, too!
- \blacktriangleright Hobbies, volunteer work, other interests. Added benefit of letting your students know you better. Spindles and tippe tops.
- \blacktriangleright Think about what topics you want to cover but cannot. Moment of inertia (spindles), deriving error terms.

- ▶ Cheat! Look on line or in books. Beware, students can cheat, too!
- \blacktriangleright Hobbies, volunteer work, other interests. Added benefit of letting your students know you better. Spindles and tippe tops.
- \blacktriangleright Think about what topics you want to cover but cannot. Moment of inertia (spindles), deriving error terms.
- \blacktriangleright Think about topics related to your class, but covered elsewhere.

- ▶ Cheat! Look on line or in books. Beware, students can cheat, too!
- \blacktriangleright Hobbies, volunteer work, other interests. Added benefit of letting your students know you better. Spindles and tippe tops.
- \triangleright Think about what topics you want to cover but cannot. Moment of inertia (spindles), deriving error terms.
- \blacktriangleright Think about topics related to your class, but covered elsewhere. Double roots (Derivatives without limits).

- ▶ Cheat! Look on line or in books. Beware, students can cheat, too!
- \blacktriangleright Hobbies, volunteer work, other interests. Added benefit of letting your students know you better. Spindles and tippe tops.
- \triangleright Think about what topics you want to cover but cannot. Moment of inertia (spindles), deriving error terms.
- \blacktriangleright Think about topics related to your class, but covered elsewhere. Double roots (Derivatives without limits).
- \blacktriangleright Talk to friends and family members who work in other areas.

- ▶ Cheat! Look on line or in books. Beware, students can cheat, too!
- \blacktriangleright Hobbies, volunteer work, other interests. Added benefit of letting your students know you better. Spindles and tippe tops.
- \triangleright Think about what topics you want to cover but cannot. Moment of inertia (spindles), deriving error terms.
- \blacktriangleright Think about topics related to your class, but covered elsewhere. Double roots (Derivatives without limits).
- \blacktriangleright Talk to friends and family members who work in other areas. Axenic algae samples,

- ▶ Cheat! Look on line or in books. Beware, students can cheat, too!
- \blacktriangleright Hobbies, volunteer work, other interests. Added benefit of letting your students know you better. Spindles and tippe tops.
- \triangleright Think about what topics you want to cover but cannot. Moment of inertia (spindles), deriving error terms.
- \blacktriangleright Think about topics related to your class, but covered elsewhere. Double roots (Derivatives without limits).
- \blacktriangleright Talk to friends and family members who work in other areas. Axenic algae samples, Click and Clack.

- ▶ Cheat! Look on line or in books. Beware, students can cheat, too!
- \blacktriangleright Hobbies, volunteer work, other interests. Added benefit of letting your students know you better. Spindles and tippe tops.
- \triangleright Think about what topics you want to cover but cannot. Moment of inertia (spindles), deriving error terms.
- \blacktriangleright Think about topics related to your class, but covered elsewhere. Double roots (Derivatives without limits).
- \blacktriangleright Talk to friends and family members who work in other areas. Axenic algae samples, Click and Clack.

The End!

The End!

Copies of these slides and the projects listed can be found at: math.unt.edu/*∼*brand