
STABILIZING AUTOMORPHISMS OF QUANTUM AFFINE SPACE

ETHAN JENSEN AND ANNE V. SHEPLER

Abstract. We examine the graded automorphism groups of quantum affine spaces and classify
these groups for spaces of dimension 7 or less. Using permutation actions on partitions, we inves-
tigate cases when the group decomposes as a product of graded automorphism groups of smaller
dimensional spaces, and we describe the groups arising from the Kronecker tensor product of inde-
pendent quantum parameter matrices.

1. Introduction

Determining the automorphism groups of algebras remains a challenging task, with difficul-
ties even the case of commutative polynomial rings over fields. Consider, for example, Nagata’s
1972 wildness conjecture on the automorphism group of C[x1, x2, x3] proved in 2004 by Shestakov
and Umirbaev [17], see also Kraft [11]. Recent attention has turned to automorphism groups of
noncommutative algebras viewed as coordinate rings. We investigate the graded automorphism
group of quantum affine spaces. These are finitely generated algebras with each pair of generators
commuting up to a nonzero scalar; they are also known as skew (or quantum) polynomial rings.

The graded automorphisms of a quantum affine space Sq(V ) give critical information on the
ungraded automorphisms. Here V ≅ Kn is the vector space spanned by generators over a field K and
q is a matrix of quantum scalars recording the noncommutative multiplication. Often the group of
all automorphisms Aut(Sq(V )) coincides with the group of graded automorphisms Autgr(Sq(V )),
see Ceken, Palmieri, Wang, and Zhang [5, Section 3] and Yakimov [15, Corollary 3.7]. More
generally, Aut(Sq(V )) is the semidirect product of the unipotent automorphisms Autuni(Sq(V ))
with Autgr(Sq(V )) unless q contains a row of all 1’s, see [5, Lemma 3.2]. The groups Autgr(Sq(V ))
have been classified in low dimensions, see see Alev and Dumas [3] and Levandovskyy and Shepler
[12]. Explicit classifications in higher dimensions have been lacking. See also Alev and Chamarie
[1] and Artamonov and Wisbauer [2].

We write the quantum affine space as the skew polynomial ring Sq(V ) = Kq[v1, . . . , vn] generated
by v1, . . . , vn with relations vjvi = qij vivj for qij in K∗ with qijqji = 1 = qii with matrix of quantum
scalars q = {qij}. Various results give the graded automorphism group in special cases, for example,
Autgr(Sq(V )) = Aut(Sq(V )) ≅ (K×)n when the qij are generic, see [1] and [15]. See [1] and [5] for
the cases at the other extreme when the quantum scalars qij agree and/or are all ±1. Bazlov and
Berenstein [4] described Autgr(Sq(V )) as a product of subgroups of GL(V ) with nontrivial overlap.

Jin [9] recently gave an elegant theorem describing Autgr(Sq(V )) as a semidirect product of
general linear groups with a quotient of permutation groups. We give a short and direct proof
of a slightly different description in order to classify these groups up to dimV ≤ 7. We give
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the semidirect product structure explicitly in terms of a maximal subgroup whose orbits refine a
particular partition of [n]2 = {(i, j) ∶ 1 ≤ i, j ≤ n}. Graded automorphisms must permute blocks
of {1, . . . , n} of the same size, where each block indexes identical rows of q. We leverage the
preservation of block size to obtain an efficient algorithm (computationally inexpensive) used in
the classification.

We use the semidirect product structure to decompose Autgr(Sq(V )) as a direct product of
automorphism groups on skew polynomial rings with potentially fewer generators in Theorem 4.2
(see also Proposition 2.14). This decomposition implies that set of groups Autgr(Sq(V )) for all q and
V is closed under direct products, see Corollary 4.5. In addition, we give the graded automorphisms
of Sq⊗q′(V ⊗V ′) formed from the Kronecker product of two quantum parameter matrices q and q′

sufficiently independent in Theorem 5.4.
One asks which groups may arise as the graded automorphism group of a quantum affine space.

This is determined jointly by the base field K and the diagonal action of subgroups of the sym-
metric group Sn on [n]2. With small assumptions on the cardinality and characteristic of K, we
identify several infinite families of groups that appear, namely, all groups of the form (K×)n ⋊G
for G the symmetric group Sn, the dihedral group D2n, or a cyclic group. Every graded automor-
phism group is either monomial or determined by monomial groups acting in lower dimension, see
Proposition 6.4, so such families are helpful for classification results. We also explain why the block
permutation type of an automorphism group must appear infinitely often in any classification, see
Remark 5.5 and Corollary 5.6.

Outline. In Section 2, we consider the structure of the group of graded automorphisms of skew
polynomial rings. We identify in Section 3 certain countably infinite families that appear as such
groups. In Section 4, we decompose Autgr(Sq(V )) as a direct product of graded automorphism
groups of subalgebras of Sq(V ) generated by fewer variables, and in Section 5, we consider skew
polynomial rings arising from the Kronecker product (tensor product) of quantum parameter ma-
trices. Lastly, we classify in Section 6 the groups Autgr(Sq(V )) for dimV ≤ 7.

Conventions and notation. We fix a field K throughout of arbitrary characteristic. By a parti-
tion, we mean set partition unless otherwise indicated and we write [n] for {1, . . . , n}. For V ≅ Kn

with fixed basis {v1, . . . , vn} and B ⊂ [n], we write VB = SpanK{vi ∶ i ∈ B}.

2. Quantum affine space and graded automorphisms

We give here different descriptions for the graded automorphism group of quantum affine space.

Quantum affine space. An n × n matrix q = {qij} with entries in K is a system of quantum
parameters or a quantum parameter matrix when

qii = qij qji = 1 for 1 ≤ i, j ≤ n .
Let V be a finite dimensional vector space over K with basis v1, . . . , vn. The skew polynomial
algebra Sq(V ) (also called the quantum polynomial ring or quantum affine space) associated to q is
the K-algebra generated by v1, . . . , vn with relations vjvi = qijvivj :

Sq(V ) = K⟨v1, . . . , vn⟩ / (vjvi − qijvivj ∶ 1 ≤ i, j ≤ n) .
We view Sq(V ) as a graded algebra with deg vi = 1 for all i, see [8], and write Autgr(Sq(V )) for the
ring of graded automorphisms of Sq(V ), i.e., automorphisms that preserve degree. Every graded
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automorphism defines a linear transformation on V by restriction, and we view Autgr(Sq(V )) as a
subgroup of GL(n,K). Conversely, Lemma 2.1 below describes which elements of GL(n,K) extend
to graded automorphisms on Sq(V ) with respect to the basis v1, . . . , vn, see also [4] and [9]. We
write h = (hij) in GL(n,K) for hvj = ∑j hijvi.

Lemma 2.1. [12, Lemma 3.2] A matrix h ∈ GL(n,K) lies in Autgr(Sq(V )) if and only if

hiℓ hjm = 0 or qij = qℓm for all 1 ≤ i, j,m, ℓ ≤ n .

Monomial automorphisms. Let Gn denote the group of monomial matrices in GL(n,K), i.e.,
invertible matrices with exactly n nonzero entries. Then Gn admits a decomposition (K×)n ⋊Sn

for (K×)n identified with the diagonal matrices in GL(n,K) and the symmetric group Sn identified
with the permutation matrices acting on V by permutation of basis elements vi. The group Sn

acts on the set of n×n quantum parameter matrices by σ ∶ q↦ q′ where q′ij = qσ(i)σ(j). A monomial

matrix h = dσ for d in GL(n,K) diagonal and σ in Sn lies in Autgr(Sq(V )) exactly when q is
invariant under this action of σ, in which case we call h a monomial automorphism.

Remark 2.2. Note that Autgr(Sq(V )) contains only monomial automorphisms if and only if q has
no identical rows, see [10, Lemma 3.5e]. This implies that if qij ≠ 1 for all i ≠ j, then Autgr(Sq(V ))
is a monomial group of matrices, see [16, Lemma 3.4], [5, Lemma 3.2], and [5, Prop 3.9].

Remark 2.3. We will use the semi-direct product structure arising from the Splitting Lemma:
If π ∶ G → G′ and ι ∶ G′ → G are group homomorphisms with πι = Id, then the exact sequence

1→ Kerπ ↪ G
πÐ→ G′ → 1 of groups splits and

G ≅ Kerπ ⋊G′

under the map g ↦ (g ιπ(g−1), π(g)) with multiplication (g, σ)(h, τ) = (g ι(σ)h ι(σ)−1, στ).

Structure of Graded Automorphism Group. Jin [9] elegantly presented the graded auto-
morphism group Autgr(Sq(V )) as a semidirect product. We give a short proof of an equivalent
structure using Remark 2.3. We use this approach to decompose the automorphism group in terms
of potentially smaller automorphism groups, see Proposition 2.14, Theorem 4.2, and Theorem 5.4.
Our formulation allows us to directly leverage the fact that the acting permutation group permutes
blocks of the same size, making it easy to express as a subgroup of a product of symmetric groups
read off immediately from the matrix q. Using this fact, we recharacterize the graded automorphism
group in terms of maximal subgroups of a permutation group with an orbit condition.

The graded automorphism group is a semidirect product of two types of automorphisms: The
first preserves the subspaces of V spanned by basis elements corresponding to identical rows in q
and the second permutes these subspaces. We fix a n × n quantum parameter matrix q defining
Sq(V ) and make heavy use of a partition from [10, Definition 3.1]:

Definition 2.4. Let Bq be the partition of [n] = {1, . . . , n} with i ∼ j if the i-th and j-th rows of
q are identical, i.e., qim = qjm for all m, in which case we say i and j lie in the same block of q.

We may decompose V as a direct sum of subspaces of the form VB = Span{vi ∶ i ∈ B} for B
a block of any partition of [n]. We identify GL(VB) with the subgroup of GL(V ) that acts via
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GL(VB) on VB and is the identity on basis elements vi with i not in B. Kirkman, Kuzmanovich,
and Zhang [10, Lemma 3.2] show that the groups GL(VB) are subgroups of Autgr(Sq(V )) for all
blocks B ∈ Bq. For B,C ⊂ [n], we consider the minor matrix of size ∣B∣ × ∣C ∣

q
BC
= (qij)i∈B, j∈C .

Note that this minor has all entries identical whenever B and C are blocks of q and that q
BB

is a
quantum parameter matrix for any B ⊂ [n]. For r = ∣Bq∣, we identify the symmetric group Sr with
the group of permutations of the blocks of q so that Sr acts on Bq.

For σ in Sr preserving block size, i.e., with ∣σ(B)∣ = ∣B∣ for all blocks B of q, let σq be the n×n
matrix whose minor matrices are given by (compare with [4])

(σq)
BC
= q

σ(B)σ(C) for all B,C ∈ Bq .

As q is a quantum parameter matrix, so is σq. Let Stab(q) be the subgroup that fixes q:

Stab(q) = {σ ∈Sr ∶ σ preserves block size and σq = q}
= {σ ∈Sr ∶ qBC

= q
σ(B)σ(C) for all blocks B,C of q} .

We refer to Stab(q) as the block permutation type of Autgr(Sq(V )) and call its elements the block
permutations of q. We view Stab(q) as the stabilizing automorphisms of quantum affine space under
an injection recorded with the next lemma.

Lemma 2.5. There exists an injective group homomorphism ι ∶ Stab(q) → Autgr(Sq(V )) with
image ∏B∈Bq Hom (VB, Vσ(B)).

Proof. For σ in Stab(q), let ι(σ) be the unique invertible linear map on V which permutes the basis
elements vi of V , sends VB to Vσ(B) for each block B of q, and preserves the order v1 < v2 < ⋯ < vn
within each block, using ∣B∣ = ∣σ(B)∣, so ι(σ) lies in∏B∈Bq Hom (VB, Vσ(B)). Lemma 2.1 implies that

ι(σ) lies in Autgr(Sq(V )) since if ι(σ)(vℓ) = vi and ι(σ)(vm) = vj , then qℓm = qij as qBC
= q

σ(B)σ(C)
for ℓ,m in respective blocks B,C of q. Finally, to see that ι is a homomorphism, consider σ′ in
Stab(q). The composition ι(σ)ι(σ′) also permutes basis vectors of V and preserves the order in
each block, so by uniqueness, it agrees with ι(σσ′). □

Proposition 2.6. There exists a surjective group homomorphism π ∶ Autgr(Sq(V )) → Stab(q) with
Kerπ = ∏B∈Bq GL(VB) and π ι = Id for ι the map of Lemma 2.5.

Proof. For h = (hij) ∈ Autgr(Sq(V )), define a function π(h) ∶ Bq → Bq which permutes blocks by

π(h)(B) = {i ∶ hij ≠ 0 for some j ∈ B} .
We argue π(h) has the advertised codomain. First note that π(h)(B) is a subset of a block for
each block B. Indeed, for i and ℓ in π(h)(B), hij ≠ 0 ≠ hℓm for some j,m ∈ B. To see that i and
ℓ lie in the same block, fix an index s and find t with hst ≠ 0. Then using Lemma 2.1, qis = qjt
as hijhst ≠ 0, qjt = qmt as j and m lie in the same block, and qmt = qℓs as hℓmhst ≠ 0. A similar
argument shows that π(h)(B) is an entire block. Indeed, if π(h)(B) ⊂ C for C a block and ℓ ∈ C,
take m with hℓm ≠ 0 and i ∈ π(h)(B) so that hij ≠ 0 for some j ∈ B. Then for all t, and hst ≠ 0,
qjt = qis = qℓs = qmt (using hijhst ≠ 0 ≠ hℓmhst) and rows j and m of q are identical. Thus m ∈ B
and ℓ ∈ π(h)(B).

Note that π(h) takes each block of q to a block of the same size. Otherwise, some block would
be sent to a smaller block, and, after reindexing, h would be a block matrix with all entries 0
above and below a non-square block (minor submatrix) forcing deth = 0. In addition, for i in
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B′ = π(h)(B) and ℓ in C ′ = π(h)(C), hijhℓm ≠ 0 for some j in B and m in C, so qiℓ = qjm and thus
q
BC
= q

B′C′ , i.e., π(h) ∈ Stab(q) as desired.
To see that π ∶ Autgr(Sq(V )) → Stab(q), h ↦ π(h), is a group homomorphism, fix g, h in

Autgr(Sq(V )) and i ∈ π(gh)(B). Then (gh)ij ≠ 0 for some j ∈ B and so giℓ ≠ 0 ≠ hℓj for some
ℓ. Then ℓ ∈ π(h)(B) and so i ∈ π(g)(π(h)(B)). Thus, π(gh)(B) = π(g)π(h)(B). A quick check
confirms that π ι = Id and that π has the kernel claimed. □

Semidirect product structure. We obtain a semidirect product by letting Stab(q) act on

∏B∈Bq GL(VB) by conjugation via the map of Lemma 2.5: For g, h in ∏B∈Bq GL(VB) and σ, τ

in Stab(q),

(g, σ)(h, τ) = (g ι(σ)h ι(σ)−1, στ) in ( ∏
B∈Bq

GL(VB)) ⋊ Stab(q) .

The composition in the first coordinate indeed lies in ∏BGL(VB): For a fixed block B of q,

VB
ι(σ)−1
ÐÐÐÐ→ Vσ−1(B)

hÐÐ→ Vσ−1(B)
ι(σ)
ÐÐÐ→ VB

g
ÐÐ→ VB .

The maps π and ι provide a short proof of an alternate formulation of the main result of Jin [9]. We
use this approach to establish Proposition 2.14 and Theorem 4.2 and the classification in Section 6.

Corollary 2.7. For a skew polynomial algebra Sq(V ),

Autgr(Sq(V )) ≅ ( ∏
B∈Bq

GL(VB)) ⋊ Stab(q) .

Proof. Remark 2.3 with the maps ι ∶ Stab(q) → Autgr(Sq(V ) and π ∶ Autgr(Sq(V )) → Stab(q) of
Lemma 2.5 and Proposition 2.6 give the isomorphism g ↦ (g ⋅ ιπ(g−1), π(g)). □

Orbit Condition. We now characterize the graded automorphism group of a skew polynomial
algebra in terms of subgroups of the symmetric group maximal with respect to an orbit condition.
The maximality condition explains why so few permutation groups appear as factors of the semidi-
rect product in Corollary 2.7. It also allows one to rule out groups in a classification of graded
automorphism groups, see Section 6.

Recall that Bq is the partition of [n] given by grouping identical rows of q and we fix r = ∣Bq∣ as
the number of distinct rows with Sr acting on Bq by permutations. We use the diagonal action of
Sr on [r]2 = [r] × [r] and show that the block permutation group Stab(q) is maximal among all
subgroups G of Sr with the same orbits, i.e., with [r]2/G = [r]2/Stab(q).

Lemma 2.8. For any partition P of [r]2, the set of subgroups {G ⊂ Sr ∶ [r]2/G refines P} forms
a lattice under subgroup inclusion.

Proof. The orbits of the trivial group on [r]2 are the sets {(i, j)} giving a refinement of any partition
of [r]2, so the set of subgroups is nonempty. If G and H are subgroups with [r]2/G and [r]2/H
refining P, then [r]2/⟨G,H⟩ and [r]2/(G ∩H) also refine P. □

We now give a description of the graded automorphism groups useful for the classification in
Section 6. We write any partition λ of n as (λm1

1 . . . λms
s ) with λ1, . . . , λs the distinct parts and mi

the multiplicity of λi, i.e., number of parts equal to λi.
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Theorem 2.9. For a quantum parameter matrix q with blocks B1, . . . ,Br, let P be the partition of
[r]2 given by (i, j) ∼ (ℓ,m) if q

Bi Bj
= q

Bℓ Bm
. Then

Autgr(Sq(V )) ≅ (
s

∏
i=1

GL(λi,K)mi) ⋊ G

for some integer partition λ = (λm1
1 . . . λms

s ) of dimV with ∑imi = r and G the maximal subgroup

of Sr such that the orbit space [r]2/G refines P. Here, G = Stab(q), and G acts by a subgroup of

∏si=1Smi where each Smi permutes the mi copies of GL(λi,K).

Proof. We use Lemma 2.8 and Corollary 2.7. For σ ∈Sr, the partition given by the orbits [r]2/⟨σ⟩
refines P exactly when q

BC
= q

σ(B)σ(C) for all blocks B,C of Bq. Thus,

G = Stab(q) = {σ ∈Sr ∶ σ preserves block size and σq = q} = {σ ∈Sr ∶ [r]2/⟨σ⟩ refines P}
is maximal among the groups with orbits refining P, giving the first statement.

For each block B ∈ Bq, we identify GL(VB) with GL(∣B∣,K) and define the partition λ of n
corresponding to the block sizes: λ = (λ1m1 , . . . , λms

s ), where the distinct parts λi give the distinct
sizes of blocks of q and mi is the number of blocks of size λi. Since each σ in G preserves block
size, G must be a subgroup of ∏si=1Smi up to conjugation in Sr. □

Remark 2.10. Two extreme cases of Theorem 2.9 arise. When q has no duplicate rows, all the
blocks have size 1 giving a generalization of [5, Prop. 3.9]:

Autgr(Sq(V )) ≅ (K×)n ⋊ Stab(q) .
In contrast, when the block sizes of q are all distinct recorded by a partition λ, Stab(q) is trivial:

Autgr(Sq(V )) ≅ ∏
λi

GL(λi,K) .

We now consider some examples.

Example 2.11. Say ∣K∣ > 3 and let q = (A B C
C A B
B C A

) for A = ( 1 1
1 1 ), B = ( a aa a ), and C = ( a−1 a−1

a−1 a−1 )

for a ∈ K with a /∈ {0,1,−1}. Then Bq = {{1,2},{3,4},{5,6}} and Theorem 2.9 implies that
Autgr(Sq(V )) ≅D ⋊ Stab(q) where Stab(q) ⊂S3 and

D = {(
M1 0 0
0 M2 0
0 0 M3

) ∶ Mi ∈ GL(2,K)} ≅ (GL(2,K))3 .

A straightforward calculation shows that Stab(q) = ⟨(123)⟩ and thus

Autgr(Sq(V )) = {(
M1 0 0
0 M2 0
0 0 M3

) , (
0 0 M3
M1 0 0
0 M2 0

) , (
0 M2 0
0 0 M3
M1 0 0

) ∶Mi ∈ GL(2,K)} .

Example 2.12. Let V ≅ K8 with Q ⊂ K and let

q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1
2

1
2
−1 −1 1 3 1

2
2 1 1 2 2 2 4 1
2 1 1 2 2 2 4 1
−1 1

2
1
2

1 1 −1 3 1
2

−1 1
2

1
2

1 1 −1 3 1
2

1 1
2

1
2
−1 −1 1 3 1

2
1
3

1
4

1
4

1
3

1
3

1
3

1 1
4

2 1 1 2 2 2 4 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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Here, Bq = {{1,6},{2,3,8},{4,5},{7}} and Corollary 2.7 implies that

Autgr(Sq(V )) = (GL(V{1,6}) ×GL(V{2,3,8}) ×GL(V{4,5}) ×GL(V{7})) ⋊ Stab(q) .
A quick computation verifies that Stab(q) = ⟨(1 3)⟩, which swaps rows 1 and 6 with 4 and 5. Thus

Autgr(Sq(V )) = GL(n,K) ∩

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗

∗ ∗
∗

∗ ∗ ∗

⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝

∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗

∗ ∗
∗

∗ ∗ ∗

⎞
⎟⎟
⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

Example 2.13. For K = F5, dimV = 9, A = ( 1 2 3
3 1 2
2 3 1
), B = ( 2 2 2

2 2 2
2 2 2
), C = ( 3 3 3

3 3 3
3 3 3
), and q = (A B C

C A B
B C A

),

Autgr(Sq(V )) ≅ (K×)9 ⋊ [⟨(123)⟩3 ⋊ ⟨(123)⟩] ≅ [(K×)3 ⋊ ⟨(123)⟩]
3 ⋊ ⟨(123)⟩ .

Constant off-diagonal minors. The last examples leads us to consider quantum parameter
matrices with constant matrix minors. Given a quantum parameter matrix q and a partition P
of [n] with blocks D and E, we call the submatrix q

DE
a diagonal minor for P when D = E and

an off-diagonal minor when D ≠ E. Note that q is constant on the off-diagonal minors for the
block-circle decomposition partition, see [10, Proposition 4.3b].

In the next proposition, we consider the induced action of Stab(q) on the set of partitions
P of [n] refined by Bq: For σ in Stab(q), set σP to be the partition of [n] whose blocks are
σ(B1) ∪⋯ ∪ σ(Bm) for B1 ∪⋯ ∪Bm a block of P, where the Bi are blocks of Bq.

Proposition 2.14. Suppose q is an n × n quantum parameter matrix constant on off-diagonal
minors for a partition P of [n] refined by Bq. If Stab(q) fixes P, then

Autgr(Sq(V )) ≅ ∏
D∈P

Autgr(Sq
DD
(VD)) ⋊ G

for G = {σ ∈S∣P∣ ∶ ∣D∣ = ∣σ(D)∣ and q
σ(D)σ(E) = qDE

for all blocks D,E of P}.

Proof. We first define a group homomorphism ψ ∶ Stab(q) → G. Fix σ in Stab(q). As σP = P, for
any block D = B1 ∪⋯ ∪Bm of P with Bi ∈ Bq,

σ(D) = σ(B1) ∪⋯ ∪ σ(Bm)
is again a block of P with ∣σ(D)∣ = ∣D∣ as σ permutes the blocks of q of the same size. We may
thus identify σ with an element of S∣P∣, and since q

BC
= q

σ(B)σ(C) for all blocks B, C of q, it follows
that q

DE
= qσ(D)σ(E) for all blocks D, E of P. We obtain the advertised map ψ and compose with

the projection π from Proposition 2.6: Define

π′ = ψ ○ π ∶ Autgr(Sq(V ))
πÐÐÐ→ Stab(q)

ψ
ÐÐÐ→ G.

Note that Kerπ′ = ∏D∈P GL(VD) since π′(h)(D) = {i ∶ hij ≠ 0 for j ∈D} by construction.
We define an injective group homomorphism ι′ ∶ G → Autgr(Sq(V )). For each g in G, set ι′(g)

to be the unique invertible linear map on V which permutes the basis elements of V , sends VD to
Vg(D), and preserves the order v1 < v2 < ⋅ ⋅ ⋅ < vn of basis elements within each block of P, using
the fact that ∣D∣ = ∣g(D)∣. The argument in the proof of Lemma 2.5 verifies that ι′(g) lies in
Autgr(Sq(V )) using the fact that q is constant on off-diagonal minors for P.

A straightforward check confirms that π′ι′ is the identity, and the result follows from Remark 2.3.
□
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Remark 2.15. For any parameter matrix q, there are two partitions which satisfy the condi-
tion in Proposition 2.14 trivially, namely Bq itself and [n]. Using the partition P = Bq, we re-
cover the result in Corollary 2.7. At the other extreme, using P = [n] gives the trivial statement
Autgr(Sq(V )) ≅ Autgr(Sq(V )) ⋊S1. Thus, we seek a partition coarser than Bq and finer than [n]
satisfying the hypothesis of Proposition 2.14. In Example 2.13, one such example is the partition

P = {{1,2,3},{4,5,6},{7,8,9}} with Autgr(Sq(V )) ≅ Autgr(Sq′(V ))3 ⋊ ⟨(123)⟩ for q′ = (
1 2 3
3 1 2
2 3 1
).

Corollary 2.16. Say P is a partition of [n] refining Bq and each off-diagonal minor of q for P is
constant and shares no entries with any diagonal minor for P. Then

Autgr(Sq(V )) ≅ ∏
D∈P

Autgr(Sq
DD
(VD)) ⋊ G

where G = {σ ∈S∣P∣ ∶ ∣σ(D)∣ = ∣D∣ and q
σ(D)σ(E) = qDE

for all D,E ∈ P}.

Proof. The claim follows from Proposition 2.14 after verifying that Stab(q) fixes P. Take σ ∈
Stab(q) and D ∈ P. Since D is a disjoint union of blocks of q and σ preserves the sizes of those
blocks, ∣σ(D)∣ = ∣D∣. Thus q

DD
= q

σ(D)σ(D) as σ stabilizes q. Since q
DD

shares no entries with

off-diagonal minors, it follows that σ(D) is a subset of a single block of P. Then ∑D∈P ∣σ(D)∣ ≤
∑D∈P ∣D∣, which implies σ(D) is again a block of P for each block D of P. Thus σP = P. □

Remark 2.17. We write Autuni(Sq(V )) for the set of unipotent automorphisms of Sq(V ), i.e., ϕ
in Aut(Sq(V )) such that ϕ(vi) is vi plus terms of graded degree > 1 for all i, see Ceken, Palmieri,
Wang, Zhang [5]. If q has no rows of all 1’s, then by [5, Lemma 3.2]

Aut(Sq(V )) = Autuni(Sq(V )) ⋊ Autgr(Sq(V )) ,
and if there are no nontrivial algebraic relations among the parameters qij , then Autuni(Sq(V )) is
trivial and Aut(Sq(V )) = Autgr(Sq(V )) by [5, Theorem 3.4]. See also Yakimov [15, Corollary 3.7].

3. Infinite Families of Graded Automorphism Groups

In this section, we exhibit certain families of monomial graded automorphism groups. We will see
in Proposition 6.4 that nonmonomial graded automorphism groups are determined by monomial
groups acting in lower dimension, so these families are helpful for classification results. These
families have the form {Kn⋊Gn} forGn a subgroup ofSn, with each group arising as Autgr(Sq(Kn))
for some n × n quantum parameter matrix q.

Proposition 3.1. For n ≥ 1 and char(K) ≠ 2, there is a unique n × n quantum parameter matrix
q with Stab(q) =Sn. This yields the isomorphism

Autgr(Sq(Kn)) ≅ (K×)n ⋊ Sn .

In fact, Sn is the only 2-transitive permutation group acting on [n] which is Stab(q) for some
quantum parameter matrix q.

Proof. By the 2-transitivity of Sn, Stab(q) = Sn if and only if the rows of q are distinct and
qij = qℓm for all i ≠ j and ℓ ≠ m. Thus, Stab(q) = Sn exactly when qij = −1 for all i ≠ j since
qji = qij = q−1ji implies qij = −1 for all i ≠ j when the rows are distinct, and the isomorphism follows

from Corollary 2.7. For the second claim, we use Theorem 2.9 after noting that [n]2/G = [n]2/Sn

for any 2-transitive group G. □
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Remark 3.2. Let n > 3. Proposition 3.1 implies there is no quantum parameter matrix q with
Autgr(Sq(V )) ≅ ∏B∈Bq GL(VB) ⋊ Altn for V = Kn and Stab(q) = Altn, the alternating group on n

elements, as Altn is 2-transitive on [n].

We now consider the dihedral group D2n of order 2n.

Proposition 3.3. For char(K) ≠ 2 and n ≥ 4, there exists a quantum parameter matrix q such that
Autgr(Sq(Kn)) ≅ (K×)n ⋊D2n.

Proof. For n = 4, let q = (
1 1 −1 1
1 1 1 −1
−1 1 1 1
1 −1 1 1

). Since all the rows of q are distinct, by Corollary 2.7,

Autgr(Sq(K4)) = (K×)4 ⋊ {σ ∈S4 ∶ qij = qσ(i)σ(j) for 1 ≤ i, j ≤ 4} .
A short calculation shows that the group on the right is generated by (1234) and (13) and thus

Autgr(Sq(K4)) ≅ (K×)4 ⋊ ⟨(1234), (13)⟩ ≅ (K×)4 ⋊ D8 .

For n > 4, let q be the n × n quantum parameter matrix in which every entry is 1 except for the
superdiagonal and subdiagonal entries, and the top-right and bottom-left entries, which are −1:

q =
⎛
⎜
⎝

1 −1 1 ⋯ 1 −1
−1 1 −1 ⋯ 1 1
1 −1 1 ⋱ 1 1
⋮ ⋮ ⋱ ⋱ ⋮ ⋮
1 1 1 ⋯ 1 −1
−1 1 1 ⋯ −1 1

⎞
⎟
⎠
.

As the rows of q are distinct, Autgr(Sq(Kn)) ≅ (K×)n ⋊ Stab(q) by Corollary 2.7, where Stab(q) is
{σ ∈ Sn ∶ qij = qσ(i)σ(j) for 1 ≤ i, j ≤ n}. In the following calculations, we take indices mod n. The
group D2n is generated by (12 ⋯ n) and τ ∶= (1n)(2 n − 1) . . ., the product of 2-cycles defined by
τ(i) = 1 − i mod n. These lie in Stab(q) as q is constant on super diagonals and is symmetric.

Conversely, suppose σ lies in Stab(q). Then −1 = qi(i+1) = qσ(i)σ(i+1) so our choice of q implies
that σ(i + 1) − σ(i) ≡ ±1 mod n for 1 ≤ i < n. But σ(i + 1) − σ(i) ≡ 1 implies σ(i + 2) − σ(i + 1) ≡ 1
as well, otherwise σ(i + 2) ≡ σ(i + 1) − 1 ≡ σ(i) + 1 − 1 ≡ σ(i) which is impossible. Likewise
σ(i + 1) − σ(i) ≡ −1 implies σ(i + 2) − σ(i) ≡ −1 as well. Then as σ(i) is the telescoping sum
σ(1) + (σ(2) − σ(1)) + . . . + (σ(i) − σ(i − 1)), either σ(i) ≡ σ(1) + (i − 1) mod n for all 1 ≤ i ≤ n or
else σ(i) ≡ σ(1) − (i − 1) mod n for all 1 ≤ i ≤ n. In the first case, σ is a power of (12⋯n), and in
the second, a power of (12⋯n) multiplied by τ . In either case, σ lies in D2n. □

Lastly, we turn to cyclic groups.

Proposition 3.4. For n ≥ 1, let G be a cyclic subgroup of Sn. For ∣K∣ sufficiently large, with
char(K) ≠ 2 whenever ∣G∣ is even, there is a quantum parameter matrix q with Autgr(Sq(Kn)) ≅
(K×)n ⋊G.

Proof. Suppose σ in Sn generates G. First note that σ q = q if and only if (τστ−1)(τ q) = τ q for
all τ in Sn, with τ q another quantum parameter matrix. Thus, without loss of generality, we may
assume σ has a disjoint cycle decomposition

σ = (12 ⋯ m1)(m1 + 1 ⋯ m2) ⋯ (mr−1 + 1 ⋯ n)
for some mi. For 1 ≤ i, j ≤ n, set ci to be the length of the cycle containing i and write i ∼ j for i and
j in same orbit, i.e., in same cycle, so σ(i) ≡ i + 1 mod ci. For 1 ≤ i ≤ j ≤ n with i ∼ j, select qij ≠ 0
satisfying the rules qij = 1 if i = j, qij = −1 if j − i = ci/2, and, for all ℓ ≤m with i ∼ ℓ ∼m, qij = qℓm
exactly when j − i ≡ m − ℓ mod ci. After these have been chosen, for i /∼ j, select qij ≠ 0 satisfying
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the rule that, for all ℓ ≤ m, qij = qℓm exactly when i ∼ ℓ, j ∼ m, and j − i ≡ m − ℓ mod gcd(ci, cj).
Set qji = q−1ij and assume further that the qij are chosen so that qij ≠ qmℓ for all i ≤ j with i /∼ j
and all ℓ ≤m to guarantee that Stab(q) is not too large. Observe that q = (qij) is then a quantum
parameter matrix.

We now argue that Autgr(Sq(Kn)) ≅ (K×)n ⋊G. All rows of q are distinct, since 1 only appears
as an entry of q on the diagonal. Thus Autgr(Sq(Kn)) ≅ (K×)n ⋊ Stab(q) by Corollary 2.7. We
argue that G = Stab(q). For fixed i < j, i ∼ σ(i) and j ∼ σ(j). Furthermore, σ(i)− i ≡ 1 mod ci and
σ(j)−j ≡ 1 mod cj and so σ(j)−σ(i) ≡ j−i mod gcd(ci, cj). Thus, qij = qσ(i)σ(j) and ⟨σ⟩ ⊂ Stab(q).
Conversely, suppose τ ∈ Stab(q). Then qτ(i)τ(j) = qij and τ(j) − τ(i) ≡ j − i mod gcd(ci, cj) so

τ(j) − j ≡ τ(i) − i mod gcd(ci, cj) for all i, j.

By the Chinese Remainder Theorem for non co-prime moduli, there exists a positive integer N
(unique modulo lcm(c1,⋯, cn) = ∣G∣) with τ(i) − i ≡ N mod ci for all i. Hence τ = σN ∈ G. Thus,
Stab(q) = G and so Autgr(Sq(Kn)) ≅ (K×)n ⋊G. □

Example 3.5. For G the cyclic group generated by (123456)(78), ∣K∣ ≥ 15, and char(K) ≠ 2, the
last proof gives Autgr(Sq(K9)) = (K×)9 ⋊G for a, b, c, d, e, f and their inverses distinct in K and

q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 a b −1 b−1 a−1
a−1 1 a b −1 b−1
b−1 a−1 1 a b −1
−1 b−1 a−1 1 a b
b −1 b−1 a−1 1 a
a b −1 b−1 a−1 1

c−1 d−1 c−1 d−1 c−1 d−1
d−1 c−1 d−1 c−1 d−1 c−1

e−1 e−1 e−1 e−1 e−1 e−1

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

c d
d c
c d
d c
c d
d c

1 −1
−1 1

f−1 f−1

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

e
e
e
e
e
e

f
f
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

4. Direct Product Decomposition

We now decompose the graded automorphism group Autgr(Sq(V )) of a quantum affine space
into automorphism groups of lower dimensional spaces using results in Section 2, and we verify
that the set of graded automorphism groups is closed under direct products. We again fix V ≅ Kn

and an n × n quantum parameter matrix q. Various partitions of the set [n] indexing the rows
of q describe automorphisms. For example, the partition Bq on [n] identifies the “elementary
automorphisms” of [10], and the block-circle decomposition of [n] in [10] identifies the important
class of mystic reflection subgroups of Autgr(Sq(V )). We construct here a partition P of [n] giving
a decomposition of Autgr(Sq(V )) into a direct product of groups Autgr(SqDD

(V )) ranging over the
blocks D of P.

The group Autgr(Sq(V )) is completely determined by the blocks of q and the permutation group
Stab(q). However, computing Stab(q) concretely may be computationally prohibitive. Indeed,
Stab(q) can be found with an algorithm of time complexity O(n!), and we seek an alternative
description for Autgr(Sq(V )) that bypasses that calculation. The partition P introduced here only
requires an algorithm of complexity O(n2).

Observe that every element σ ∈ Stab(q) moves a row of q to another row which is a permutation
of the first. Moreover, if these two rows differ at a column, then σ can not fix that column. This
motivates the next definition.
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Definition 4.1. Define an equivalence relation R on [n] by taking the symmetric closure of the
relation with i ∼ ℓ whenever there is a chain i = i0, i1, . . . , ip = ℓ for some p ≥ 0 with, for all 1 ≤ s ≤ p,

(1) the row of q indexed by is−1 is a permutation of the row indexed by is, or
(2) qis−1is ≠ qitis for some 0 ≤ t < s.

Theorem 4.2. Let q be a quantum parameter matrix. The graded automorphism group breaks into
a direct product over blocks of the partition P of [n] given by the equivalence classes of R:

Autgr(Sq(V )) ≅ ∏
D∈P

Autgr (Sq
DD
(VD)) .

Proof. We verify that the partition P satisfies the hypothesis of Proposition 2.14 and that the
group G = {σ ∈S∣P∣ ∶ ∣σ(D)∣ =D and q

σ(D)σ(E) = qDE
for all blocks D,E of P} given there is trivial.

First notice that P is refined by Bq since if two rows of q are equal, then their indices are
equivalent under R and lie in the same block of P. Next we observe that q is constant on the
off-diagonal minors for P. To see this, take D,E ∈ P with D ≠ E and let i, ℓ ∈ D and j,m ∈ E.
Then qim = qℓm since otherwise a chain i = i0, i1, . . . , ℓ or ℓ = ℓ0, ℓ1, . . . , i as in Definition 4.1 could
be extended to a chain also satisfying the condition of Definition 4.1 by appending m to the end,
which would force i and m in the same equivalence class of R and D = E. Similarly, qim = qij , and
thus qij = qim = qℓm. So q is constant on the off-diagonal minor q

DE
of q.

Let σ ∈ Stab(q). Define τ ∈ Sn to be the unique permutation preserving the order of indices
within each block with τ(B) = σ(B) for all blocks B of q. If the row indexed by i is a permutation
of the row indexed by j, say by τ ′, then qτ(i)τ(m) = qim = qjτ ′(m) = qτ(j)ττ ′(m), and so the rows
indexed by τ(i) and τ(j) are equal up to a permutation also. Similarly, if qim ≠ qjm then qτ(i)τ(m) ≠
qτ(j)τ(m). Thus, whenever a chain i = i0, i1, . . . , im = j exists as in Definition 4.1, then τ(i) =
τ(i0), τ(i1), . . . τ(im) = j is also a chain satisfying the definition. Thus σ(D) ∈ P for all D ∈ P.

To see that G is trivial, take σ ∈ G and a block D of P. Then q
σ(D)σ(E) = qDE

for all blocks E of
P, which implies that each row indexed by an element of D is a permutation of a row indexed by
an element of σ(D). Thus the elements of D are equivalent to those of σ(D) under the relation
R, and D = σ(D) by the definition of P. □

Remark 4.3. For P the partition giving the equivalence classes of R, we saw in the proof of
Theorem 4.2 that P is refined by Bq with rows of q that are permutations of each other always
in the same block and with q constant on the off-diagonal minors for P. Observe that P is the
finest partition with this property. Indeed, we construct P with the following two step process.
First, take the partition of [n] whose blocks index rows of q which are permutations of each other.
Second, merge blocks D and E whenever there exist i, j ∈ D and m ∈ E such that qim ≠ qjm, and
repeat until no longer possible, i.e., until q

DE
is a constant matrix for all blocks D,E with D ≠ E.

Example 4.4. Suppose a, b, c, d, f and their inverses are distinct in K and

q =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1 a b c c f f
−1 1 b a c c f f

a−1 b−1 1 −1 c c d f

b−1 a−1 −1 1 c c f d

c−1 c−1 c−1 c−1 1 −1 d d
c−1 c−1 c−1 c−1 −1 1 d d
f−1 f−1 d−1 f−1 d−1 d−1 1 −1
f−1 f−1 f−1 d−1 d−1 d−1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.
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Note that σ ∈ Stab(q) can only only permute rows that are permutations of each other, so it must
fix the sets {1,2}, {3,4}, {5,6}, and {7,8}. We turn to the off-diagonal minors. If σ interchanges
1 and 2, then the block ( a bb a ) is preserved which implies that σ interchanges 3 and 4. But then

the block ( d ff d ) is preserved so σ must interchange 7 and 8. So Stab(q) ⊂ ⟨(12)(34)(78), (56)⟩.
The corresponding partition P of Theorem 4.2 has blocks D = {1,2,3,4,7,8} and E = {5,6} so
Autgr(Sq(V )) ≅ Autgr(Sq

DD
(VD)) ×Autgr(SqEE

(VE)).

Theorem 4.2 implies that the set of graded automorphism groups is closed under direct products.

Corollary 4.5. Let V1 and V2 be vector spaces with dimV1 = n1 and dimV2 = n2. Let q1 and q2
be n1 × n1 and n2 × n2 quantum parameter matrices, respectively. For ∣K∣ sufficiently large, there
exists a quantum parameter matrix q of size (n1 + n2) × (n1 + n2) such that

Autgr(Sq(V1 ⊕ V2)) ≅ Autgr(Sq1(V1)) ×Autgr(Sq2(V2)) .

Proof. We take a basis for V = V1 ⊕ V2 by appending a basis for V2 onto a basis for V1 after

embedding Vi in V . Select a not in {0,−1,1} nor an entry of q1 or q2. We set q = ( q1 A
A′ q2 ) where

A is the n1 × n2 constant matrix with all entries a and A′ is the n2 × n1 constant matrix with all
entries a−1. Then q is a quantum parameter matrix corresponding to V1 ⊕ V2.

Write P1,P2, and P for the partitions of [n1], [n2], and [n1 +n2] corresponding to q1, q2, and q,
respectively, arising from the decomposition given by Theorem 4.2.

Fix indices i, j,m ∈ [n1 + n2]. Note that since A and A′ are constant matrices, i and j index
rows of q that are equal up to a permutation exactly when they index rows of q1 equal up to a
permutation or they index rows of q2 equal up to a permutation. Similarly, if qim ≠ qjm, then i, j,m
all either index rows of q1 or all index rows of q2. Therefore, P = P1 ⊔ P2.

Since q
DD
= (qi)DD

for D ∈ Pi,

∏
D∈P

Autgr(Sq
DD
((V1 ⊕ V2)D)) ≅ ∏

D∈P1

Autgr(S(q1)
DD
(VD)) × ∏

D∈P2

Autgr(S(q2)
DD
(VD))

and thus Autgr(Sq(V1 ⊕ V2)) ≅ Autgr(Sq1(V1)) ×Autgr(Sq2(V2)) by Theorem 4.2. □

5. Kronecker products of quantum parameters

We investigate here the graded automorphism group arising from the Kronecker product of
quantum parameter matrices. This gives a useful tool for constructing quantum affine spaces with
desirable automorphism groups.

We fix two quantum parameter matrices q ∈Mat(n,K) and q′ ∈Mat(n′,K) for integers n,n′ ≥ 1
and index each entry of q⊗ q′ in Mat(nn′,K) by a pair of indices (i, i′) and (j, j′), setting

(5.1) (q⊗ q′)(i,i′),(j,j′) = qij q′i′j′ .

Note that q ⊗ q′ is again a quantum parameter matrix and defines the skew polynomial algebra
Sq⊗q′(V ⊗ V ′) with relations

(vj ⊗wm)(vi ⊗wℓ) = qij q′ℓm (vi ⊗wℓ)(vj ⊗wm) for 1 ≤ i, j ≤ n and 1 ≤ ℓ,m ≤ n′

for basis v1, . . . , vn of V and w1, . . . ,wn′ of V
′, and using the basis vi ⊗wℓ of V ⊗ V ′. Generically,

a pair of quantum parameter matrices q and q′ are independent in the sense that they share no
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entries nor even products of pairs of entries except 1, i.e.,

{ab ∶ a, b entries of q} ∩ {cd ∶ c, d entries of q′} = {1} .
We formalize this notion in the next definition.

Definition 5.2. We say that q and q′ are multiplicatively independent when q⊗ q and q′ ⊗ q′ have
1 as their only common entry.

We use the indexing convention of Eq. (5.1) to describe blocks of q⊗ q′:

Lemma 5.3. The partition Bq⊗q′ refines the product partition {B×B′ ∶ B ∈ Bq,B′ ∈ Bq′} of [n]×[n′].
If q and q′ are multiplicatively independent, then these partitions of [n] × [n′] are equal.

Proof. Suppose i and ℓ are in the same block of q and i′ and ℓ′ are in the same block of q′. Then
qim q

′
i′m′ = qℓm q′ℓ′m′ and thus (q ⊗ q′)(i,i′)(m,m′) = (q ⊗ q′)(ℓ,ℓ′)(m,m′) for all (m,m′) ∈ [n] × [n′] so

that (i, i′) and (ℓ, ℓ′) are in the same block of q ⊗ q′. Refinement in the opposite direction uses
multiplicative independence: For all (m,m′), if qim q′i′m′ = qℓm q′ℓ′m′ , then qim qmℓ = q

′
ℓ′m′ q

′
m′i′ , and

hence qim qmℓ = 1 = q′ℓ′m′ q
′
m′i′ so qim = qℓm and q′i′m′ = q′ℓ′m′ . □

We now describe the graded automorphism group arising from the tensor product of two quantum
parameter matrices with multiplicatively independent entries.

Theorem 5.4. For q and q′ multiplicatively independent, Stab(q⊗ q′) ≅ Stab(q) × Stab(q′) and

Autgr(Sq⊗q′(V ⊗ V ′)) ≅ ( ∏
B∈Bq,B′∈Bq′

GL(VB ⊗ V ′B′)) ⋊ (Stab(q) × Stab(q′)).

Proof. By Lemma 5.3, Bq⊗q′ = {B ×B′ ∶ B ∈ Bq,B′ ∈ Bq′}. The subspace of V ⊗V ′ corresponding to
the block B ×B′ is (V ⊗V ′)B×B′ = VB ⊗VB′ with our indexing convention. Corollary 2.7 then gives

Autgr(Sq⊗q′(V ⊗ V ′)) ≅ ( ∏
B∈Bq,B′∈Bq′

GL(VB ⊗ V ′B′)) ⋊ Stab(q⊗ q′) .

Recall Stab(q⊗ q′) = {τ ∈ Srr′ ∶ τ preserves block sizes for q⊗ q′ and τ(q⊗ q′) = q⊗ q′} for r = ∣Bq∣
and r′ = ∣Bq′ ∣. Here preserving block sizes means ∣τ(B,B′)∣ = ∣B∣∣B′∣ for all blocks B of q and B′ of
q′, in which case τ(q ⊗ q′)(B,B′)(C,C′) is (q ⊗ q′)

τ(B,B′)τ(C,C′) . We identify Sr ×Sr′ with a subgroup

of Srr′ , and, for σ ∈Sr and σ
′ ∈Sr′ preserving blocks sizes of q and q′, respectively, we define the

quantum parameter matrix
(σ,σ′)(q⊗ q′) = σq⊗ σ′q′ .

We argue that Stab(q) × Stab(q′) = Stab(q⊗ q′) under this identification.
If (σ,σ′) ∈ Stab(q)×Stab(q′), then (σ,σ′)(q⊗q′) = σq⊗σ′q′ = q⊗q′ so that (σ,σ′) ∈ Stab(q⊗q′).
Conversely, let τ ∈ Stab(q ⊗ q′). Define π1, π2 to be the projection functions onto the first and

second coordinates, respectively. We claim that for any fixed B′ in Bq′ , the function σ ∶ Bq → Bq
defined by B ↦ π1 τ(B,B′) is independent of choice of B′.

To verify the claim, we fix B′,C ′ in Bq′ and B in Bq, and show π1τ(B,B′) = π1τ(B,C ′). Write
τ(B,B′) = (D,D′) and τ(B,C ′) = (F,F ′) for some blocksD,D′, F,F ′. Take any (M,M ′) in Bq×B′q
and set (L,L′) = τ−1(M,M ′). Then

(q⊗ q′)(B,B′) (L,L′) = (q⊗ q′)(D,D′) (M,M ′) and (q⊗ q′)(B,C′) (L,L′) = (q⊗ q′)(F,F ′) (M,M ′) .
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Since each minor matrix considered has all identical entries, we take a sample entry from each.
Say b, b′, c′, d, d′, f, f ′, ℓ, ℓ′,m,m′ lie in B,B′,C ′,D,D′, F,F ′, L,L′,M,M ′, respectively. The first
equality in the display gives qbℓ q

′
b′ℓ′ = qdm q

′
d′m′ which forces qbℓ = qdm by the multiplicative inde-

pendence of q and q′. A similar argument using the second equality confirms that qbℓ = qfm, and
hence qdm = qfm. As we may take m to be arbitrary, D = F . Thus σ = π1τ(−,B′) ∶ Bq → Bq does
not depend on choice of B′ in Bq′ .

Likewise, we may define a function σ′ ∶ Bq′ → Bq′ defined by B′ ↦ π2 τ(B,B′) for a fixed block
B of Bq and show σ′ does not depend on choice of B.

Then τ ∶ Bq⊗q′ → Bq⊗q′ may be written as τ = (σ,σ′). As τ is bijective, both σ and σ′ must
be bijective. For example, if σ(B1) = σ(B2), then for any block C ′, τ(B1,C

′) = (σ(B1), σ′(C ′)) =
(σ(B2), σ′(C ′)) = τ(B2,C

′) and B1 = B2 as τ is one-to-one. Hence σ and σ′ are permutations of
the blocks of q and q′, respectively.

We next argue that σ lies in Stab(q) and σ′ lies in Stab(q′). First observe that both σ and σ′

preserve block size. Indeed, for all blocks B in Bq and B′ in Bq′ , ∣B∣∣B′∣ = ∣τ(B,B′)∣ = ∣σ(B)∣∣σ′(B′)∣
as τ ∈ Stab(q⊗q′). Thus if either σ or σ′ preserve block size, then so does the other. And if neither
σ nor σ′ preserve block size, then there are blocks B and B′ sent by σ and σ′, respectively, to larger
blocks, implying that ∣B∣∣B′∣ = ∣τ(B,B′)∣ = ∣σ(B)∣∣σ′(B′)∣ > ∣B∣∣B′∣. Since τ ∈ Stab(q ⊗ q′), for any
blocks B,L of q and B′, L′ of q′,

(q⊗ q′)(B,B′) (L,L′) = (q⊗ q′)
τ(B,B′)τ(L,L′) = (q⊗ q′)(σ(B),σ′(B′)) (σ(L),σ′(L′))

which implies that q
BL
= q

σ(B)σ(L) and q′
B′ L′ = qσ(B′)σ(L′) since q and q′ are multiplicatively inde-

pendent and σ and σ′ preserve block sizes. Thus τ = (σ,σ′) lies in Stab(q) × Stab(q′) and hence
Stab(q⊗ q′) ⊂ Stab(q) × Stab(q′). □

Remark 5.5. For ∣K∣ sufficiently large and any n × n quantum parameter matrix q, Theorem 5.4
implies that there is an m×m quantum parameter matrix q′ for all positive multiples m of n with
block permutation type Stab(q′) ≅ Stab(q). Indeed, we may find q′′ of appropriate size with q and
q′′ multiplicatively independent and Stab(q′′) trivial by Proposition 3.4.

The last theorem gives infinite families of graded automorphism groups that all share the same
permutation type.

Corollary 5.6. For positive integers n,m, and n1, . . . , nr, and a permutation group G, there exists
a quantum parameter matrix q ∈Mat(n,K) with Stab(q) = G, giving

Autgr(Sq(Kn)) ≅ ∏
i

GL(ni,K) ⋊ G,

if and only if there exists a quantum parameter matrix q′ ∈Mat(mn,K) with Stab(q′) = G, giving
Autgr(Sq′(Kmn)) ≅ ∏

i

GL(m ⋅ ni,K) ⋊ G.

Proof. Suppose q is an n × n quantum parameter matrix with G = Stab(q) giving the semidirect
product indicated by Theorem 2.9. Let q′ = q⊗ 1m for 1m the m ×m matrix whose every entry is
1. Since 1m and q are multiplicatively independent, and Stab(1m) is trivial, Theorem 5.4 implies
that Stab(q) ≅ Stab(q′). By Lemma 5.3, since B1m has only one block, Bq′ is in bijection with Bq,
and each block of Bq′ has m times as many elements as the corresponding block of Bq. Thus,

Autgr(Sq′(Knm)) ≅ ∏
i

GL(m ⋅ ni,K) ⋊ G.
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Conversely, fix a quantum parameter matrix q′ ∈ Mat(mn,K) with the above graded automor-
phism group. Then every block of Bq′ has size a multiple of m. As all entries in q′

BC
are equal for

all blocks B,C ∈ Bq′ , there is a n × n quantum parameter matrix q with q′ = q⊗ 1m and a similar
argument verifies that Autgr(Sq(Kn)) is as claimed. □

Example 5.7. We have Autgr(Sq(V )) ≅ (K×)3 ⋊S3 and Autgr(Sq′(V )) ≅ (GL(3,K))3 ⋊S3 for

q = ( 1 −1 −1
−1 1 −1
−1 −1 1

) and q′ = q ⊗ ( 1 1 1
1 1 1
1 1 1
) .

6. Classification of Graded Automorphism Groups of Low Dimension

We classify graded automorphism groups of quantum affine spaces up to dimV ≤ 7. Since two
skew polynomial rings are isomorphic as algebras if and only if their quantum parameters differ
by a permutation applied to indices, see Gaddis [6, Theorem 7.4], we classify these groups up to a
permutation of the basis elements of V . Determining the classification reduces to computing the
possibilities for the block permutation type Stab(q) of an n×n quantum parameter matrix q up to
conjugation in Sn. Not every subgroup of the symmetric group can appear as a block permutation
type. For example, of the 96 conjugacy classes of subgroups of S7, only 53 appear as a block
permutation type. This may be explained by the following corollary of Theorem 2.9.

Corollary 6.1. Consider a skew polynomial algebra Sq(V ) with r the number of distinct rows of

q. The group of graded automorphism is Autgr(Sq(V )) ≅ (∏ri=1GL(ni,K)) ⋊G for a group G ⊂Sr

with the property that H ⊂ G whenever [r]2/H = [r]2/G for all H ⊂Sr. Here, G = Stab(q).

We used the software GAP [7] to give conjugacy classes of subgroups of Sn and a depth-first
search algorithm in Python [14] to compute the graded automorphism groups of all possible q
matrices, using Corollary 6.1 to rule out groups when helpful. The core linear algebra operations
were performed with Numpy [13].

Maximality condition is not sufficient. Not every group G with the maximality property of
Corollary 6.1 is the block permutation type of some Autgr(Sq(V )), as we see in the next example.

Example 6.2. Suppose G = ⟨(12)(34), (13)(24)⟩ ⊂Sr for r ≥ 4. Then G satisfies the maximality
condition of Corollary 6.1. We argue G ≠ Stab(q) for every quantum parameter matrix q. Fix q
with blocks B1, . . . ,Br and G = Stab(q). Define a new 4 × 4 matrix q′ with q′ij the entry in q

BiBj

for i, j ≤ 4. Note that q
BiBm

= q
BjBm

for i, j ≤ 4 and m > 4 as G is transitive on {1,2,3,4} but fixes
m. This implies that q′ is a quantum parameter matrix with distinct rows and Stab(q′) = G. Thus

q′ = (
1 a b c
a 1 c b
b c 1 a
c b a 1

) for some a, b, c ∈ {1,−1} .

Note c ≠ b else (12) ∈ G. If (b, c) = (1,−1), then a ≠ 1, else (23) lies in G, and a ≠ −1, else rows
1 and 3 are identical. Similarly impossible is the case (b, c) = (−1,1). Hence there is no quantum
parameter matrix q with G = Stab(q) and Autgr(Sq(V )) ≅ ∏ri=1GL(ni,K) ⋊G.
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Tracking minimal field size. Whether or not a group may arise as Autgr(Sq(Kn)) for some
quantum parameter matrix q depends on the cardinality of the field K as noted in Proposition 3.4:
The field must be large enough for q to contain enough distinct entries. For example, if K = F2, then
the only possible quantum parameter matrix is the identity matrix q = 1n with Sq(V ) ≅ K[v1,⋯, vn]
and Autgr(Sq(Kn)) ≅ GL(n,K). A sharp lower bound on ∣K∣ is calculated for each group.

Example 6.3. Let n = 4 and H = (K×)4 ⋊ ⟨(123)⟩. We argue that 4 is the minimal cardinality of
K to guarantee H arises as the graded automorphism group of some skew polynomial algebra. We
may rule out ∣K∣ = 2, and there are four possibilities for q when ∣K∣ = 3, namely

(
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

) , (
1 1 1 −1
1 1 1 −1
1 1 1 −1
−1 −1 −1 1

) , (
1 −1 −1 1
−1 1 −1 1
−1 −1 1 1
1 1 1 1

) , and (
1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

)

which give rise to respective graded automorphism groups

GL(4,K), GL(3,K) ×K×, (K×)4 ⋊ ⟨(12), (123)⟩, and (K×)4 ⋊ S4 .

Of these, none are isomorphic to H, so the minimal cardinality of K is at least 4. A simple

computation verifies that Autgr(Sq(V )) ≅H for K = {0,1, a, a−1} ≅ F4 and q =
⎛
⎝

1 a a−1 a
a−1 1 a a
a a−1 1 a
a−1 a−1 a−1 1

⎞
⎠
.

Nonmonomial groups classified using monomial groups of lower dimension. By The-
orem 2.9, we may assign to each quantum parameter matrix q a partition λ of n = dimV with
Autgr(Sq(V )) ≅ (∏iGL(λi,K)mi) ⋊ G for G = Stab(q) the block permutation type and λ =
(λm1

1 . . . λms
s ). Here, λ1, . . . , λs are the distinct parts of λ with mi the multiplicity of λi so that the

length of λ is r = ∑si=1mi.
Every monomial graded automorphism group has the form (K×)n ⋊ G corresponding to the

partition λ = (1, . . . ,1). For nonmonomial graded automorphism groups corresponding to a fixed
λ, the block permutation types G all arise from monomial graded automorphism groups in lower
dimension r = ℓ(λ), as explained with the next proposition.

Proposition 6.4. Suppose ∣K∣ is sufficiently large and let λ = (λm1
1 . . . λms

s ) be a partition of n of
length r. Let G be a subgroup of Sr. The following are equivalent:

● There is a n × n quantum parameter matrix q with block sizes corresponding to λ with
Stab(q) = G.
● There is an r × r quantum parameter matrix q′ with Stab(q′) = G a subgroup of ∏si=1Smi

in Sr (up to conjugation) with Autgr(Sq′(V )) monomial.

Proof. We use Theorem 2.9. Take q as described and label its blocks B1, . . . ,Br so that each
q
BiBj

has all entries the same. Let q′ be the r × r quantum parameter matrix whose ij-th entry

is the entry in q
BiBj

. In other words, q′ is the matrix obtained by removing duplicate rows and

columns of q and reindexing. Let P be the partition of [r] with two indices i, j in the same block
exactly when ∣Bi∣ = ∣Bj ∣. We write P = {E1,E2, . . .Es} and replace entries in q′ so that entries
that were equal remain equal and entries that were distinct remain distinct in each off-diagonal
minor q′EiEj

and so that each off-diagonal minor q′EiEj
has distinct entries from the rest of q′. Then

σ ∈ Sr lies in Stab(q′) exactly when σ(i) and i are in the same block of P and q′ij = q′σ(i)σ(j)
for all i, j. This happens exactly when ∣Bi∣ = ∣σ(Bi)∣ and q

BiBj
= q

σ(Bi)σ(Bj)
for all i, j. Therefore
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Stab(q′) = Stab(q) = G. Finally, since q′ has distinct rows, the graded automorphism group
corresponding to q′ is monomial.

Now assume q′ as described in the statement is given. Then q′ must have distinct rows as
Autgr(Sq′(V )) is monomial. We construct q from q′ by repeating λi times the i-th row of q′ to
create a matrix of size n × r and then adding the columns necessary to obtain a n × n quantum
parameter matrix q as claimed with Stab(q) = Stab(q′). □

Example 6.5. Say q is an 8 × 8 quantum parameter matrix corresponding to the partition λ =
(1,1,2,2,2) = (12 23) so ℓ(λ) = 5. We find in the dimV = 5 table the rows with Stab q′ a subgroup
of S2 ×S3 identified with a subgroup of S5 up to conjugation in S5, as there are two blocks of the
smallest size and three blocks of the next smallest size. Thus, up to reindexing, Stab(q) = G and

Autgr(Sq(K8)) ≅ ((K×)2 ×GL(2,K)3) ⋊ G
for G ⊂S2 ×S3 one of 8 groups, namely, 1, 1× ⟨(123)⟩, 1×S3, S2 × 1, S2 × ⟨(12)⟩, S2 × ⟨(123)⟩,
⟨(12) × (12)⟩, and S2 ×S3 for 1 the identity group. All of these 8 groups arise for some q.

Listing the monomial groups, counting the nonmonomial groups. For dimV ≤ 5, we give
each graded automorphism group Autgr(Sq(V )) explicitly. For dimV = 6 and dimV = 7, we give
the monomial graded automorphism groups (K×)m ⋊ G by listing the block permutation types
G = Stab(q) that arise explicitly. We count the nonmonomial graded automorphism groups in the
classification using Proposition 6.4, which explains how to write them out explicitly using earlier
tables in order to complete the classification. We omit explicit tables for these nonmonomial groups
for brevity.

The explicit classification. Below, we classify the matrix groups that arise as graded automor-
phism groups for skew polynomial algebras with dimV ≤ 7. We give the classification up to a
permutation of the basis elements, i.e., up to a permutation of indices of the quantum parameter
matrices. In the tables, (K×)m × GL(ℓ,K) indicates a group of block diagonal matrices, which
sometimes appears in a semidirect product with a permutation group acting by permuting the
blocks. There are exactly

● 3 groups for dimV = 2,
● 6 groups for dimV = 3,
● 15 groups for dimV = 4,
● 25 groups for dimV = 5,
● 65 groups for dimV = 6, and
● 105 groups for dimV = 7

that arise as Autgr(Sq(V )) for some quantum parameter matrix q. For dimV = 3, this recovers
[12, Theorem 11.1].

In each table below, we list the groups in the classification for a fixed dimension of V and indicate
a sample q giving that group as Autgr(Sq(V )) along with the block permutation type G = Stab(q)
as in Theorem 2.9. We also indicate the minimum cardinality of K required. For each matrix q
listed, we assume a, b, c, d, e, f are pairwise distinct scalars in K∗/{±1}.

We also indicate in each table the orbits of G on [n]2 for n = dimV using the fact that G
permutes blocks of q of the same size: For each possible block size, we reindex so the blocks of that
size are B1, . . . ,Bm and give an m ×m matrix indicating the orbits of G on [m] × [m]; the entries
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range from 1 to the number of orbits with ij-th and kℓ-th entries equal whenever (i, j) and (k, ℓ)
lie in the same orbit.

Table 1. Graded Automorphism Groups for dimV = 2

Autgr(Sq(V )) q Stab q Orbits Min ∣K∣

(K×)2 (
1 a

a−1 1
) ⟨e⟩ [

1 2
3 4 ] 4

(K×)2 ⋊ ⟨(12)⟩ (
1 −1
−1 1 ) ⟨(12)⟩ [

1 2
2 1 ] 3

GL(2,K) (
1 1
1 1 ) ⟨e⟩ [ 1 ] 2

Table 2. Graded Automorphism Groups for dimV = 3

Autgr(Sq(V )) q Stab q Orbits Min ∣K∣

(K×)3 (

1 a b
a−1 1 c
b−1 c−1 1

) ⟨e⟩ [
1 2 3
4 5 6
7 8 9
] 4

(K×)3 ⋊ ⟨(12)⟩ (

1 −1 a
−1 1 a
a−1 a−1 1

) ⟨(12)⟩ [
1 2 3
2 1 3
4 4 1
] 3

(K×)3 ⋊ ⟨(123)⟩ (

1 a a−1

a−1 1 a
a a−1 1

) ⟨(123)⟩ [
1 2 3
3 1 2
2 3 1
] 4

(K×)3 ⋊S3 (
1 −1 −1
−1 1 −1
−1 −1 1

) S3 [
1 2 2
2 1 2
2 2 1
] 3

K× ×GL(2,K) (

1 a a
a−1 1 1
a−1 1 1

) ⟨e⟩ [ 1 ], [ 1 ] 3

GL(3,K) (
1 1 1
1 1 1
1 1 1
) ⟨e⟩ [ 1 ] 2
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For dimV = 4, the classification comprises 15 graded automorphism groups.

Table 3. Graded Automorphism Groups for dimV = 4

Autgr(Sq(V )) q Stab q Orbits Min ∣K∣

(K×)4
⎛

⎝

1 a b c
a−1 1 d e
b−1 d−1 1 f

c−1 e−1 f−1 1

⎞

⎠

⟨e⟩ [

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

] 5

(K×)4 ⋊ ⟨(12)⟩ (

1 −1 b c
−1 1 b c
b−1 b−1 1 d
c−1 c−1 d−1 1

) ⟨(12)⟩ [

1 2 3 4
2 1 3 4
5 5 6 7
8 8 9 10

] 3

(K×)4 ⋊ ⟨(123)⟩
⎛

⎝

1 a a−1 b
a−1 1 a b
a a−1 1 b

b−1 b−1 b−1 1

⎞

⎠

⟨(123)⟩ [

1 2 3 4
3 1 2 4
2 3 1 4
5 5 5 6

] 4

(K×)4 ⋊ ⟨(123), (12)⟩ (

1 −1 −1 b
−1 1 −1 b
−1 −1 1 b
b−1 b−1 b−1 1

) ⟨(123), (12)⟩ [

1 2 2 3
2 1 2 3
2 2 1 3
4 4 4 5

] 3

(K×)4 ⋊ ⟨(12)(34)⟩ (

1 ±1 a b
±1 1 b a
a−1 b−1 1 ±1
b−1 a−1 ±1 1

) ⟨(12)(34)⟩ [

1 2 3 4
2 1 4 3
5 6 7 8
6 5 8 7

] 3

(K×)4 ⋊ ⟨(12), (34)⟩ (

1 −1 a a
−1 1 a a
a−1 a−1 1 −1
a−1 a−1 −1 1

) ⟨(12), (34)⟩ [

1 2 3 3
2 1 3 3
4 4 5 6
4 4 6 5

] 5

(K×)4 ⋊ ⟨(1234)⟩
⎛

⎝

1 a ±1 a−1

a−1 1 a ±1
±1 a−1 1 a
a ±1 a−1 1

⎞

⎠

⟨(1234)⟩ [

1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

] 5

(K×)4 ⋊ ⟨(1234), (13)⟩ (

1 1 −1 1
1 1 1 −1
−1 1 1 1
1 −1 1 1

) ⟨(1234), (13)⟩ [

1 2 3 2
2 1 2 3
3 2 1 2
2 3 2 1

] 3

(K×)4 ⋊S4 (

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

) S4 [

1 2 2 2
2 1 2 2
2 2 1 2
2 2 2 1

] 3

(K×)2 ×GL(2,K)
⎛

⎝

1 a b b
a−1 1 b b
b−1 b−1 1 1
b−1 b−1 1 1

⎞

⎠

⟨e⟩ [
1 2
3 4 ], [ 1 ] 4

((K×)2 ×GL(2,K)) ⋊ ⟨(12)⟩ (

1 −1 a a
−1 1 a a
a−1 a−1 1 1
a−1 a−1 1 1

) ⟨(12)⟩ [
1 2
2 1 ], [ 1 ] 3

(GL(2,K))2 (

1 1 a a
1 1 a a

a−1 a−1 1 1
a−1 a−1 1 1

) ⟨e⟩ [
1 2
3 4 ] 4

(GL(2,K))2 ⋊ (12) (

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

) ⟨(12)⟩ [
1 2
2 1 ] 3

K× ×GL(3,K)
⎛

⎝

1 a a a
a−1 1 1 1
a−1 1 1 1
a−1 1 1 1

⎞

⎠

⟨e⟩ [ 1 ], [ 1 ] 3

GL(4,K) (

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

) ⟨e⟩ [ 1 ] 2

For dimV = 5, we list monomial graded automorphism groups in the first table and nonmonomial
groups in the second table. There are total of 25 graded automorphism groups.
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Table 4. Monomial Graded Automorphism Groups for dimV = 5

Autgr(Sq(V )) q Stab q Orbits Min ∣K∣

(K×)5
⎛

⎜
⎜

⎝

1 a b c d
a−1 1 e f g

b−1 e−1 1 h i
c−1 f−1 h−1 1 j

d−1 g−1 i−1 j−1 1

⎞

⎟
⎟

⎠

⟨e⟩

⎡
⎢
⎢
⎢
⎢
⎣

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

⎤
⎥
⎥
⎥
⎥
⎦

5

(K×)5 ⋊ ⟨(12)⟩
⎛

⎜

⎝

1 −1 a b c
−1 1 a b c
a−1 a−1 1 d e
b−1 b−1 d−1 1 f

c−1 c−1 e−1 f−1 1

⎞

⎟

⎠

⟨(12)⟩

⎡
⎢
⎢
⎢
⎢
⎣

1 2 3 4 5
2 1 3 4 5
6 6 7 8 9
10 10 11 12 13
14 14 15 16 17

⎤
⎥
⎥
⎥
⎥
⎦

3

(K×)5 ⋊ ⟨(123)⟩
⎛

⎜
⎜

⎝

1 a a−1 c d
a−1 1 a c d
a a−1 1 c d

c−1 c−1 c−1 1 f

d−1 d−1 d−1 f−1 1

⎞

⎟
⎟

⎠

⟨(123)⟩

⎡
⎢
⎢
⎢
⎢
⎣

1 2 3 4 5
3 1 2 4 5
2 3 1 4 5
6 6 6 7 8
9 9 9 10 11

⎤
⎥
⎥
⎥
⎥
⎦

4

(K×)5 ⋊ ⟨(1234)⟩
⎛

⎜
⎜

⎝

1 a −1 a−1 d
a−1 1 a −1 d
−1 a−1 1 a d
a −1 a−1 1 d

d−1 d−1 d−1 d−1 1

⎞

⎟
⎟

⎠

⟨(1234)⟩

⎡
⎢
⎢
⎢
⎢
⎣

1 2 3 4 5
4 1 2 3 5
3 4 1 2 5
2 3 4 1 5
6 6 6 6 7

⎤
⎥
⎥
⎥
⎥
⎦

5

(K×)5 ⋊ ⟨(12)(34)⟩
⎛

⎜

⎝

1 ±1 a b c
±1 1 b a c
a−1 b−1 1 ±1 d
b−1 a−1 ±1 1 d
c−1 c−1 d−1 d−1 1

⎞

⎟

⎠

⟨(12)(34)⟩

⎡
⎢
⎢
⎢
⎢
⎣

1 2 3 4 5
2 1 4 3 5
6 7 8 9 10
7 6 9 8 10
11 11 12 12 13

⎤
⎥
⎥
⎥
⎥
⎦

3

(K×)5 ⋊ ⟨(12), (34)⟩
⎛

⎜

⎝

1 ±1 a a b
±1 1 a a b
a−1 a−1 1 ±1 d
a−1 a−1 ±1 1 d
b−1 b−1 d−1 d−1 1

⎞

⎟

⎠

⟨(12), (34)⟩

⎡
⎢
⎢
⎢
⎢
⎣

1 2 3 3 4
2 1 3 3 4
5 5 6 7 8
5 5 7 6 8
9 9 10 10 11

⎤
⎥
⎥
⎥
⎥
⎦

3

(K×)5 ⋊ ⟨(12), (123)⟩
⎛

⎜

⎝

1 −1 −1 a b
−1 1 −1 a b
−1 −1 1 a b
a−1 a−1 a−1 1 c
b−1 b−1 b−1 c−1 1

⎞

⎟

⎠

⟨(12), (123)⟩

⎡
⎢
⎢
⎢
⎢
⎣

1 2 2 3 4
2 1 2 3 4
2 2 1 3 4
5 5 5 6 7
8 8 8 9 10

⎤
⎥
⎥
⎥
⎥
⎦

3

(K×)5 ⋊ ⟨(1234), (13)⟩
⎛

⎝

1 1 −1 1 a
1 1 1 −1 a
−1 1 1 1 a
1 −1 1 1 a

a−1 a−1 a−1 a−1 1

⎞

⎠

⟨(1234), (13)⟩

⎡
⎢
⎢
⎢
⎢
⎣

1 2 3 2 4
2 1 2 3 4
3 2 1 2 4
2 3 2 1 4
5 5 5 5 6

⎤
⎥
⎥
⎥
⎥
⎦

3

(K×)5 ⋊ ⟨(1234), (12)⟩
⎛

⎝

1 −1 −1 −1 a
−1 1 −1 −1 a
−1 −1 1 −1 a
−1 −1 −1 1 a
a−1 a−1 a−1 a−1 1

⎞

⎠

⟨(1234), (12)⟩

⎡
⎢
⎢
⎢
⎢
⎣

1 2 2 2 3
2 1 2 2 3
2 2 1 2 3
2 2 2 1 3
4 4 4 4 5

⎤
⎥
⎥
⎥
⎥
⎦

3

(K×)5 ⋊ ⟨(12), (345)⟩
⎛

⎜

⎝

1 ±1 a a a
±1 1 a a a
a−1 a−1 1 b b−1

a−1 a−1 b−1 1 b
a−1 a−1 b b−1 1

⎞

⎟

⎠

⟨(12), (345)⟩

⎡
⎢
⎢
⎢
⎢
⎣

1 2 3 3 3
2 1 3 3 3
4 4 5 6 7
4 4 7 5 6
4 4 6 7 5

⎤
⎥
⎥
⎥
⎥
⎦

5

(K×)5 ⋊ ⟨(12), (123)(45)⟩
⎛

⎜

⎝

1 −1 −1 a a
−1 1 −1 a a
−1 −1 1 a a
a−1 a−1 a−1 1 −1
a−1 a−1 a−1 −1 1

⎞

⎟

⎠

⟨(12), (123)(45)⟩

⎡
⎢
⎢
⎢
⎢
⎣

1 2 2 3 3
2 1 2 3 3
2 2 1 3 3
4 4 4 5 6
4 4 4 6 5

⎤
⎥
⎥
⎥
⎥
⎦

3

(K×)5 ⋊ ⟨(12345)⟩
⎛

⎜

⎝

1 a b b−1 a−1

a−1 1 a b b−1

b−1 a−1 1 a b
b b−1 a−1 1 a
a b b−1 a−1 1

⎞

⎟

⎠

⟨(12345)⟩

⎡
⎢
⎢
⎢
⎢
⎣

1 2 3 4 5
5 1 2 3 4
4 5 1 2 3
3 4 5 1 2
2 3 4 5 1

⎤
⎥
⎥
⎥
⎥
⎦

4

(K×)5 ⋊ ⟨(12345), (15)(24)⟩
⎛

⎝

1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

⎞

⎠

⟨(12345), (15)(24)⟩

⎡
⎢
⎢
⎢
⎢
⎣

1 2 3 3 2
2 1 2 3 3
3 2 1 2 3
3 3 2 1 2
2 3 3 2 1

⎤
⎥
⎥
⎥
⎥
⎦

3

(K×)5 ⋊S5

⎛

⎝

1 −1 −1 −1 −1
−1 1 −1 −1 −1
−1 −1 1 −1 −1
−1 −1 −1 1 −1
−1 −1 −1 −1 1

⎞

⎠

S5

⎡
⎢
⎢
⎢
⎢
⎣

1 2 2 2 2
2 1 2 2 2
2 2 1 2 2
2 2 2 1 2
2 2 2 2 1

⎤
⎥
⎥
⎥
⎥
⎦

3



STABILIZING AUTOMORPHISMS OF QUANTUM AFFINE SPACE 21

Table 5. Nonmonomial Graded Automorphism Groups for dimV = 5

Autgr(Sq(V )) q Stab q Orbits Min ∣K∣

(K×)3 ×GL(2,K)
⎛

⎜
⎜

⎝

1 a b c c
a−1 1 d e e
b−1 d−1 1 f f

c−1 e−1 f−1 1 1

c−1 e−1 f−1 1 1

⎞

⎟
⎟

⎠

⟨e⟩ [
1 2 3
4 5 6
7 8 9
], [ 1 ] 4

((K×)3 ×GL(2,K)) ⋊ ⟨(12)⟩
⎛

⎜

⎝

1 −1 a b b
−1 1 a b b
a−1 a−1 1 c c
b−1 b−1 c−1 1 1
b−1 b−1 c−1 1 1

⎞

⎟

⎠

⟨(12)⟩ [
1 2 3
2 1 3
4 4 5
], [ 1 ] 5

((K×)3 ×GL(2,K)) ⋊ ⟨(123)⟩
⎛

⎜

⎝

1 a a−1 b b
a−1 1 a b b
a a−1 1 b b

b−1 b−1 b−1 1 1
b−1 b−1 b−1 1 1

⎞

⎟

⎠

⟨(123)⟩ [
1 2 3
3 1 2
2 3 1
], [ 1 ] 4

((K×)3 ×GL(2,K)) ⋊S3

⎛

⎝

1 −1 −1 a a
−1 1 −1 a a
−1 −1 1 a a
a−1 a−1 a−1 1 1
a−1 a−1 a−1 1 1

⎞

⎠

S3 [
1 2 2
2 1 2
2 2 1
], [ 1 ] 3

K× × (GL(2,K))2
⎛

⎜

⎝

1 a a b b
a−1 1 1 c c
a−1 1 1 c c
b−1 c−1 c−1 1 1
b−1 c−1 c−1 1 1

⎞

⎟

⎠

⟨e⟩ [ 1 ], [ 1 2
3 4 ] 3

(K× × (GL(2,K))2) ⋊S2

⎛

⎜

⎝

1 a a b b
a−1 1 1 −1 −1
a−1 1 1 −1 −1
b−1 −1 −1 1 1
b−1 −1 −1 1 1

⎞

⎟

⎠

S2 [ 1 ], [ 1 2
2 1 ] 3

(K×)2 ×GL(3,K)
⎛

⎜

⎝

1 a b b b
a−1 a c c c
b−1 c−1 1 1 1
b−1 c−1 1 1 1
b−1 c−1 1 1 1

⎞

⎟

⎠

⟨e⟩ [
1 2
3 4 ], [ 1 ] 3

((K×)2 ×GL(3,K)) ⋊ ⟨(12)⟩
⎛

⎜

⎝

1 −1 a a a
−1 1 a a a
a−1 a−1 1 1 1
a−1 a−1 1 1 1
a−1 a−1 1 1 1

⎞

⎟

⎠

⟨(12)⟩ [
1 2
2 1 ], [ 1 ] 3

GL(2,K) ×GL(3,K)
⎛

⎜

⎝

1 1 a a a
1 1 a a a

a−1 a−1 1 1 1
a−1 a−1 1 1 1
a−1 a−1 1 1 1

⎞

⎟

⎠

⟨e⟩ [ 1 ], [ 1 ] 3

K× ×GL(4,K)
⎛

⎜

⎝

1 a a a a
a−1 1 1 1 1
a−1 1 1 1 1
a−1 1 1 1 1
a−1 1 1 1 1

⎞

⎟

⎠

⟨e⟩ × ⟨e⟩ [ 1 ], [ 1 ] 3

GL(5,K)
⎛

⎝

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎠

⟨e⟩ [ 1 ] 2

Dimension six. We now assume dimV = 6. There are total of 65 graded automorphism groups.
There are 11 partitions of 6, with the partition (1,1,1,1,1,1) corresponding to monomial au-
tomorphisms. The next table provides the number of groups corresponding to the fixed block
decomposition given by each partition. We give the monomial groups explicitly below.
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Table 6. Graded Automorphism Groups for dimV = 6 organized by partition

λ (16) (14 2) (12 22) (23) (13 3) (123) (32) (12 4) (24) (15) (6)
count 36 9 4 4 4 1 2 2 1 1 1

For ∣K∣ = 3 there are 21 monomial graded automorphism groups; they have block permutation types

⟨e⟩, ⟨(12)⟩, ⟨(12)(34)(56)⟩, ⟨(12)(34)⟩, ⟨(12)(34), (56)⟩, ⟨(12), (34)⟩, ⟨(15)(34), (56)(24)⟩,
⟨(13)(24), (12)(34)(56)⟩, ⟨(12), (23)⟩, ⟨(1234)(56), (24)⟩, ⟨(1234), (24)⟩, ⟨(123), (34)⟩,
⟨(15)(24), (12345)⟩, ⟨(12), (23), (45)⟩, ⟨(1234), (45)⟩, ⟨(123456), (13)⟩, ⟨(12), (234)(56)⟩,
⟨(123456), (163452)⟩, ⟨(123456), (1346), (25)⟩, ⟨(1234), (13), (56)⟩, ⟨(12345), (56)⟩.

For ∣K∣ ≥ 4 and char K = 2, there are 12 monomial graded automorphism groups: 4 groups arise
from the ∣K∣ = 3 case and have block permutation types

⟨e⟩, ⟨(12)(34)⟩, ⟨(12)(34)(56)⟩, ⟨(123)(456), (12)(45)⟩,

and 8 additional groups have block permutation types

⟨(123)⟩, ⟨(123)(456)⟩, ⟨(1234)(56)⟩, ⟨(1234)⟩,
⟨(12345)⟩, ⟨(123456)⟩, ⟨(123), (456)⟩, ⟨(12)(34)(56), (135)⟩ .

For ∣K∣ ≥ 5 and char K ≠ 2, there are 36 monomial graded automorphism groups: 21 + 8 = 29 with
block permutation types as in the cases ∣K∣ = 3 and ∣K∣ = 4 and 7 with block permutation types

⟨(123)(456), (34)(25)(16)⟩, ⟨(123)(45)⟩, ⟨(12), (34), (56)⟩, ⟨(12), (3456)⟩,
⟨(123), (456), (45)⟩, ⟨(123456), (14)⟩, ⟨(23), (123)(456), (56)⟩ .

Dimension seven. We now assume dimV = 7. There are a total of 105 graded automorphism
groups. These arise from the 15 partitions of 7, with the partition (1,1,1,1,1,1,1) corresponding
to monomial automorphism groups. The next two tables provides a count of the number of graded
automorphism groups corresponding to the fixed block decomposition given by each partition.

Table 7. Graded Automorphism Groups for dimV = 7 organized by partition

λ (17) (15 2) (13 22) (123) (14 3) (12 23) 22 3 (132)
count 53 14 8 4 9 2 2 2

λ (13 4) (124) (34) (12 5) (25) (16) (7)
count 4 1 1 2 1 1 1
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For ∣K∣ = 3,there are 31 monomial graded automorphism groups; they have block permutation types

⟨e⟩, ⟨(12)⟩, ⟨(12)(34)⟩, ⟨(12)(34)(56)⟩, ⟨(12), (34)⟩, ⟨(13)(24), (12)(34)(56)⟩, ⟨(12), (23)⟩,
⟨(12)(34), (56)⟩, ⟨(12)(45), (23)(56)⟩, ⟨(13), (1234)⟩, ⟨(12), (34), (56)⟩, ⟨(13), (1234)(56)⟩,
⟨(12)(34), (14)(52)⟩, ⟨(12), (23), (45)(67)⟩, ⟨(12), (23), (45)⟩, ⟨(16)(35), (12)(34)(56)⟩,
⟨(1234567), (17)(26)(35)⟩, ⟨(13), (1234), (56)⟩, ⟨(12)(35), (12345), (67)⟩, ⟨(123), (34)⟩,
⟨(12), (34)(56)(57)⟩, ⟨(12), (12345)⟩, ⟨(12), (13), (45), (46)⟩, ⟨(1234), (14), (56)⟩,
⟨(12)(34), (1546)(23), (14)⟩, ⟨(13), (1234), (56), (67)⟩, ⟨(12)(34)(56), (23), (45)⟩,
⟨(3456)(17), (12)(345)⟩, ⟨(123)(45)(67), (124)(35)⟩, ⟨(12345), (56)⟩, ⟨(123456), (67)⟩ .
For ∣K∣ = 4, there are 16 monomial graded automorphism groups: 4 from the ∣K∣ = 3 case, namely,
those with block permutation types

⟨e⟩, ⟨(12)(34)⟩, ⟨(12)(34)(56)⟩, ⟨(123)(456), (12)(45)⟩,
and 12 additional groups with block permutation types

⟨(123)⟩, ⟨(123)(456)⟩, ⟨(1234)⟩, ⟨(1234)(56)⟩, ⟨(12345)⟩, ⟨(123)(45)(67)⟩, ⟨(123456)⟩,
⟨(1234567)⟩, ⟨(123), (456)⟩, ⟨(1234)(567)⟩, ⟨(135), (123456)⟩, ⟨(1234567), (235)(476)⟩ .
For ∣K∣ ≥ 5, there are 53 monomial graded automorphism groups: 31 + 12 = 43 with block permu-
tation types as in the cases ∣K∣ = 3 and ∣K∣ = 4 above and 10 additional groups with types

⟨(16)(25)(34), (123456)⟩, ⟨(135)(24)⟩, ⟨(12), (3456)⟩, ⟨(12345)(67)⟩,
⟨(12), (345), (67)⟩, ⟨(12), (23), (456)⟩, ⟨(123)(456), (14)⟩,
⟨(13), (1234), (567)⟩, ⟨(1234), (56), (67)⟩, ⟨(123), (456), (67)⟩ .
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