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Abstract. When a finite group acts linearly on a complex vector space, the
natural semi-direct product of the group and the polynomial ring over the space
forms a skew group algebra. This algebra plays the role of the coordinate ring of
the resulting orbifold and serves as a substitute for the ring of invariant polyno-
mials from the viewpoint of geometry and physics. Its Hochschild cohomology
predicts various Hecke algebras and deformations of the orbifold. In this article,
we investigate the ring structure of the Hochschild cohomology of the skew group
algebra. We show that the cup product coincides with a natural smash product,
transferring the cohomology of a group action into a group action on cohomol-
ogy. We express the algebraic structure of Hochschild cohomology in terms of
a partial order on the group (modulo the kernel of the action). This partial
order arises after assigning to each group element the codimension of its fixed
point space. We describe the algebraic structure for Coxeter groups, where this
partial order is given by the reflection length function; a similar combinatorial
description holds for an infinite family of complex reflection groups.

1. Introduction

Physicists often regard space as a Calabi-Yau manifold M endowed with sym-
metries forming a group G. The orbifold M/G is not smooth in general, and they
regularly shift focus from the orbifold to a desingularisation and its coordinate
ring. In the affine case, we take M to be a finite dimensional, complex vector
space V upon which a finite group G acts linearly. The orbifold V/G may then
be realized as an algebraic variety whose coordinate ring is the ring of invariant
polynomials S(V ∗)G on the dual space V ∗ (see Harris [18]). The variety V/G is
nonsingular exactly when the action of G on V is generated by reflections. When
the orbifold V/G is singular, we seek to replace the space of invariant polynomials
with a natural algebra attached to V/G playing the role of a coordinate ring.
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In situations arising naturally in physics, a noncommutative substitute for the
commutative invariant ring S(V ∗)G is provided by the skew group algebra

S(V ∗)#G = S(V ∗) o G,

the natural semi-direct product of G with the symmetric algebra S(V ∗). One
resolves the singularities of V/G with a smooth Calabi-Yau variety X whose co-
ordinate ring behaves as the skew group algebra. Indeed, the McKay equivalence
implies (in certain settings) that Hochschild cohomology sees no difference:

HH
q
(S(V ∗)#G) ∼= HH

q
(OX)

as algebras under both the cup product and Lie bracket. Note that the Hochschild
cohomology HH

q
(S(V ∗)#G) can also be used to recover the orbifold (or stringy)

cohomology H
q
orb(V/G) (which is isomorphic to the singular cohomology of X).

(See [3], [6], [7], [15], [19].) The cohomology and deformations of S(V )#G appear
in various other areas of mathematics as well—for example, combinatorics, repre-
sentation theory, Lie theory, noncommutative algebra, and invariant theory (see,
for example, Etingof and Ginzburg [11]).

In this paper, we consider any finite group G acting linearly on V and explore
the rich algebraic structure of the Hochschild cohomology of S(V )#G under the
cup product. This structure is interesting not only in its own right, but also be-
cause of possible applications in algebra and representation theory. For example,
the graded Lie bracket, which predicts potential deformations (like sympletic re-
flection algebras and graded Hecke algebras), is a graded derivation on Hochschild
cohomology with respect to the cup product. The representation theory of finite
dimensional algebras provides an application of the cup product in a different
setting: Often, one may associate an algebraic variety to each module over the al-
gebra using the ring structure of its Hochschild cohomology; the collection of such
varieties provide a coarse invariant of the representation theory of the algebra (see,
for example, Snashall and Solberg [26]).

For any algebra A over a field k, Hochschild cohomology HH
q
(A) is the space

Ext
q
A⊗Aop(A, A), which is a Gerstenhaber algebra under the two compatible oper-

ations, cup product and bracket. Both operations are defined initially on the bar
resolution, a natural A ⊗ Aop-free resolution of A. For A = S(V )#G, an explicit
description of Hochschild cohomology HH

q
(A) arises not from the bar resolution

of A, but instead from a Koszul resolution: HH
q
(S(V )#G) is isomorphic to the

G-invariant subalgebra of HH
q
(S(V ), S(V )#G), which is computed with a Koszul

resolution of S(V ). We analyze the cup product on HH
q
(S(V )#G) by taking

advantage of these two different manifestations of cohomology arising from two
different resolutions. We show that the cup product on HH

q
(S(V )#G) may be

written as the cup product on S(V ) twisted by the action of the group. This per-
spective yields convenient descriptions of the ring structure of cohomology. (We
study the Gerstenhaber bracket in a future work.)
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Over the real numbers, the cup product on HH
q
(S(V )#G) has been studied in

related settings (e.g., see [22]). But note that this analysis of Hochschild cohomol-
ogy does not readily extend to our setting. In this paper, we do not assume that
G acts symplectically or even faithfully, as there are interesting applications in
which it does not (see [9, 10, 24]). Over the real numbers, V and V ∗ are naturally
G-isomorphic, which may simplify several aspects of the theory. We develop the
theory in the richer setting of complex affine space. Note that our results actually
hold over any field containing the eigenvalues of the action of G on V in which
|G| is invertible. Anno [1] also gave a cup product formula in the geometric set-
ting over fairly general fields; we give a natural interpretation of the resulting ring
structure from a purely algebraic and combinatorial point of view.

In Section 2, we define the “codimension poset” which arises from assigning to
each group element the codimension of its fixed point space. We also posit a few
observations needed later on the geometry of finite group actions. In Sections 3
and 4, we establish definitions and notation and recall necessary facts about the
bar and Koszul resolutions. We review the structure of HH

q
(S(V )#G) as a graded

vector space as well, originally found independently by Farinati [13] and Ginzburg
and Kaledin [15] for faithful group actions. In Section 5, we define a combinatorial
map in terms of Demazure operators and quantum differentiation which allows for
conversion between complexes. This combinatorial conversion map (introduced
in [25]) induces isomorphisms on cohomology.

In Sections 6 and 7, we transform the “cohomology of a group action” into a
“group action on cohomology”. One may first take Hochschild cohomology and
then form the skew group algebra, or one may reverse this order of operation. In
Section 6, we compare resulting algebras for S(V ):

HH
q
(S(V )#G) versus HH

q
(S(V ))#G versus HH

q
(S(V ))⊗ C[G] .

Since HH
q
(S(V )#G) is the G-invariant subalgebra of HH

q
(S(V ), S(V )#G), we fo-

cus on this latter ring. We show that the smash product on HH
q
(S(V ))#G induces

a smash product on HH
q
(S(V ), S(V )#G), which we then view as an algebra under

three operations:

• the cup product ^ induced from the bar resolution of S(V ),
• the smash product ¦ induced from HH

q
(S(V ))#G, and

• the usual multiplication in the tensor algebra product HH
q
(S(V ))⊗ C[G].

In Section 7 (see Theorem 7.1), we show that these three algebraic operations
coincide. This yields a simple formula for the cup product on HH

q
(S(V ), S(V )#G)

(see Theorem 7.3; cf. Anno [1]) and implies that HH
q
(S(V )#G) is isomorphic to

an algebra subquotient of HH
q
(S(V ))#G (see Corollary 7.6). These results express

the cup product on HH
q
(S(V )#G) (at the cochain level) as the cup product on

HH
q
(S(V )) twisted by the group G.



4 ANNE V. SHEPLER AND SARAH WITHERSPOON

In Section 8, we identify an interesting graded subalgebra (the “volume subal-
gebra”) of HH

q
(S(V ), S(V )#G) whose dimension is the order of G. When G is

a subgroup of the symplectic group Sp(V ), its G-invariant subalgebra is isomor-
phic to the cohomology of the G-invariant subalgebra of the Weyl algebra. In this
case, it is also isomorphic to the orbifold cohomology of V/G. (See Remark 8.2.)
We thus display the orbifold cohomology H

q
orb(V/G) as a natural subalgebra of

HH
q
(S(V )#G).

In Section 9, we describe generators of cohomology (as an algebra) via the codi-
mension poset. The partial order is defined on G modulo the kernel of its action
on V . We view division in the volume algebra as a purely geometric construction
by interpreting results in terms of this poset. Generators for the Hochschild coho-
mology HH

q
(S(V ), S(V )#G) arise from minimal elements in the poset (with the

identity removed); see Corollaries 9.3 and 9.4.
In Section 10, we explore implications for reflection groups. The reflection length

of a group element is the length of a shortest word expressing that element as a
product of reflections. For Coxeter groups and many complex reflection groups,
reflection length coincides with the codimension of the fixed point space. In this
case, the codimension poset appears as a well-studied poset (arising from reflec-
tion length) in the theory of reflection groups. We show (in Corollary 10.6) that
for Coxeter groups and many other complex reflection groups, the Hochschild co-
homology HH

q
(S(V ), S(V )#G) is generated as an algebra in homological degrees

0 and 1, in analogy with the Hochschild-Kostant-Rosenberg Theorem for smooth
commutative algebras (such as S(V )).

Finally, in Section 11, we return to HH
q
(S(V )#G) as the G-invariant subalge-

bra of HH
q
(S(V ), S(V )#G). We point out the simple cup product structure in

cohomological degrees 0 and 1. In Theorem 11.4, we use standard group-theoretic
techniques (Green/Mackey functors and transfer maps) to describe the product
on HH

q
(S(V )#G). We use the natural symplectic action of the symmetric group

to give a nontrivial example.

2. Poset and volume forms

We begin by collecting several geometric observations needed later. Let G be a
finite group and V a CG-module of finite dimension n. Denote the image of v ∈ V
under the action of g ∈ G by gv. We work with the induced group action on maps:
For any function θ and any element h ∈ GL(V ) acting on its domain and range, we

define the map hθ by (hθ)(v) := h(θ(h−1
v)). Let V ∗ denote the contragredient (or

dual) representation. For any basis v1, . . . , vn of V , let v∗1, . . . , v
∗
n be the dual basis

of V ∗. Let V G be the set of G-invariants in V : V G = {v ∈ V : gv = v for all g ∈
G}. For any g ∈ G, set V g = {v ∈ V : gv = v}, the fixed point set of g in V . Since
G is finite, we assume G acts by isometries on V (i.e., G preserves a given inner
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product). All tensor and exterior products will be taken over C unless otherwise
indicated.

We regard G modulo the kernel of its action on V as a poset using the following
lemma, which is no surprise (see [4] or [15], for example). Note that (V g)⊥ =
im(1− g) for all g in G.

Lemma 2.1. Let g, h ∈ G. The following are equivalent:
(i) (V g)⊥ ∩ (V h)⊥ = 0,
(ii) V g + V h = V ,
(iii) codim V g + codim V h = codim V gh,
(iv) (V g)⊥ ⊕ (V h)⊥ = (V gh)⊥.

Any of these properties implies that V g ∩ V h = V gh.

Proof. Taking orthogonal complements yields the equivalence of (i) and (ii).
Assume (ii) holds and write u ∈ V gh as v + w where v ∈ V g and w ∈ V h.

Then hv + hw = g−1
v + g−1

w and hv + w = v + g−1
w, i.e., (h−1)v = (g−1−1)w. But

(V h)⊥ = im(h − 1) while (V g)⊥ = (V g−1
)⊥ = im(g−1 − 1), and the intersection

of these spaces is 0 by (i), hence (h−1)v = 0 = (g−1−1)w. Therefore, v ∈ V h,
w ∈ V g, and u ∈ V g ∩ V h, and thus V gh ⊂ V g ∩ V h. The reverse inclusion is
immediate, hence V gh = V g ∩ V h. We take orthogonal complements and observe
that (V gh)⊥ = (V g)⊥ ⊕ (V h)⊥. A dimension count then gives (iii).

To show (iii) implies (iv), note (V gh)⊥ ⊂ (V g)⊥ + (V h)⊥ since V g ∩ V h ⊂
V gh. By (iii), this containment is forced to be an equality and the sum is direct:
(V g)⊥ ⊕ (V h)⊥ = (V gh)⊥. As (iv) trivially implies (i), we are finished. ¤

Let K be the kernel of the representation of G acting on V :

K := {k ∈ G : V k = V }.

Definition 2.2. Define a binary relation ≤ on G by g ≤ h whenever

codim(V g) + codim(V g−1h) = codim(V h).

By Lemma 2.1, this codimension condition holds exactly when

(V g)⊥ ⊕ (V g−1h)⊥ = (V h)⊥ .

This induces a binary relation ≤ on the quotient group G/K as well: For g, h in
G, define gK ≤ hK when g ≤ h. Note the relation does not depend on choice of
representatives of cosets, as V g = V h whenever gK = hK for g, h in G.

The relation ≤ appears in work of Brady and Watt [4] on orthogonal trans-
formations. Their arguments apply equally well to our setting of isometries with
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respect to some inner product and the quotient group G/K. (Note that if G does
not act faithfully, the binary relation ≤ on G may not be anti-symmetric and thus
may not define a partial order on G.)

Lemma 2.3 (Brady and Watt [4]). The relation ≤ is a partial order on G/K. If
G acts faithfully, the relation ≤ is a partial order on G.

We shall use the following elements in the sequel.

Definition 2.4. For each g ∈ G, let vol⊥g be a choice of nonzero element in the

one-dimensional space
∧codim V g

((V g)⊥)∗.

We show in the next lemma how these choices determine a multiplicative cocycle.
A function ϑ : G×G → C is a multiplicative 2-cocycle on G if

ϑ(gh, k)ϑ(g, h) = ϑ(g, hk)ϑ(h, k)

for all g, h, k ∈ G. We may use any such cocycle to define a new algebra structure
on the group algebra C[G], a generalization of a twisted group algebra (in which
the values of ϑ may include 0): Let Cϑ[G] be the C-algebra with basis G and
multiplication g ·ϑ h = ϑ(g, h) gh for all g, h ∈ G. Associativity is equivalent to
the 2-cocycle identity. If ϑ(g, 1G) = 1 = ϑ(1G, g) for all g ∈ G, where 1G denotes
the identity element of G, then Cϑ[G] has multiplicative identity 1G.

We canonically embed each space
∧

((V g)⊥)∗ into
∧

V ∗.

Proposition 2.5. For all g and h in G,

vol⊥g ∧ vol⊥h = ϑ(g, h) vol⊥gh

in
∧

V ∗ where ϑ : G×G → C is a (multiplicative) 2-cocycle on G with

ϑ(g, h) 6= 0 if and only if g ≤ gh .

Under wedge product, the algebra
∧
{vol⊥g : g ∈ G} is isomorphic to the (general-

ized) twisted group algebra Cϑ[G].

Proof. Let g, h be any pair of elements in G. Then V g ∩ V h ⊂ V gh, and hence
(V gh)⊥ ⊂ (V g)⊥ + (V h)⊥. If the sum is direct, then by Lemma 2.1, we have
equality of vector subspaces: (V gh)⊥ = (V g)⊥ ⊕ (V h)⊥. If the sum is not direct,
then vol⊥g ∧ vol⊥h = 0. In either case, the product vol⊥g ∧ vol⊥h is a (possibly zero)

scalar multiple of vol⊥gh. Hence, there is a scalar ϑ(g, h) ∈ C such that

vol⊥g ∧ vol⊥h = ϑ(g, h) vol⊥gh .
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Note that ϑ(g, h) 6= 0 if and only if codim V g + codim V h = codim V gh (by
Lemma 2.1) if and only if g ≤ gh. By associativity of the exterior algebra, the
function ϑ : G×G → C is a (multiplicative) 2-cocycle on G. ¤

We shall also need the following easy lemma, which is a consequence of the fact
that (V g)⊥ = im(1− g) for all g:

Lemma 2.6. For all g in G:

• f − gf lies in the ideal I((V g)⊥) for all f ∈ S(V ), and
• dv ∧ vol⊥g = gdv ∧ vol⊥g for all dv ∈

∧ q
V .

3. Skew group algebra and Hochschild cohomology

In this section, we recall the basic definitions of the skew group algebra and
Hochschild cohomology, as well as a fundamental theorem describing the cohomol-
ogy of the skew group algebra as a space of invariants. We work over the complex
numbers C.

Let A denote any C-algebra on which G acts by automorphisms. The skew
group algebra (or smash product) A#G is the vector space A ⊗ CG with
multiplication given by

(a⊗ g)(b⊗ h) = a(gb)⊗ gh

for all a, b ∈ A and g, h ∈ G.
The Hochschild cohomology of a C-algebra A (such as S(V ) or S(V )#G),

with coefficients in an A-bimodule M , is the graded vector space HH
q
(A, M) =

Ext
q
Ae(A, M), where Ae = A⊗Aop acts on A by left and right multiplication. We

abbreviate HH
q
(A) = HH

q
(A, A).

To construct the cohomology HH
q
(A, M), one applies the functor HomAe(−, M)

to a projective resolution of A as an Ae-module, for example, to the bar resolu-
tion

(3.1) · · · δ3−→ A⊗4 δ2−→ A⊗3 δ1−→ Ae m−→ A → 0,

where δp(a0 ⊗ · · · ⊗ ap+1) =
∑p

j=0(−1)ja0 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ ap+1 for all

a0, . . . , ap+1 ∈ A, and m is multiplication. For all p ≥ 0, HomAe(A(p+2), M) ∼=
HomC(A⊗p, M), and we identify these two vector spaces in what follows.

When M is itself an algebra, the Hochschild cohomology HH
q
(A, M) is a graded

associative algebra under the cup product, defined at the cochain level on the
bar complex (see [14, §7]): Let f ∈ HomC(A⊗p, M) and f ′ ∈ HomC(A⊗q, M); then
the cup product f ^ f ′ in HomC(A⊗(p+q), M) is given by

(f ^ f ′)(a1 ⊗ · · · ⊗ ap+q) = f(a1 ⊗ · · · ⊗ ap)f
′(ap+1 ⊗ · · · ⊗ ap+q)
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for all a1, . . . , ap+q ∈ A. We seek to describe the algebra structure under cup
product explicitly in the case A = S(V ), M = S(V )#G, and in the case A =
M = S(V )#G. These two cases are related by a well-known theorem that we
state next.

Since |G| is invertible, a result of Ştefan [27, Cor. 3.4] implies in our setting
that there is a G-action giving an isomorphism of graded algebras (under the cup
product):

Theorem 3.2.

HH
q
(S(V )#G) ∼= HH

q
(S(V ), S(V )#G)G .

(Specifically, the action of G on V extends naturally to the bar complex of S(V )
and thus induces an action on HH

q
(S(V ), S(V )#G), from which we define G-

invariant cohomology in the theorem. In fact, any projective resolution of S(V )
compatible with the action of G may be used to define the G-invariant cohomol-
ogy.) We thus concentrate on describing the cup product on HH

q
(S(V ), S(V )#G).

4. Koszul and bar resolutions

One may use either the Koszul or the bar resolution of S(V ) to describe the coho-
mology HH

q
(S(V ), S(V )#G) and thus its G-invariant subalgebra, HH

q
(S(V )#G).

The Koszul resolution is the following free S(V )e-resolution of S(V ):

(4.1) · · · d3−→ S(V )e ⊗
∧2 V

d2−→ S(V )e ⊗
∧1 V

d1−→ S(V )e m−→ S(V ) → 0,

where the differential d is given by

(4.2) dp(1⊗1⊗vj1∧· · ·∧vjp) =

p∑
i=1

(−1)i+1(vji
⊗1−1⊗vji

)⊗(vj1∧· · ·∧v̂ji
∧· · ·∧vjp),

for all vj1 , . . . , vjp ∈ V . Let Φ be the canonical inclusion (a chain map) of the
Koszul resolution (4.1) into the bar resolution (3.1):

· · · // S(V )⊗4 δ2 // S(V )⊗3 δ1 // S(V )e m // S(V ) // 0

· · · // S(V )e ⊗
∧2 V

d2 //

Φ2

OO

S(V )e ⊗
∧1 V

d1 //

Φ1

OO

S(V )e m //

=

OO

S(V ) //

=

OO

0,

that is, for all p ≥ 1,

Φp : S(V )e ⊗
∧p V → S(V )⊗(p+2),
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(4.3) Φp(1⊗ 1⊗ vj1 ∧ · · · ∧ vjp) =
∑

π∈Symp

sgn(π)⊗ vjπ(1)
⊗ · · · ⊗ vjπ(p)

⊗ 1 ,

for all vj1 , . . . , vjp ∈ V , where Symp denotes the symmetric group on the set

{1, . . . , p}. Note that Φ is invariant under the action of GL(V ), i.e., hΦ = Φ
for all h in GL(V ).

One finds cohomology HH
q
(S(V ), M) by applying the functor HomS(V )e(−, M)

to either of the above two resolutions and dropping the term HomS(V )e(S(V ), M).

We make the customary identifications: For each p, set HomS(V )e(S(V )⊗(p+2), M) =
HomC(S(V )⊗p, M) as before, and

(4.4) HomS(V )e(S(V )e ⊗
∧p V, M) = HomC(

∧p V, M) =
∧p V ∗ ⊗M .

In the case M = S(V )#G, we write S(V ) ⊗
∧p V ∗ ⊗ C[G] for the vector space∧p V ∗ ⊗M .

We obtain a commutative diagram giving two different cochain complexes de-
scribing the cohomology HH

q
(S(V ), S(V )#G). In [25], we introduced a “combi-

natorial converter” map Υ (whose definition is recalled in the next section), which
serves as an inverse to the induced map Φ∗ and converts between complexes:

(4.5) HomC(S(V )⊗p, S(V )#G)
δ∗ //

Φ∗p
��

HomC(S(V )⊗(p+1), S(V )#G)

Φ∗p+1

��

S(V )⊗
∧p V ∗ ⊗ C[G]

d∗ //

Υp

OO

S(V )⊗
∧p+1 V ∗ ⊗ C[G] .

Υp+1

OO

We use the maps Υ and Φ∗ in our analysis of the cup product in later sections.
We describe cohomology explicitly in terms of cocycles and coboundaries. Under

the identification (4.4), Hochschild cohomology HH
q
(S(V ), S(V )#G) arises from

the complex of cochains

(4.6) C
q
:=
⊕
g∈G

S(V )⊗
∧ q

V ∗ ⊗ g .

One may determine the set of cocycles and coboundaries explicitly as the kernel
and image of the induced map d∗ (under the above identifications (4.4)). We set

(4.7) Z
q
:=
⊕
g∈G

S(V )⊗
∧ q−codim V g

(V g)∗ ⊗
∧codim V g

((V g)⊥)∗ ⊗ g ,

a subspace of the space of cocycles, and

B
q
:=
⊕
g∈G

I((V g)⊥)⊗
∧ q−codim V g

(V g)∗ ⊗
∧codim V g

((V g)⊥)∗ ⊗ g ,

a subspace of the space of coboundaries, where I((V g)⊥) is the ideal of S(V )
generated by (V g)⊥. (We agree that a negative exterior power of a space is defined
to be 0.) We regard these subspaces Z

q
and B

q
as subsets of the cochains C

q
after
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making canonical identifications (we identify W1 ⊗ W2 with W1 ∧ W2 for any
subspaces W1, W2 of V intersecting trivially). We refer to cochains, cocycles, and
coboundaries as vector forms “tagged” by the group elements indexing the direct
summands above.

The next remark explains that we may view Z
q
as a substitute for the set of

cocycles and B
q
as a substitute for the set of coboundaries. We use this alternate

description of cohomology (as Z
q
/B

q
) in Section 6 to expose a smash product

structure.

Remark 4.8. Note that one may use the isomorphism V/(V g)⊥ ∼= V g to select a
set of a representatives of cohomology classes: Let

H
q
:=
⊕
g∈G

S(V g)⊗
∧ q−codim V g

(V g)∗ ⊗
∧codim V g

((V g)⊥)∗ ⊗ g .

Then H
q ∼= Z

q
/B

q
via the canonical map ProjH : Z

q
/B

q → H
q
induced from the

compositions, for each g in G,

S(V ) −→ S(V )/I((V g)⊥)
∼−→ S(V g) .

Farinati [13] and Ginzburg and Kaledin [15] showed that

HH
q
(S(V ), S(V )#G) ∼= H

q ∼= Z
q
/B

q
.

5. Combinatorial converter map

We recall the definition of the combinatorial converter map Υ (in Diagram 4.5)
introduced in [25]. A nonidentity element of GL(V ) is a reflection if it fixes a
hyperplane in V pointwise. Given any basis v1, . . . , vn of V , let ∂/∂vi denote the
usual partial differential operator with respect to vi. In addition, given a complex
number ε 6= 1, we define the ε-quantum partial differential operator with
respect to v := vi as the scaled Demazure (BGG) operator ∂v,ε : S(V ) → S(V )
given by

(5.1) ∂v,ε(f) = (1− ε)−1 f − sf

v
=

f − sf

v − sv
,

where s ∈ GL(V ) is the reflection whose matrix with respect to the basis v1, . . . , vn

is diag(1, . . . , 1, ε, 1, . . . , 1) with ε in the i-th slot. Set ∂v,ε = ∂/∂v when ε = 1.
The operator ∂v,ε coincides with the usual definition of quantum partial differen-
tiation: One takes the ordinary partial derivative with respect to v but instead of
multiplying each monomial by its degree k in v, one multiplies by the quantum
integer

[k]ε := 1 + ε + ε2 + · · ·+ εk−1.
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We define the map Υ in terms of these Demazure operators. For each g in G, fix
a basis Bg = {v1, . . . , vn} of V consisting of eigenvectors of g with corresponding
eigenvalues ε1, . . . , εn. Decompose g into (commuting) reflections diagonal in this
basis: Let g = s1 · · · sn where each si is either the identity or a reflection defined
by si(vj) = vj for j 6= i and si(vi) = εivi. Let ∂i := ∂vi,εi

, the quantum partial
derivative with respect to Bg. Recall that C

q
denotes cochains (see (4.6)).

Definition 5.2. We define a map Υ from the dual Koszul complex to the dual bar
complex with coefficients in S(V )#G:

Υp : Cp → HomC(S(V )⊗p, S(V )#G) .

For g in G with basis Bg = {v1, . . . , vn} of V as above, and α = fg⊗v∗j1∧· · ·∧v∗jp
⊗g

with fg ∈ S(V ) and 1 ≤ j1 < . . . < jp ≤ n, define Υ(α) : S(V )⊗p → S(V )#G by

Υ(α)(f1 ⊗ · · · ⊗ fp) =

( ∏
k=1,...,p

s1s2···sjk−1(∂jk
fk)

)
fg ⊗ g .

By Theorem 5.5 below, Υ is a cochain map. Thus Υ induces a map on the coho-
mology HH

q
(S(V ), S(V )#G), which we denote by Υ as well.

We make the following remark, which will be needed in our analysis of the cup
product in Section 7.

Remark 5.3. For the fixed basis Bg = {v1, . . . , vn} and α = fg⊗v∗j1 ∧· · ·∧v∗jp
⊗g

in Cp (with j1 < . . . < jp), note that

Υ(α)(vi1 ⊗ · · · ⊗ vip) = 0 unless i1 = j1, . . . , ip = jp .

In general, Υ(α)(f1 ⊗ · · · ⊗ fp) = 0 whenever
∂

∂vjk

(fk) = 0 for some k.

We shall use the following consequence of the definitions.

Proposition 5.4. For any choices of bases defining Υ,

Φ∗Υ = 1

as a map on cochains C
q
.

Proof. Consider a nonzero cochain α in Cp. Without loss of generality, suppose
that α = fg ⊗ v∗1 ∧ · · · ∧ v∗p ⊗ g for some g in G, where fg is in S(V ) and Bg =
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{v1, . . . , vn} is the fixed basis of eigenvectors of g. Then for all 1 ≤ i1, . . . , ip ≤ n,

(Φ∗Υ)(α)(vi1 ∧ · · · ∧ vip) = Υ(α)(Φ(vi1 ∧ · · · ∧ vip))

= Υ(α)

( ∑
π∈Symp

sgn(π) viπ(1)
⊗ · · · ⊗ viπ(p)

)
=

∑
π∈Symp

sgn(π) Υ(α)(viπ(1)
⊗ · · · ⊗ viπ(p)

) ,

while α(vi1 ∧ · · · ∧ vip) = fg (v∗1 ∧ · · · ∧ v∗p)(vi1 ∧ · · · ∧ vip)⊗ g .

By Remark 5.3, both expressions are zero unless {vi1 , . . . vip} = {v1, . . . , vp}, in
which case both yield sgn(π) fg⊗g, where π is the permutation sending (i1, . . . , ip)
to (1, . . . , p). ¤

We summarize results needed from [25]:

Theorem 5.5. The combinatorial converter map

Υ : Dual Koszul Complex → Dual Bar Complex

Cp → HomC(S(V )⊗p, S(V )#G)

induces isomorphisms of cohomology independent of choices of bases:

• For any basis Bg of eigenvectors for any g in G, Υ is a cochain map.
• Although the cochain map Υ depends on choices Bg for g in G, the induced

map Υ on cohomology HH
q
(S(V ), S(V )#G) is independent of choices.

• The map Υ induces an automorphism of HH
q
(S(V ), S(V )#G) with inverse

automorphism Φ∗. Specifically, Υ and Φ∗ convert between expressions of
cohomology in terms of the Koszul resolution and the bar resolution.

• The map Υ on HH
q
(S(V ), S(V )#G) is G-invariant and hence induces an

automorphism on HH
q
(S(V )#G) ∼= HH

q
(S(V ), S(V )#G)G .

Remark 5.6. We do not symmetrize Υ, in comparison with similar maps in the
literature (see Anno [1] and Halbout and Tang [17]). Since they are chain maps, our
maps are the same on cohomology as their symmetrized versions. Symmetrization
may be more elegant, however unsymmetrized maps can be more convenient for
computation.
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6. Smash product structure

In this section, we transform the “cohomology of a group action” into a “group
action on cohomology” by viewing both as algebras. We relate Hochschild coho-
mology of the skew group algebra, HH

q
(S(V )#G), to the skew group algebra of a

Hochschild cohomology algebra, HH
q
(S(V ))#G: We manifest the first algebra as

a subquotient of the second. We thus twist the cup product on HH
q
(S(V )) by the

group action and obtain a natural smash product on HH
q
(S(V )#G). In the next

section, we show that the cup product on HH
q
(S(V )#G) is precisely this natural

smash product.
We first embed HH

q
(S(V ), S(V )#G) as a graded vector space into

HH
q
(S(V )) # G ,

the skew group algebra determined by the action of G on HH
q
(S(V )) induced

from its action on V . Note that for a general algebra S with action of G by
automorphisms, HH

q
(S, S#G) is a G-graded algebra; we show that in the special

case S = S(V ), it is not only G-graded, but is very close to being a smash product
itself. To see this, we first identify the Hochschild cohomology HH

q
(S(V )) with

the set of vector forms on V (cf. [31]):

HH
q
(S(V )) = S(V )⊗

∧ q
V ∗ .

The group G acts on this tensor product diagonally, and the skew group algebra
HH

q
(S(V ))#G is the C-vector space of cochains,

HH
q
(S(V ))⊗ C[G] = S(V )⊗

∧ q
V ∗ ⊗ C[G] = C

q
,

together with smash product

(6.1) (fg ⊗ dvg ⊗ g) ¦ (fh ⊗ dvh ⊗ h) = fg
gfh ⊗ (dvg ∧ gdvh)⊗ gh ,

where fg, fh ∈ S(V ), g, h ∈ G, and dvg, dvh ∈
∧ q

V ∗.
We regard HH

q
(S(V ), S(V )#G) as a vector space subquotient of HH

q
(S(V ))#G

by identifying with Z
q
/B

q
(see Remark 4.8 and the comments before it):

(6.2) HH
q
(S(V ), S(V )#G) = Z

q
/B

q ⊂ C
q
/B

q
=
(
HH

q
(S(V ))⊗ C[G]

)
/B

q
.

We next recognize this subquotient of vector spaces as a subquotient of algebras
under the smash product.

Proposition 6.3. Under the smash product of HH
q
(S(V ))#G, the space Z

q
forms

a subalgebra of C
q
and the space B

q
forms an ideal of Z

q
: For all cochains α and

β in HH
q
(S(V ))#G,

• If α and β lie in Z
q
, then α ¦ β also lies in Z

q
,

• If α lies in Z
q
and β lies in B

q
, then α ¦ β and β ¦ α also lie in B

q
.
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Proof. Let α and β be cocycles in Z
q
. Without loss of generality, suppose that

α = fg ⊗ dvg ⊗ vol⊥g ⊗g and β = fh ⊗ dvh ⊗ vol⊥h ⊗h

for g, h in G, fg, fh in S(V ), and dvg, dvh in
∧

V ∗. By Lemma 2.6 (see (6.1)),

α ¦ β = fg
gfh ⊗ (dvg ∧ vol⊥g ∧ g(dvh ∧ vol⊥h ))⊗ gh

= fg
gfh ⊗ (dvg ∧ vol⊥g ∧ dvh ∧ vol⊥h )⊗ gh

= ± fg
gfh ⊗ (dvg ∧ dvh ∧ vol⊥g ∧ vol⊥h )⊗ gh .

Assume this product is nonzero. Then by Proposition 2.5 and Lemma 2.1,

(V g)⊥ ⊕ (V h)⊥ = (V gh)⊥ = (V hg)⊥

and vol⊥g ∧ vol⊥h is a scalar multiple of vol⊥gh. Hence α ¦ β lies in Z
q
.

Now assume further that β is a coboundary in B
q
, i.e., that fh lies in the ideal

I((V h)⊥) of S(V ). Note that g((V h)⊥) ⊂ g((V hg)⊥) = (V ghgg−1
)⊥ = (V gh)⊥.

Hence gfh, and thus the product fg
gfh, lies in I((V gh)⊥). Therefore, α ¦ β is an

element of B
q
. The argument for β ¦ α is similar (and easier). ¤

The proposition above immediately implies that the smash product on the skew
group algebra HH

q
(S(V ))#G induces a smash algebra product on the cohomology

HH
q
(S(V ), S(V )#G), as we see in the next two results.

Corollary 6.4. The vector space subquotient Z
q
/B

q
of HH

q
(S(V ))#G is an algebra

subquotient (subalgebra of a quotient of algebras) under the induced smash product.

Note that cohomology classes (and cocycles) in general are represented by sums
of elements of the form of α and β given in the next proposition.

Proposition 6.5. The cohomology HH
q
(S(V ), S(V )#G) identifies naturally as a

graded vector space with an algebra subquotient of the smash product HH
q
(S(V ))#G.

Under this identification, HH
q
(S(V ), S(V )#G) inherits the smash product: For co-

homology classes in HH
q
(S(V ), S(V )#G) represented by cocycles in Z

q
,

α =
∑
g∈G

fg ⊗ dvg ⊗ g and β =
∑
h∈G

fh ⊗ dvh ⊗ h ,

where each fg, fh ∈ S(V ) and each dvg, dvh ∈
∧ q

V ∗, the smash product

(6.6) α ¦ β =
∑
g,h∈G
g≤gh

fg
gfh ⊗ (dvg ∧ gdvh)⊗ gh

is also a cocycle representing a class of HH
q
(S(V ), S(V )#G).
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Proof. We saw in (6.2) that HH
q
(S(V ), S(V )#G) is isomorphic to the vector space

subquotient

Z
q
/B

q
of

(
HH

q
(S(V ))#G

)
/B

q
.

(In fact, we may identify HH
q
(S(V ), S(V )#G) with a subset of HH

q
(S(V ))#G; see

Remarks 4.8 and 6.7.) By Proposition 6.3, the smash product on HH
q
(S(V ))#G

may be restricted to the subset Z
q
and induces a multiplication on the subquotient

Z
q
/B

q
(Corollary 6.4). Hence HH

q
(S(V ), S(V )#G) is isomorphic to an algebra car-

rying a natural smash product, and thus it inherits (under this isomorphism) a
natural smash product of its own. Formula (6.1) gives a cohomology class repre-
sentative of the smash product of two cocycles. ¤

The proposition above explains that the vector space inclusion of (6.2) yields an
injection of algebras: The algebra HH

q
(S(V ), S(V )#G), under smash product ¦, is

isomorphic to an algebra subquotient of HH
q
(S(V ))#G. But for any C-algebra A

carrying an action of G, the smash product on the skew group algebra A#G maps
G-invariants to G-invariants. Hence, the algebra HH

q
(S(V )#G) also inherits a

smash product and is isomorphic (under smash product) to an algebra subquotient
of HH

q
(S(V ))#G. We shall see in Corollary 7.6 below that the same is true under

cup product.

Remark 6.7. One may identify HH
q
(S(V ), S(V )#G) with the subset H

q
of the

smash product HH
q
(S(V ))#G by fixing a set of cohomology class repesentatives as

in Remark 4.8. But note that H
q
is not closed under the smash product as a subset

of HH
q
(S(V ))#G—we must take a quotient by coboundaries and again take chosen

representatives for this quotient. The induced smash product explicitly becomes

(α, β) 7→ ProjH(α ¦ β) .

7. Equivalence of cup and smash products

In the previous section, we twisted the cup product on HH
q
(S(V )) by the ac-

tion of G in a natural way to define a multiplication on HH
q
(S(V ), S(V )#G) and

also on HH
q
(S(V )#G). In fact, we showed that as a graded vector space, the

Hochschild cohomology HH
q
(S(V )#G) maps isomorphically to an algebra sub-

quotient of HH
q
(S(V ))#G and thus inherits a natural smash product structure.

We now regard HH
q
(S(V ), S(V )#G) as an algebra under three operations:

• the cup product ^ induced from the bar resolution of S(V ),
• a “smash” product ¦ induced from HH

q
(S(V ))#G, and

• the usual multiplication in the algebra tensor product HH
q
(S(V ))⊗ C[G].
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We show in this section that these three basic algebraic operations coincide. This
allows us to describe generators for Hochschild cohomology in the next section.
The equality of cup and smash products (given in the theorem below) also explains
how the cup product, defined on the bar resolution, may be expressed in terms of
the Koszul resolution.

Theorem 7.1. For all cocycles α and β in Z
q
,

α ^ β = α ¦ β .

On the Hochschild cohomology HH
q
(S(V ), S(V )#G), this product is induced from

the usual multiplication on the tensor product HH
q
(S(V ))⊗ C[G] of algebras.

Proof. We need only verify the statement for cocycles in Z
q
of the form α =

fg ⊗ dvg ⊗ g and β = fh ⊗ dvh ⊗ h, for some g, h in G, where fg, fh ∈ S(V ) and
dvg ∈

∧p V ∗, dvh ∈
∧q V ∗ (as any cocycle in Z

q
will be the sum of such elements).

As Φ∗ and Υ are inverse maps on the cohomology HH
q
(S(V ), S(V )#G) convert-

ing between Koszul and bar cochain complexes (see Diagram 4.5),

α ^ β = Φ∗(Υ(α) ^ Υ(β))

where ^ (on the right hand side) denotes cup product on the bar complex. Sup-
pose Bg = {v1, . . . , vn}, a basis of eigenvectors of g (see Definition 5.2). Without
loss of generality, assume that dvg = v∗1 ∧ · · · ∧ v∗p where the span of v1, . . . , vp

includes (V g)⊥ (see (4.7)). (In general, dvg will be a sum of such elements with
indices relabeled.) By the second part of Lemma 2.6,

α ¦ β = (fg ⊗ dvg ⊗ g) ¦ (fh ⊗ dvh ⊗ h)

= fg
gfh ⊗ (dvg ∧ gdvh)⊗ gh

= fg
gfh ⊗ (dvg ∧ dvh)⊗ gh .

We compare the values of α ^ β and α ¦ β on any vi1 ∧ · · · ∧ vip+q . Now

(α ¦ β)(vi1 ∧ · · · ∧ vip+q) = fg
gfh (dvg ∧ dvh)(vi1 ∧ · · · ∧ vip+q)⊗ gh

while

(α ^ β)(vi1 ∧ · · · ∧ vip+q)

= Φ∗(Υ(α) ^ Υ(β))(vi1 ∧ · · · ∧ vip+q)

= (Υ(α) ^ Υ(β))
( ∑

π∈Symp+q

sgn(π)viπ(1)
⊗ · · · ⊗ viπ(p+q)

)
=

∑
π∈Symp+q

sgn(π) Υ(α)(viπ(1)
⊗ · · · ⊗ viπ(p)

) Υ(β)(viπ(p+1)
⊗ · · · ⊗ viπ(p+q)

) .

By Remark 5.3, both α ^ β and α¦β are readily seen to be zero on vi1∧· · ·∧vip+q

unless {vi1 , . . . , vip+q} contains {v1, . . . , vp}. Thus, we may assume (after relabeling
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indices and also possibly changing signs throughout) that v1 = vi1 , . . . , vp+q =
vip+q .

Again by Remark 5.3, (α ^ β)(v1 ∧ · · · ∧ vp+q) is equal to∑
π∈Symp

sgn(π) Υ(α)(vπ(1) ⊗ · · · ⊗ vπ(p))
∑

π∈Symq

sgn(π) Υ(β)(vp+π(1) ⊗ · · · ⊗ vp+π(q)) .

Proposition 5.4 then implies that this value of the cup product is just

Φ∗(Υ(α))(v1 ∧ · · · ∧ vp) · Φ∗(Υ(β))(vp+1 ∧ · · · ∧ vp+q)

= α(v1 ∧ · · · ∧ vp) · β(vp+1 ∧ · · · ∧ vp+q)

= fg
gfh dvg(v1 ∧ · · · ∧ vp) dvh(vp+1 ∧ · · · ∧ vp+q)⊗ gh

= fg
gfh (dvg ∧ dvh)(v1 ∧ · · · ∧ vp+q)⊗ gh

= (α ¦ β)(v1 ∧ · · · ∧ vp+q)

as elements of S(V )#G. Thus α ^ β and α ¦ β agree as cochains.
If this product is nonzero, then fh − gfh lies in the ideal I((V g)⊥) ⊂ I((V gh)⊥)

by Lemma 2.1, Proposition 2.5, and the first part of Lemma 2.6. Hence,

fg
gfh ⊗ (dvg ∧ dvh)⊗ gh and fg fh ⊗ (dvg ∧ dvh)⊗ gh

represent the same class in the cohomology HH
q
(S(V ), S(V )#G) = Z

q
/B

q
. Thus

the usual multiplication in the tensor product of algebras HH
q
(S(V ))⊗C[G] gives

the cup product on cohomology. ¤

We next give an example to show that the cup and smash products do not agree
on arbitrary cochains.

Example 7.2. Let G = Z/2Z × Z/2Z × Z/2Z, generated by elements a1, a2, a3.
Let V = C3 with basis v1, v2, v3 on which G acts as follows:

aivj = (−1)δijvj.

Let α = 1⊗ v∗3 ⊗ a1a3 and β = 1⊗ v∗1 ∧ v∗2 ⊗ a1a2 in C
q
. Then

α ¦ β = −1⊗ v∗1 ∧ v∗2 ∧ v∗3 ⊗ a2a3 = −α ^ β.

Our results imply the following explicit formula for the cup product, first given
by Anno [1], expressed here in terms of the poset in Definition 2.2 and the multi-
plicative cocycle ϑ : G×G → C of Proposition 2.5. Note that the condition g < gh
in the sum below is included merely for computational convenience, as ϑ(g, h) is
nonzero if and only if g < gh. Also note that cohomology classes (and cocycles)
in general are represented by sums of such α and β given in the theorem below.
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Theorem 7.3. Consider cohomology classes in HH
q
(S(V ), S(V )#G) represented

by

α =
∑
g∈G

fg ⊗ dvg ⊗ vol⊥g ⊗g and β =
∑
h∈G

fh ⊗ dvh ⊗ vol⊥h ⊗h

in Z
q
of degrees p and q, resp. (see (4.7)). Set m = (codim V g)(q − codim V h).

The cup product α ^ β is represented by the cocycle

(7.4)
∑
g,h∈G

with g≤gh

(−1)m ϑ(g, h) fg fh ⊗ (dvg ∧ dvh)⊗ vol⊥gh⊗ gh .

Proof. The formula follows directly from Proposition 2.5, Proposition 6.5, and
Theorem 7.1 (see its proof). Note that the factor (−1)m arises when we replace
vol⊥g ∧ dvh with dvh ∧ vol⊥g . ¤

Example 7.5. Let G, V be as in Example 7.2. Let α = 1 ⊗ v∗1 ⊗ a1, β = 1 ⊗
v∗3 ∧ v∗2 ⊗ a2 in H

q
. Let vol⊥a1

= v∗1, vol⊥a2
= v∗2, and vol⊥a1a2

= v∗1 ∧ v∗2, so that
ϑ(a1, a2) = 1. Then

α ^ β = α ¦ β = (−1)1(2−1) ⊗ a1(v∗3) ∧ v∗1 ∧ v∗2 ⊗ a1a2

= −1⊗ v∗3 ∧ vol⊥a1a2
⊗ a1a2.

Corollary 7.6. The algebra HH
q
(S(V ), S(V )#G) is isomorphic to an algebra sub-

quotient of HH
q
(S(V ))#G. The algebra HH

q
(S(V )#G) is isomorphic to its G-

invariant subalgebra. Hence, it is also an algebra subquotient of HH
q
(S(V ))#G.

Proof. The space HH
q
(S(V ), S(V )#G) may be written as a (graded) subspace of

a vector space quotient of HH
q
(S(V ))#G (see (6.2)). Proposition 6.5 states that

this subquotient is actually a subquotient of algebras under the smash product (see
Proposition 6.3 and Corollary 6.4). But the cup product on HH

q
(S(V ), S(V )#G)

is the same as this induced smash product by Theorem 7.1. By Theorem 3.2,
the cohomology algebra HH

q
(S(V )#G) is isomorphic to the G-invariant subal-

gebra of HH
q
(S(V ), S(V )#G) (both spaces regarded as algebras under their re-

spective cup products). Hence the algebra HH
q
(S(V )#G) is also a subquotient of

HH
q
(S(V ))#G. ¤
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8. Volume algebra

Results in the last section reveal an interesting subalgebra of the Hochschild
cohomology HH

q
(S(V ), S(V )#G) isomorphic to algebras that have appeared in

the literature before (see Remark 8.2 below); we call it the volume algebra. We
use this subalgebra to give algebra generators of cohomology in the next section.

We define the volume algebra with the next proposition. Recall that for each
g in G, the form vol⊥g is a choice of nonzero element in the one-dimensional

space
∧codim V g

((V g)⊥)∗. We show that the elements vol⊥g ⊗ g := 1 ⊗ vol⊥g ⊗ g
in HH

q
(S(V ), S(V )#G) generate a subalgebra which captures the binary relation

≤ on G and reflects the poset structure of G/K (see Definition 2.2). (Note that if
k acts trivially on V , then vol⊥k = 1 up to a nonzero constant.)

Proposition 8.1. The C-vector space

Avol := SpanC{vol⊥g ⊗ g | g ∈ G}
is a subalgebra of HH

q
(S(V ), S(V )#G). The induced multiplication on this subal-

gebra is given by

(vol⊥g ⊗ g)(vol⊥h ⊗h) = ϑ(g, h) vol⊥gh⊗ gh

where ϑ : G × G → C is a (multiplicative) cocycle on G. For any g, h in G, the
above product is nonzero (ϑ(g, h) 6= 0) if and only if g ≤ gh. The algebra Avol is
isomorphic to the (generalized) twisted group algebra Cϑ[G].

Proof. Lemma 2.6 and Proposition 2.5 imply that for any pair g, h in G,

(vol⊥g ⊗ g) ¦ (vol⊥h ⊗h) = (vol⊥g ∧ g(vol⊥h ))⊗ gh

= (vol⊥g ∧ vol⊥h )⊗ gh

= ϑ(g, h) vol⊥gh⊗ gh ,

for a cocycle ϑ which is nonzero on the pair (g, h) exactly when g ≤ gh. Hence by
Theorem 7.1, Avol is closed under cup product and isomorphic to Cϑ[G]. ¤

The above proposition explains how Avol algebraically captures the geometric
relation on G given by ≤. Indeed, the space Avol forms a graded algebra where

deg(vol⊥g ⊗ g) = codim V g for each g ∈ G .

Moreover, for all g, h in G,

g ≤ h if and only if vol⊥g ⊗ g divides vol⊥h ⊗h in Avol .

Let S be the subset {vol⊥g ⊗ g : g ∈ G} of Avol. Then S is a poset under division:

vol⊥g ⊗ g ≤S vol⊥h ⊗h if and only if vol⊥g ⊗ g divides vol⊥h ⊗h in Avol .
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If G acts faithfully, we have isomorphic posets:

(G,≤) ∼= (S,≤S) .

Remark 8.2. The subalgebra Avol of HH
q
(S(V ), S(V )#G) appears in other are-

nas. If V is a symplectic vector space and G ⊂ Sp(V ), the algebra Avol is isomor-
phic to the graded algebra grF C[G] associated to the filtration F on G assigning
to each group element g the codimension of V g. Its G-invariant subalgebra AG

vol

is isomorphic to the orbifold cohomology of V/G in this case (see Fantechi and
Göttsche [12, §2] or Ginzburg-Kaledin [15]) and also to the Hochschild cohomology
of the G-invariant subalgebra of the Weyl algebra A(V ) (see Suarez-Alvarez [28]):

HH
q
(A(V )G) ∼= HH

q(
A(V )#G

) ∼= AG
vol

∼= H
q
orb

(
V/G

)
.

Work of several authors has shown that for G = Symn acting symplectically on
C2n, this orbifold cohomology is isomorphic to the cohomology of a Hilbert scheme
which is a crepant resolution of the orbifold [12, 20, 30]. Lehn and Sorger gave a

description of A
Symn
vol in terms of generators and relations [20, Remark 6.3].

9. Cohomology generators given by the poset

In this section, we give generators for the algebra HH
q
(S(V ), S(V )#G) in terms

of the partial order ≤ on the quotient group G/K, where K is the kernel of the
representation of the group G acting on V . In Section 7, we showed that the cup
product and an induced smash product on the algebra HH

q
(S(V ), S(V )#G) agree.

Hence, we simply discuss generation of cohomology as an algebra, without explicit
reference to the product. We explain in the next three results how generators for
HH

q
(S(V ), S(V )#G) are tagged by K together with minimal elements in the poset

G/K. Actually, 1G/K := K is the unique minimal element in the poset G/K, and
we remove it before seeking minimal elements.

Theorem 9.1. The subalgebra Avol of HH
q
(S(V ), S(V )#G) is generated as an

algebra over C by

{vol⊥g ⊗ g | g ∈ K or g ∈ [G/K] with gK minimal in the poset G/K − {1G/K}} ,

where [G/K] is any set of coset representatives for G/K.

Proof. Assume h /∈ K. We first observe that we may write vol⊥h ⊗h as the product
of two volume forms, one tagged by any other coset representive of hK and the
other tagged by an element of K: Suppose hK = h′K for some h′ in G. Then
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V h = V h′ and vol⊥h = vol⊥h′ up to a nonzero scalar. Let k = h−1h′, so vol⊥k is a
nonzero scalar itself. Then (see Equation 6.1),

(vol⊥h ⊗h) ¦ (vol⊥k ⊗ k) = (vol⊥h ∧ h(vol⊥k ))⊗ hk,

which is a nonzero scalar multiple of vol⊥h ⊗h′, and thus of vol⊥h′ ⊗h′. We may
therefore assume that h itself lies in [G/K].

Suppose that hK is not minimal in the partial order on G/K − {1G/K}. Then

there exists g ∈ [G/K] with K 6= gK 6= hK and gK < hK, i.e., (V g)⊥⊕(V g−1h)⊥ =
(V h)⊥. By Theorem 7.3,

(vol⊥g ⊗ g) ¦ (vol⊥g−1h⊗ g−1h) = ϑ(g, g−1h) vol⊥h ⊗h ,

which is nonzero since gK < hK. By symmetry in the definition of the partial
order, g−1hK < hK in the poset G/K − {1G/K} as well. Hence, we have written

vol⊥h ⊗h as a product of volume forms each tagged by a group element less than
h in the partial order. As the set G/K − {1G/K} is finite, the partial order is
well-founded, i.e., every descending chain contains a minimal element. Hence, by
induction, vol⊥h ⊗h may be written (up to a scalar) as the product of elements in
the set given in the statement of the theorem. ¤

We now turn to the task of describing generators for the full Hochschild coho-
mology HH

q
(S(V ), S(V )#G) as an algebra. We regard HH

q
(S(V )) as a subalgebra

of HH
q
(S(V ), S(V )#G) by identifying

HH
q
(S(V )) = S(V )⊗

∧ q
V ∗ with S(V )⊗

∧ q
V ∗ ⊗ 1G .

Then HH
q
(S(V ), S(V )#G) becomes a module over HH

q
(S(V )) under cup product.

Theorem 9.2. The Hochschild cohomology algebra HH
q
(S(V ), S(V )#G) is gen-

erated by its subalgebras HH
q
(S(V )) and Avol.

Proof. Let α be an arbitrary element of HH
q
(S(V ), S(V )#G). Without loss of

generality, assume α = fh ⊗ dy ∧ vol⊥h ⊗h for some h in G and dy ∈
∧ q

(V h)∗. By
Theorem 7.1 (see (7.4)),

α = (fh ⊗ dy ⊗ 1G) ¦ (vol⊥h ⊗h)

where fh ⊗ dy ⊗ 1G identifies with fh ⊗ dy in HH
q
(S(V )). Hence, α lies in the

product HH
q
(S(V )) · Avol. ¤

Recall that for k in K, vol⊥k = 1 up to a nonzero constant in C. The last two
theorems then imply:
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Corollary 9.3. The Hochschild cohomology algebra HH
q
(S(V ), S(V )#G) is gen-

erated by its subalgebra HH
q
(S(V )) and

{vol⊥g ⊗ g | g ∈ K or g ∈ [G/K] with gK minimal in the poset G/K − {1G/K}} ,

where [G/K] is any set of coset representatives of G/K.

If G acts faithfully on V , then we may simply take minimal elements in the
poset G− {1G} (see Lemma 2.3) to obtain a generating set under cup product:

Corollary 9.4. Assume G acts faithfully on V . The Hochschild cohomology alge-
bra HH

q
(S(V ), S(V )#G) is generated by HH

q
(S(V )) and

{vol⊥g ⊗ g | g is minimal in the poset G− {1G}}.

10. Reflection groups

In the previous sections, we described the algebraic structure of the Hochschild
cohomology HH

q
(S(V ), S(V )#G). These results have a special interpretation for

reflection groups and Coxeter groups in particular. We are interested in comparing
the codimension of the fixed point space V g of a group element g with its “reflection
length” in the group.

Recall that a nonidentity element of GL(V ) is a reflection if it fixes a hyperplane
in V pointwise. A reflection group is a finite group generated by reflections. A
reflection group is called a Coxeter group when it is generated by reflections
acting on a real vector space. In this section, we restrict ourselves to the case
when G is a reflection group. We define a length function with respect to the set
of all reflections inside G. (Note that this definition may differ from the length
function defined in terms of a fixed choice of generators for the group G, for
example, a choice of simple reflections for a Weyl group.)

Definition 10.1. For each g in G, let l(g) be the minimal number k such that
g = s1 · · · sk for some reflections si in G. We set l(1G) = 0. We call l : G → N
the reflection length function (or “absolute length function”) of G.

The reflection length function induces a partial order ≤l on G:

g ≤l h when l(g) + l(g−1h) = l(h) .

The poset formed by the reflection length function plays an important role in the
emerging theory of Artin groups of finite type. This theory relies on a key result for
Coxeter groups asserting that the closed interval from the identity group element
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to a Coxeter element forms a lattice. Brady and Watt [5] gave a case-free proof of
this fact by relating the two partial orders ≤ and ≤l. The poset ≤l defined from the
reflection length function has received attention not only for Coxeter groups, but
for other complex reflection groups G as well. One may define a Coxeter element
and again consider the interval (often a lattice) from the identity to the Coxeter
element, the so-called poset of noncrossing partitions for G. See, for example,
Bessis and Reiner [2].

Note that the length of a linear transformation with respect to the ambient group
GL(V ) coincides with the codimension of the fixed point space: Any element g in
the unitary group U(V ) can be written as the product of m reflections in GL(V )
and no fewer if and only if codim V g = m (see Brady and Watt [4]).

Reflection length in the group G is bounded below by the codimension of the
fixed point space:

(10.2) l(g) ≥ codim V g for all g in G .

Indeed, if l(g) = m and g = s1 · · · sm is a product of reflections in G, then

V g ⊃ V s1 ∩ · · · ∩ V sm ;

but each V si is a hyperplane, so

codim V g ≤ codim(V s1 ∩ · · · ∩ V sm) ≤ m .

For certain reflection groups, reflection length coincides with codimension of
fixed point space. The arguments of Carter [8] for Weyl groups hold for Coxeter
groups as well:

Lemma 10.3. Let G be a (finite) Coxeter group. Then reflection length coincides
with codimension of fixed point space: For all g in G,

codim V g = l(g) .

The lemma above implies that for Coxeter groups (which act faithfully), the par-
tial order ≤ above (see Definition 2.2) describing the ring structure of Hochschild
cohomology coincides with the partial order ≤l induced from the reflection length
function. When these two posets agree (i.e., when ≤ = ≤l), we may express
the ring structure of Hochschild cohomology in an elegant way. In particular,
the Hochschild cohomology algebra HH

q
(S(V ), S(V )#G) is generated in degrees 0

and 1, as we see in the next corollary. Note the analogy with the Hochschild-
Kostant-Rosenberg Theorem, which implies that the Hochschild cohomology of a
smooth commutative algebra is also generated in degrees 0 and 1.

Theorem 10.4. Suppose G is a (finite) reflection group for which the reflection
length function gives codimension of fixed point spaces:

l(g) = codim V g for all g in G .
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Then HH
q
(S(V ), S(V )#G) is generated (as an algebra) in degrees 0 and 1.

Proof. As G is a reflection group, it acts faithfully on V by definition. The elements
of G−{1G} minimal in the partial order ≤l induced by the length function are the
reflections. Indeed, suppose the length of h in G is m > 0 and write h = s1 · · · sm

for some reflections si in G. As h can not be expressed as the product of fewer
than m reflections, l(s2 · · · sm) = m− 1. Hence,

l(s1) + l(s−1
1 h) = l(s1) + l(s2 · · · sm) = 1 + (m− 1) = l(h)

and s1 ≤l h. Note that for any reflection s, the relation g ≤l s implies that either
g = s or g = 1G.

By hypothesis, the length function and codimension function induce the same
partial order. Hence, the reflections are precisely the minimal elements of G−{1G}
in the partial order ≤. By Corollary 9.4, HH

q
(S(V ), S(V )#G) is generated by

HH
q
(S(V )) and by all vol⊥s ⊗ s where s is a reflection in G. The elements vol⊥s ⊗ s

each have cohomological degree 1, and HH
q
(S(V )) = S(V ) ⊗

∧ q
V ∗ is generated

as an algebra (under cup product) by HH0(S(V )) ∼= S(V ) and HH1(S(V )) ∼=
S(V )⊗ V ∗. The statement follows. ¤

The above corollary applies not only to Coxeter groups, but to other complex
reflection groups as well. Let G(r, 1, n) be the infinite family of complex reflection
groups, each of which is the symmetry group of a regular (“Platonic”) polytope in
complex space V = Cn. The group G(r, 1, n) consists of all those n by n complex
matrices which have in each row and column a single nonzero entry, necessarily
a primitive r-th root of unity. This group is a natural wreath product of the
symmetric group and the cyclic group of order r: G ∼= Z/rZ o Symn. In fact,
G(1, 1, n) is the symmetric group Symn and G(2, 1, n) is the Weyl group of type
Bn.

Lemma 10.5. For the infinite family G(r, 1, n), the reflection length function
coincides with codimension of fixed point spaces:

l(g) = codim V g for all g in G .

Proof. Let ξ be a primitive r-th root of unity in C. Every element in G(r, 1, n) is
conjugate to a product h = c1 · · · ck of disjoint cycles ck of the form

ck = ξa
j (i, i + 1, . . . , j)

(i.e., h is block diagonal, with k-th block ck) where ξj := diag(1, . . . , 1, ξ, 1, . . . , 1)
is the diagonal reflection with ξ in the j-th entry, a ≥ 0, and where (i, i+1, . . . , j)
is the matrix (in the natural reflection representation) of the corresponding cycle
in Symn. (See, for example, Section 2B of Ram and the first author [23].) Consider
a fixed cycle c = ck as above. We may write the cycle (i, i + 1, . . . , j) as a product
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of j − i transpositions (reflections) in Symn, a subgroup of G(r, 1, n). Hence if
ξa = 1, then c may be expressed as the product of j − i reflections in G(r, 1, n)
while codim V c = j−i. If ξa 6= 1, then c may be expressed as the product of j−i+1
reflections in G(r, 1, n) while codim V c = j− i+1. In either case, l(c) ≤ codim V c.
But reflection length is bounded below by codimension, codim V c ≤ l(c), and
hence l(c) = codim V c. Then

l(h) ≤ l(c1) + . . . + l(ck) = codim V c1 + . . . + codim V ck = codim V h ≤ l(h)

and thus l(h) = codim V h. ¤

As Theorem 10.4 applies to Coxeter groups by Lemma 10.3 and to the infinite
family G(r, 1, n) by Lemma 10.5, we have the following analog of the Hochschild-
Kostant-Rosenberg Theorem:

Corollary 10.6. Let G be a Coxeter group or the infinite family G(r, 1, n). Then
HH

q
(S(V ), S(V )#G) is generated as an algebra in degrees 0 and 1.

Note that the two partial orders ≤ and ≤l do not always agree, i.e., that for a
complex reflection group G in general, the reflection length function may not give
codimension of fixed point spaces:

Example 10.7. Let G be the complex reflection group G(4, 2, 2), the subgroup of
G(4, 1, 2) consisting of those matrices with determinant ±1. Let g be the diagonal
matrix diag(i, i) where i =

√
−1 with determinant −1. Every reflection in G has

determinant −1, and hence g can only be written as the product of an odd number
of reflections. Then codim V g = 2 and yet g can not be written as the product of
two reflections.

11. Cup product on the invariant subalgebra

In the above sections, we investigated the cup product on the Hochschild co-
homology HH

q
(S(V ), S(V )#G). In this section, we describe the cup product on

HH
q
(S(V )#G), its G-invariant subalgebra, using standard techniques from group

theory. Note that generators for the algebra HH
q
(S(V ), S(V )#G) may not be

invariant under G and hence do not generally yield generators for HH
q
(S(V )#G).

The cup product on HH
q
(S(V )#G) in cohomological degrees 0 and 1 is easy to

describe, and follows from an observation of Farinati [13] (see also [24]):

Lemma 11.1. The only group elements in G that contribute to the Hochschild
cohomology HH

q
(S(V )#G) are those which act on V with determinant 1.
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Note that if G embeds in SL(V ), then every g-component is nonzero (as any

element in the one-dimensional subspace 1⊗
∧dim V V ∗ ⊗ g of C

q
is automatically

invariant under the centralizer of g; see (11.3) below).
Lemma 11.1 together with Remark 4.8 immediately implies that the cup prod-

uct on HH
q
(S(V )#G) in cohomological degrees 0 and 1 is simply the exterior

(wedge) product of forms when G acts faithfully (since reflections do not have
determinant 1):

Proposition 11.2. Assume G acts faithfully on V , that is, G embeds in GL(V ).
Then the cup product of elements in HH0(S(V )#G) and HH1(S(V )#G) is given
by the cup product on the G-invariant subspaces of HH0(S(V )) and HH1(S(V )):

HH0(S(V )#G) = S(V )G and HH1(S(V )#G) = (S(V )⊗ V ∗)G .

When G acts nonfaithfully, we similarly find that only the kernel K of G acting
on V contributes to the cohomology HH

q
(S(V )#G) in degrees 0 and 1:

HH0(S(V )#G) =

(⊕
k∈K

S(V )⊗k

)G

and HH1(S(V )#G) =

(⊕
k∈K

S(V )⊗V ∗⊗k

)G

.

The cup product in higher degrees is not as transparent. We give a formula in
terms of a fixed set C of representatives of the conjugacy classes of G. We extend
the isomorphism of Theorem 3.2, HH

q
(S(V )#G) ∼= HH

q
(S(V ), S(V )#G)G:

(11.3) HH
q
(S(V )#G) ∼=

⊕
g∈C

HH
q
(S(V ), S(V )⊗ g)Z(g),

where Z(g) denotes the centralizer in G of g. The term HH
q
(S(V ), S(V ) ⊗ g) is

isomorphic to the g-component of H
q
of Remark 4.8. The isomorphism identifies

an element α of HH
q
(S(V ), S(V )⊗ g)Z(g) with the sum∑

h∈[G/Z(g)]

hα,

where [G/Z(g)] denotes a set of representatives of left cosets of Z(g) in G. In
the next proposition, we give a formula for the cup product of HH

q
(S(V )#G)

expressed in terms of the additive decomposition (11.3).
If A is any algebra with an action of G by automorphisms, and J < L are

subgroups of G, we define the transfer map TL
J : AJ → AL by

TL
J (a) =

∑
h∈[L/J ]

ha,

where [L/J ] is a set of representatives of the cosets L/J . To prove the following
theorem, we use the theory of Green functors applied to this setting of a group
action on an algebra.
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Theorem 11.4. The cup product on HH
q
(S(V )#G) induces the following product

˙̂ on
⊕

g∈C HH
q
(S(V ), S(V )⊗ g)Z(g) under the isomorphism (11.3):

For α ∈ HH
q
(S(V ), S(V )⊗ g)Z(g) and β ∈ HH

q
(S(V ), S(V )⊗ h)Z(h),

α ˙̂ β =
∑
x∈D

T
Z(k)

yZ(g)∩ yxZ(h)
(yα ^ yxβ),

where D is a set of representatives of the double cosets Z(g)\G/Z(h), and k = k(x)
in C and y = y(x) are chosen so that yg · yxh = k. The product yα ^ yxβ is the
cup product in HH

q
(S(V ), S(V )#G)

yZ(g)∩yxZ(h), to which we apply the transfer map

T
Z(k)
yZ(g)∩ yxZ(h)

to obtain an element in the k-component HH
q
(S(V ), S(V )⊗ k)Z(k).

Proof. Let A = HH
q
(S(V ), S(V )#G) (considered as a G-algebra). We obtain a

standard Green functor by sending a subgroup L of G to the invariant subring AL.
The restriction maps (of the functor) are the inclusions, and the transfer maps are
as defined above. The component HH

q
(S(V ), S(V )⊗ g)Z(g) is contained in AZ(g).

In the decomposition (11.3), α ∈ HH
q
(S(V ), S(V ) ⊗ g)Z(g) on the right side is

identified with TG
Z(g)(α) on the left side, and similarly for β. The formula in the

proposition is the standard one for the product of TG
Z(g)(α) and TG

Z(h)(β) given by

the Mackey formula (e.g., see [29, Prop. 1.10], due to Green). ¤

The product formula in Theorem 11.4 is more than a theoretical observation,
but useful in computations, as the next example shows:

Example 11.5. Let V = C6 and G = Sym3. Let v1, w1, v2, w2, v3, w3 be the stan-
dard orthonormal basis of C6, and let G act on V via the permutation represen-
tation on {v1, v2, v3} and on {w1, w2, w3}. Choose 1, (12), (123) as representatives
of the conjugacy classes of Sym3. By (11.3), HH

q
(S(V )# Sym3) is isomorphic to

HH
q
(S(V ))Sym3 ⊕ HH

q
(S(V ), S(V )⊗ (12))〈(12)〉 ⊕ HH

q
(S(V ), S(V )⊗ (123))〈(123)〉.

These summands are as follows, considering that the actions of (12) and of (123)
on the latter two summands, respectively, are trivial:

HH
q
(S(V ))Sym3 = (S(V )⊗

∧ q
V ∗)Sym3

HH
q
(S(V ), S(V )⊗ (12))〈(12)〉 = S(V (12))⊗

∧ q−2(V (12))∗ ⊗ (v∗1 − v∗2) ∧ (w∗
1 − w∗

2)⊗ (12)

HH
q
(S(V ), S(V )⊗ (123))〈(123)〉 = S(V (123))⊗

∧ q−4(V (123))∗ ⊗
(v∗1 − v∗2) ∧ (w∗

1 − w∗
2) ∧ (v∗2 − v∗3) ∧ (w∗

2 − w∗
3)⊗ (123)

where the fixed point spaces are V (12) = SpanC{v1 + v2, w1 + w2, v3, w3} and
V (123) = SpanC{v1 + v2 + v3, w1 + w2 + w3}. The product of an element of
HH

q
(S(V ))Sym3 with an element in any of the three components is given simply by
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the componentwise product on the exterior algebras and the symmetric algebras.
The product of any element of the (123)-component with any element of the (12)-
component is 0 as the exterior product is of linearly dependent elements. The
product of any two elements of the (123)-component is 0 by degree considerations.

It remains to determine products of pairs of elements from the (12)-component.
In the notation of Theorem 11.4, g = (12) = h, and we may take the set D of
representatives of the double cosets 〈(12)〉\ Sym3 /〈(12)〉 to be {1, (123)}. If x = 1,
we have (12) · (12) = 1, so we take y = 1; in any corresponding product α ^ β,
the exterior part is a product of linearly dependent elements. Thus the product
corresponding to this choice of x must be 0. Now consider the case when x = (123).
We have (12) · (123)(12) = (12)(123)(12)(132) = (123), and so we may take y = 1.

We now have, for any pair α, β ∈ HH
q
(S(V ), S(V ) ⊗ (12)), the corresponding

cup product in HH
q
(S(V )# Sym3) given in terms of the decomposition (11.3):

α ˙̂ β = T
〈 (123) 〉
{1} (α ^ (123)β).

For example,

vol⊥(12) ˙̂ vol⊥(12) = T
〈 (123) 〉
{1} (vol⊥(12) ^ vol⊥(23)) = 3 vol⊥(123) .

The efficient formula of Theorem 11.4 saves time by reducing nine product calcu-
lations to one in this case.
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